PROPOSED CHANGE NOTICE

Affected Document: IS-GPS-800 Rev F	IRN/SCN Number XXX-XXXX-XXX		
Authority:	Proposed Change Notice RFC-00395		
IS800F-RFC395		\quad	Date:
:---			
CLASSIFIED BY: N/A			
DECLASSIFY ON: N/A			

DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution Is Unlimited

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED.

Interface Control Contractor:
Engility (GPS SE\&I)
200 N. Pacific Coast Highway, Suite 1800 El Segundo, CA 90245 CODE IDENT 66RP1

IS800-15 :

Section Number :

2.1.0-4

WAS :
Other Publications

IS-GPS-200 (current issue)	Navstar GPS Space Segment/Navigation User
	Interfaces
GP-03-001A (20 April 2006)	GPS Interface Control Working Group Charter

Redlines :

Other Publications

IS-GPS-200 (current issue)	Navstar GPS Space Segment/Navigation User Interfaces
GP-03-001A (z0 Aprit	GPS Interface Control Working Group Charter GPS
z006Current Issue)	$\underline{\text { Adjudication Working Group (AWG) and }}$
	$\underline{\text { Rough Order of Magnitude (ROM)/ Impact }}$
$\underline{\text { Assessment (IA) Charter }}$	

IS:

Other Publications

IS-GPS-200 (current issue)

GP-03-001A (Current Issue)

Navstar GPS Space Segment/Navigation User Interfaces

GPS Adjudication Working Group (AWG) and Rough Order of Magnitude (ROM)/ Impact

Assessment (IA) Charter

Rationale :

Update the ICWG Charter to the new AWG Charter.

IS800-1020 :

Insertion after object IS800-179
The user shall compute the ECEF coordinates of position for the SV's antenna phase center (APC) utilizing a variation of the equations shown in Table 3.5-2. The ephemeris parameters are Keplerian in appearance; however, the values of these parameters are produced by the SV via a least squares curve fit of the propagated ephemeris of the SV APC (timeposition quadruples: t, x, y, z expressed in ECEF coordinates). Particulars concerning the applicable coordinate system are given in Sections 20.3.3.4.3.3 and 20.3.3.4.3.4 of IS-GPS-200.

Section Number :

3.5.3.6.1.1

WAS :
N/A

Redlines:

<INSERTED OBJECT>
IS :
The user can compute velocity and acceleration for the SV utilizing a variation of the equations, as required, shown in Table 3.5-2 Part 3 and 4.

Rationale :

Adding an explanation that the new velocity and acceleration equations are optional for the users.

IS800-948 :

Section Number :

3.5.3.6.1.1-2

WAS :

Table 3.5-2. Elements of Coordinate System (part 1 of 2)

Redlines:

Table 3.5-2._Elements of Broadcast Coordinate Navigation SystemUser Equations (partsheet 1 of $\mathbf{z} \underline{4}$)

IS :
Table 3.5-2. Broadcast Navigation User Equations (sheet 1 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

Section Number :

