PROPOSED CHANGE NOTICE			
Affected Document:	IRN/SCN Number		Date:
IS-GPS-800 Rev F	XXX-XXXX-XXX		DD-MMM-YYYY
Authority:	Proposed Change Notice		Date:
RFC-00395	IS800F-RFC395		31-MAY-2019
CLASSIFIED BY: N/A DECLASSIFY ON: N/A			
Document Title: Navstar Gl	PS Space Segmen/ User Segment	L1C Interface	e
RFC Title: 2019 Public Docu	Iment Proposed Changes		
Reason For Change (Driver):		
1. IS-GPS-705 identifies dual freque	quency users as "L1/L2" and "L1/L5 (recomme	nded)". Users may	interpret frequency pair
2. The user implementation com	munity has identified equations in the Elements	of Coordinates S	ystems tables in documents
IS-GPS-200, IS-GPS-705, and 3. Documents IS-GPS-200, IS-G	d IS-GPS-800 that can benefit from an improve iPS-705, and IS-GPS-800 are not consistent in	ment. their definition of v	when to broadcast CNAV
UTC data. These documents	need to be made consistent.	nd developed from	ICD-GPS-240 (AEP) to
account for OCX transition. C	urrently OCX uses a translator tool to convert m	nodernized into leg	acy format to maintain
users are well-informed of ava	ailability of the modernized format (GPS commu	backwards compa inity).	atibility format until the public
5. OCX provides a utility to conv	 OCX provides a utility to convert modernized GPS products to the legacy, AEP-formatted GPS products. The legacy 		
formats are characterized with default filenames, which are important for the public user community to interpret and process the GPS products. However, these default filenames are not described in ICD-GPS-870.			
6. Public documents need clarification and clean-up, as identified in past Public ICWGs and as newly-identified changes of			
administrative nature. 7. Currently the Operational Advisories (OAs) that are published and archived contain plane/slot descriptions that are not in			
the constellation definition provided to the public in the SPS Performance Standard as well as the data provided by the			
National Geospatial-Intelligence Agency (NGA) (refer to http://earth-info.nga.mil/GandG/sathtml/satinfo.html). The OA does not have the capability to correctly publish information regarding fore/aft position since moving to the 24+3 constellation with			
three expanded slots. (Moved from RFC-374)			
Description of Change:			
 In IS-GPS-705, state operational use of the group of signals (L2/L5) is at the users own risk. Recommend a different less complicated kinematic formulation that improves the equations in the Elements of Coordinate 			
Systems tables in the Signal in Space (SiS) documents.			
 Ensure consistency across documentation of when to broadcast CNAV UTC data in documents IS-GPS-200, IS-GPS-705, and IS-GPS-800. 			
 Clarify ICD-GPS-870 Appendix 1-6 are legacy and update definitions in Appendices 1-6 read as built (eg. Appendix 1 			
describes the legacy NANU types and NANU message format. The sample file in this section is consistent with the legacy format. Sample file for the modernized format will be provided by the GPS community)			
5. Add in ICD-GPS-870 a description of default filenames for all legacy GPS products.			
6. Provide clarity and clean up ic	lentified administrative changes in all public do	cuments.	
 I his topic was originally address OCX produces an OA with set 	essed in RFC-374 but needs to be re-addressed ction one set to the original data or set to "RFS	a in order to update ERVED."	e ICD-GPS-870 such that
Authored By: RE: A. Sicam	Checked E	By: RE: Anthon	y Flores
AUTHORIZED SIGNATURES	REPRESENTING		DATE
	GPS Directorate		
	Space & Missile Systems Center (SMC) – LAAFB	

DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution Is Unlimited

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND	Interface Control Contractor:
NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE	Engility (GPS SE&I)
TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL	200 N. Pacific Coast Highway, Suite 1800
PARTIES AFFECTED.	El Segundo, CA 90245
	CODE IDENT 66RP1

IS800-15 :

Section Number :

2.1.0-4

WAS : Other Publications

IS-GPS-200 (current issue)	Navstar GPS Space Segment/Navigation User
	Interfaces
GP-03-001A (20 April 2006)	GPS Interface Control Working Group Charter

Redlines : Other Publications

IS-GPS-200 (current issue)	Navstar GPS Space Segment/Navigation User
	Interfaces
GP-03-001A (20 April 2006 <u>Current Issue</u>)	GPS Interface Control Working Group Charter GPS
	Adjudication Working Group (AWG) and
	Rough Order of Magnitude (ROM)/ Impact
	Assessment (IA) Charter

IS : Other Publications

IS-GPS-200 (current issue)	Navstar GPS Space Segment/Navigation User
	Interfaces
GP-03-001A (Current Issue)	GPS Adjudication Working Group (AWG) and Rough
	Order of Magnitude (ROM)/ Impact
	Assessment (IA) Charter

Rationale :

Update the ICWG Charter to the new AWG Charter.