3.5.3.6.1.1-3

WAS :
Table 3.5-2

Element/Equation	Description
$\mu=3.986005 \times 10^{14} \mathrm{~meters}^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\dot{\Omega}_{\mathrm{e}}=7.2921151467 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$	WGS 84 value of the earth's rotation rate
$\mathrm{A}_{0}=\mathrm{A}_{\text {REF }}+\Delta \mathrm{A} *$	Semi-Major Axis at reference time
$\mathrm{A}_{\mathrm{k}}=\mathrm{A}_{0}+\left(\mathrm{A}^{\circ} \mathrm{t}_{\mathrm{k}}\right.$	Semi-Major Axis
$n_{0}=\sqrt{\frac{\mu}{A^{3}}}$	Computed Mean Motion (rad/sec)
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{\text {oe }} * *$	Time from ephemeris reference time
$\Delta \mathrm{n}_{\mathrm{A}}=\Delta \mathrm{n}_{0}+1 / 2 \Delta \mathrm{n}_{0} \mathrm{t}_{\mathrm{k}}$	Mean motion difference from computed value
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{0}+\Delta \mathrm{n}_{\mathrm{A}}$	Corrected Mean Motion
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{n}_{\mathrm{A}} \mathrm{t}_{\mathrm{k}}$	Mean Anomaly
$\mathrm{M}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}}-\mathrm{e}_{\mathrm{n}} \sin \mathrm{E}_{\mathrm{k}}$	Kepler's equation for Eccentric Anomaly (radians) (may be solved by iteration)
$v_{\mathrm{k}}=\tan ^{-1}\left\{\frac{\sin v_{\mathrm{k}}}{\cos v_{\mathrm{k}}}\right\}$	True Anomaly
$=\tan ^{-1}\left\{\frac{\sqrt{1-\mathrm{e}_{\mathrm{n}}^{2}} \sin \mathrm{E}_{\mathrm{k}} /\left(1-\mathrm{e}_{\mathrm{n}} \cos \mathrm{E}_{\mathrm{k}}\right)}{\left(\cos \mathrm{E}_{\mathrm{k}}-\mathrm{e}_{\mathrm{n}}\right) /\left(1-\mathrm{e}_{\mathrm{n}} \cos \mathrm{E}_{\mathrm{k}}\right)}\right\}$	
$E_{k}=\cos ^{-1}\left\{\frac{e_{n}+\cos v_{k}}{1+e_{n} \cos v_{k}}\right\}$	Eccentric Anomaly

* $\quad \mathrm{A}_{\text {REF }}=26,559,710$ meters
** \mathbf{t} is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time t and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than $-302,400$ seconds, add 604,800 seconds to t_{k}.

Redlines :

Table 3.5-2

Element/Equation	Description
$\mu=3.986005 \times 10^{14} \mathrm{~meters}^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\dot{\Omega}_{\mathrm{e}}=7.2921151467 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$	WGS 84 value of the earth's rotation rate
$\mathrm{A}_{0}=\mathrm{A}_{\text {REF }}+\Delta \mathrm{A} *$	Semi-Major Axis at reference time
$\mathrm{A}_{\mathrm{k}}=\mathrm{A}_{0}+(\dot{\mathrm{A}}) \mathrm{t}_{\mathrm{k}}$	Semi-Major Axis
$n_{0}=\sqrt{\frac{\mu}{\Lambda^{3}}}$	Computed Mean Motion (rad/sec)
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{\mathrm{oe}}$ **	Time from ephemeris reference time
$\Delta \mathrm{n}_{\mathrm{A}}=\Delta \mathrm{n}_{0}+1 / 2 \Delta \mathrm{n}_{0} \mathrm{t}_{\mathrm{k}}$	Mean motion difference from computed value
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{0}+\Delta \mathrm{n}_{\mathrm{A}}$	Corrected Mean Motion
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{n}_{\mathrm{A}} \mathrm{t}_{\mathrm{k}}$	Mean Anomaly
$\mathrm{M}_{k}=\mathrm{E}_{k}-\mathrm{E}_{\mathrm{H}} \sin \mathrm{E}_{k}$	Kepler's equation for Eccentric Anomaly (radians) (may be solved by iteration)
	Kepler's equation $\left(M_{k}=E_{k}-e \sin E_{k}\right)$ solved for Eccentric anomaly $\left(E_{k}\right)$ by iteration:
$\underline{E}_{0}=\mathrm{M}_{\underline{k}}$	- Initial Value (radians)
$E_{j}=E_{j-1}+\frac{M_{k}-E_{j-1}+e \sin E_{j-1}}{1-e \cos E_{j-1}}$	- Refined Value, three iterations, ($\mathrm{j}=1,2,3$)
$\mathrm{E}_{\mathrm{k}}=\mathrm{E}_{3}$	- Final Value (radians)
$\begin{aligned} & \left.\forall_{k}=\tan ^{+} \frac{\left\{\sin v_{k}\right.}{\left(\cos v_{k}\right.}\right\} \\ & =\tan ^{-1}-\left\{\frac{\sqrt{1-e_{n}^{2}} \sin E_{k} /\left(1-e_{n} \cos E_{k}\right)}{\left(\cos E_{k^{-}}-e_{n}\right) /\left(1-e_{n} \cos E_{k}\right)}\right\} \end{aligned}$	True Anomaly
$\underline{v}_{\underline{k}}=2 \tan ^{-1}\left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E_{k}}{2}\right)$	True Anomaly (unambiguous quadrant)
	Eccentric Anomaly

* $\quad \mathrm{A}_{\text {REF }}=26,559,710$ meters
** \mathbf{t} is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time \mathbf{t} and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than $-302,400$ seconds, add 604,800 seconds to t_{k}.

IS :
Table 3.5-2

Element/Equation	Description
$\mu=3.986005 \times 10^{14} \mathrm{~meters}^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\dot{\Omega}_{\mathrm{e}}=7.2921151467 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$	WGS 84 value of the earth's rotation rate
$\mathrm{A}_{0}=\mathrm{A}_{\text {REF }}+\Delta \mathrm{A}^{*}$	Semi-Major Axis at reference time
$\mathrm{A}_{\mathrm{k}}=\mathrm{A}_{0}+\left(\dot{A}^{\circ} \mathrm{t}_{\mathrm{k}}\right.$	Semi-Major Axis
$\mathrm{n}_{0}=\sqrt{\frac{\mu}{\mathrm{A}_{0}^{3}}}$	Computed Mean Motion (rad/sec)
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{\mathrm{oe}} * *$	Time from ephemeris reference time
$\Delta \mathrm{n}_{\mathrm{A}}=\Delta \mathrm{n}_{0}+1 / 2 \Delta \mathrm{n}_{0} \mathrm{t}_{\mathrm{k}}$	Mean motion difference from computed value
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{0}+\Delta \mathrm{n}_{\mathrm{A}}$	Corrected Mean Motion
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{n}_{\mathrm{A}} \mathrm{t}_{\mathrm{k}}$	Mean Anomaly
	Kepler's equation ($M_{k}=E_{k}-e \sin E_{k}$) solved for Eccentric anomaly $\left(E_{k}\right)$ by iteration:
$\mathrm{E}_{0}=\mathrm{M}_{\mathrm{k}}$	- Initial Value (radians)
$E_{j}=E_{j-1}+\frac{M_{k}-E_{j-1}+e \sin E_{j-1}}{1-e \cos E_{j-1}}$	- Refined Value, three iterations, ($\mathrm{j}=1,2,3$)
$\mathrm{E}_{\mathrm{k}}=\mathrm{E}_{3}$	- Final Value (radians)
$v_{\mathrm{k}}=2 \tan ^{-1}\left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E_{k}}{2}\right)$	True Anomaly (unambiguous quadrant)

* $\quad \mathrm{A}_{\mathrm{REF}}=26,559,710$ meters
** \mathbf{t} is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time \mathbf{t} and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than $-302,400$ seconds, add 604,800 seconds to t_{k}.

Rationale:

RFC 395: Implement and replace with improved Kepler equations for True and Eccentric Anomaly.

IS800-949 :

Section Number :

3.5.3.6.1.1-4

WAS :
Table 3.5-2. Elements of Coordinate System (part 2 of 2)
Redlines:
Table 3.5-2._Elements efBroadcast Goordinate Navigation SystemUser Equations (partsheet 2 of $\underset{Z}{ } \underline{4}$)
IS :
Table 3.5-2. Broadcast Navigation User Equations (sheet 2 of 4)

Rationale:

RFC 395: Change title to reflect the new change of equations

IS800-1009 :

Insertion after object IS800-182
Table 3.5-2. Part 2

Element/Equation	Description
	Argument of Latitude Corrected Argument of Latitude Corrected Radius Corrected Inclination Positions in orbital plane Rate of Right Ascension Corrected Longitude of Ascending Node Earth-fixed coordinates of SV antenna phase center
$* * * \quad \Omega_{\text {REF }}=-2.6 \times 10^{-9}$ semi-circles $/$ second.	

Section Number :

3.5.3.6.1.1-6

WAS :
N/A

Redlines:

<INSERTED OBJECT>
IS:
Broadcast Navigation User Equations (sheet 3 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

IS800-1011 :

Insertion after object IS800-1009 (See Previous)

Section Number :

3.5.3.6.1.1-7

WAS :
N/A

Redlines:

<INSERTED OBJECT>

IS :
Table 3.5-2. Part 3

Element/Equation	Description
SV Velocity	
$\dot{E}_{\mathrm{k}}=\mathrm{n} /\left(1-\mathrm{ecos} \mathrm{E}_{\mathrm{k}}\right)$	Eccentric Anomaly Rate
$\dot{v}_{k}=\dot{\mathrm{E}}_{\mathrm{k}} \sqrt{1-e^{2}} /\left(1-e \cos E_{k}\right)$	True Anomaly Rate
$\left(d i_{k} / d t\right)=($ IDOT $)+2 \dot{v}_{k}\left(\mathrm{c}_{\text {is }} \cos 2 \phi_{\mathrm{k}}-\mathrm{c}_{\mathrm{ic}} \sin 2 \phi_{\mathrm{k}}\right)$	Corrected Inclination Angle Rate
$\dot{u}_{k}=\dot{v}_{k}+2 \dot{v}_{k}\left(\mathrm{c}_{\text {us }} \cos 2 \phi_{\mathrm{k}}-\mathrm{cuc}_{\text {uc }} \sin 2 \phi_{\mathrm{k}}\right)$	Corrected Argument of Latitude Rate
$\dot{r}_{k}=\mathrm{eAE} \dot{E}_{\mathrm{k}} \sin \mathrm{Ek}+2 \dot{\nu}_{k}\left(\mathrm{c}_{\mathrm{rs}} \cos 2 \phi_{\mathrm{k}}-\mathrm{c}_{\mathrm{rc}} \sin 2 \phi_{\mathrm{k}}\right)$	Corrected Radius Rate
$\dot{\Omega}_{\mathrm{k}}=\dot{\Omega}-\dot{\Omega}_{\mathrm{e}}$	Longitude of Ascending Node Rate
$\dot{\mathrm{x}}_{k}^{\prime}=\dot{r}_{k} \cos \mathrm{u}_{\mathrm{k}}-r_{k} \dot{\mathrm{u}}_{\mathrm{k}} \sin \mathrm{u}_{\mathrm{k}}$	In- plane x velocity
$\dot{y}_{k}^{\prime}=\dot{r}_{k} \sin \mathrm{u}_{\mathrm{k}}+r_{k} \dot{\mathrm{u}}_{\mathrm{k}} \cos \mathrm{u}_{\mathrm{k}}$	In- plane y velocity
$\begin{array}{r} \dot{x}_{\mathrm{k}}=-x_{k}^{\prime} \dot{\Omega}_{\mathrm{k}} \sin \Omega_{\mathrm{k}}+\dot{x}_{k}^{\prime} \cos \Omega_{\mathrm{k}}-\dot{y}_{k}^{\prime} \sin \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}} \\ -y_{k}^{\prime}\left(\dot{\Omega}_{\mathrm{k}} \cos \Omega_{\mathrm{k}} \cos \dot{i}_{\mathrm{k}}-\left(d i_{k} / d t\right) \sin \Omega_{\mathrm{k}} \sin \mathrm{i}_{\mathrm{k}}\right) \end{array}$	Earth-Fixed x velocity (m/s)
$\begin{array}{r} \dot{y}_{\mathrm{k}}=x_{k}^{\prime} \dot{\Omega}_{\mathrm{k}} \cos \Omega_{\mathrm{k}}+\dot{x}_{k}^{\prime} \sin \Omega_{\mathrm{k}}+\dot{y}_{k}^{\prime} \cos \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}} \\ \\ -y_{k}^{\prime}\left(\dot{\Omega}_{\mathrm{k}} \sin \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}}+\left(d i_{k} / d t\right) \cos \Omega_{\mathrm{k}} \sin \mathrm{i}_{\mathrm{k}}\right) \end{array}$	Earth- Fixed y velocity (m/s)
$\dot{z}_{\mathrm{k}}=\dot{y}_{k}^{\prime} \sin \mathrm{i}_{\mathrm{k}}+y_{k}^{\prime}\left(d i_{k} / d t\right) \cos \mathrm{i}_{\mathrm{k}}$	Earth- Fixed z velocity (m/s)

Rationale :
RFC 395: Add new and improved velocity and acceleration equation tables

IS800-1008 :

Insertion after object IS800-1011 (See Previous)

Section Number :

3.5.3.6.1.1-8

WAS :
N/A
Redlines:
<INSERTED OBJECT>
IS :
Table 3.5-2. Broadcast Navigation User Equations (sheet 4 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

IS800-1010 :

Insertion after object IS800-1008 (See Previous)

Section Number :

3.5.3.6.1.1-9

WAS :
N/A
Redlines:
<INSERTED OBJECT>
IS :
Table 3.5-2. Part 4

Element/Equation	Description
SV Acceleration	
$\mathrm{R}_{\mathrm{E}}=6378137.0$ meters	WGS 84 Earth Equatorial Radius
$\mathrm{J}_{2}=0.0010826262$	Oblate Earth Gravity Coefficient
$\mathrm{F}=-(3 / 2) \mathrm{J}_{2}\left(\mu / r_{k}^{2}\right)\left(\mathrm{R}_{\mathrm{E}} / r_{\mathrm{k}}\right)^{2}$	Oblate Earth acceleration Factor
$\begin{aligned} & \ddot{x}_{k}=-\mu\left(x_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(1-5\left(z_{k} / r_{k}\right)^{2}\right)\left(x_{k} / r_{k}\right)\right] \\ &+2 \dot{y}_{k} \dot{\Omega}_{e}+x_{k} \dot{\Omega}_{e}^{2} \end{aligned}$	Earth- Fixed x acceleration (m/s ${ }^{2}$)
$\begin{aligned} & \ddot{y}_{k}=-\mu\left(y_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(1-5\left(z_{k} / r_{k}\right)^{2}\right)\left(y_{k} / r_{k}\right)\right] \\ &-2 \dot{x}_{k} \dot{\Omega}_{e}+y_{k} \dot{\Omega}_{e}^{2} \end{aligned}$	Earth- Fixed y Acceleration (m/s ${ }^{2}$)
$\ddot{z}_{k}=-\mu\left(z_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(3-5\left(z_{k} / r_{k}\right)^{2}\right)\left(z_{k} / r_{k}\right)\right]$	Earth- Fixed z Acceleration (m/s ${ }^{2}$)

Rationale :

RFC 395: Add new and improved velocity and acceleration equation tables

Section Number :

6.3.3.0-1

WAS :

As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III phase noise spectral density for the un-modulated L1C carrier.

Redlines:

As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III and GPS IIIF phase noise spectral density for the un-modulated L1C carrier.

IS :
As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III and GPS IIIF phase noise spectral density for the un-modulated L1C carrier.

Rationale:

make distinctions between GPS III and GPS IIIF

IS800-1007 :

Section Number :

6.3.3.0-1.0-2

WAS :

Figure 6-1 Typical GPS III L1C Carrier Phase Noise Spectral Density

Redlines :

Figure 6-1 Typical GPS III and GPS IIIF L1C Carrier Phase Noise Spectral Density
IS :
Figure 6-1 Typical GPS III and GPS IIIF L1C Carrier Phase Noise Spectral Density

Rationale :

make distinctions between GPS III and GPS IIIF