IS800-1020 :

Insertion after object IS800-179

The user shall compute the ECEF coordinates of position for the SV's antenna phase center (APC) utilizing a variation of the equations shown in Table 3.5-2. The ephemeris parameters are Keplerian in appearance; however, the values of these parameters are produced by the SV via a least squares curve fit of the propagated ephemeris of the SV APC (time-position quadruples: t, x, y, z expressed in ECEF coordinates). Particulars concerning the applicable coordinate system are given in Sections 20.3.3.4.3.3 and 20.3.3.4.3.4 of IS-GPS-200.

Section Number :

3.5.3.6.1.1

WAS :

N/A

Redlines : <INSERTED OBJECT>

IS :

The user can compute velocity and acceleration for the SV utilizing a variation of the equations, as required, shown in Table 3.5- 2 Part 3 and 4.

Rationale :

Adding an explanation that the new velocity and acceleration equations are optional for the users.

IS800-948 :

Section Number :

3.5.3.6.1.1-2

WAS :

Table 3.5-2. Elements of Coordinate System (part 1 of 2)

Redlines :

Table 3.5-2. <u>Elements of Broadcast</u> Coordinate Navigation System User Equations (partsheet 1 of 24)

IS :

Table 3.5-2. Broadcast Navigation User Equations (sheet 1 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

Section Number :

3.5.3.6.1.1-3

WAS :

Table 3.5-2

Element/Equation	Description
$\mu = 3.986005 \text{ x } 10^{14} \text{ meters}^3/\text{sec}^2$	WGS 84 value of the earth's gravitational constant for GPS user
$\hat{\Omega}_{e} = 7.2921151467 \text{ x } 10^{-5} \text{ rad/sec}$	WGS 84 value of the earth's rotation rate
$A_0 = A_{REF} + \Delta A *$	Semi-Major Axis at reference time
$A_k = A_0 + (\stackrel{\bullet}{A}) t_k$	Semi-Major Axis
$n_0 = \sqrt{\frac{\mu}{A_0^3}}$	Computed Mean Motion (rad/sec)
$t_k = t - t_{oe} $ **	Time from ephemeris reference time
$\Delta n_A = \Delta n_0 + \frac{1}{2} \Delta n_0^{\bullet} t_k$	Mean motion difference from computed value
$n_{\rm A}~=n_0+\Delta n_{\rm A}$	Corrected Mean Motion
$M_k = M_0 + n_A \; t_k$	Mean Anomaly
$M_k = E_k - e_n \sin E_k$	Kepler's equation for Eccentric Anomaly (radians) (may be solved by iteration)
$v_{k} = \tan^{-1} \left\{ \frac{\sin v_{k}}{\cos v_{k}} \right\}$	True Anomaly
$= \tan^{-1} \left\{ \frac{\sqrt{1 - e_n^2} \sin E_k / (1 - e_n \cos E_k)}{(\cos E_k - e_n) / (1 - e_n \cos E_k)} \right\}$	
$E_{k} = \cos^{-1} \left\{ \frac{e_{n} + \cos \nu_{k}}{1 + e_{n} \cos \nu_{k}} \right\}$	Eccentric Anomaly
* $A_{REF} = 26,559,710$ meters	

** **t** is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_k shall be the actual total difference between the time **t** and the epoch time t_{oe} , and must account for beginning or end of week crossovers. That is if t_k is greater than 302,400 seconds, subtract 604,800 seconds from t_k . If t_k is less than -302,400 seconds, add 604,800 seconds to t_k .

Redlines :

Table 3.5-2

Element/Equation	Description
$\mu = 3.986005 \text{ x } 10^{14} \text{ meters}^{3}/\text{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\hat{\Omega}_{e} = 7.2921151467 \text{ x } 10^{-5} \text{ rad/sec}$	WGS 84 value of the earth's rotation rate
$A_0 = A_{REF} + \Delta A \ *$	Semi-Major Axis at reference time
$A_k = A_0 + (\stackrel{\bullet}{A}) t_k$	Semi-Major Axis
$n_0 = \sqrt{\frac{\mu}{A_0^3}}$	Computed Mean Motion (rad/sec)
$t_k = t - t_{oe} \; **$	Time from ephemeris reference time
$\Delta n_A = \Delta n_0 + \frac{1}{2} \Delta \hat{n_0} t_k$	Mean motion difference from computed value
$n_A = n_0 + \Delta n_A$	Corrected Mean Motion
$M_k = M_0 + n_A \ t_k$	Mean Anomaly
$\mathbf{M}_{\mathbf{k}} = \mathbf{E}_{\mathbf{k}} - \mathbf{e}_{\mathbf{n}} \sin \mathbf{E}_{\mathbf{k}}$	Kepler's equation for Eccentric Anomaly (radians) (may be solved by iteration)
	Kepler's equation $(M_k = E_k - e \sin E_k)$ solved for Eccentric anomaly (E_k) by iteration:
$\underline{\mathbf{E}}_{\underline{0}} = \mathbf{M}_{\underline{k}}$	<u>– Initial Value (radians)</u>
$\underline{E_j = E_{j-1} + \frac{M_k - E_{j-1} + e \sin E_{j-1}}{1 - e \cos E_{j-1}}}$	- Refined Value, three iterations, (j=1,2,3)
$\underline{E_k} = \underline{E_3}$	<u>– Final Value (radians)</u>
$\mathbf{v}_{\mathbf{k}} = \tan^{-1} \left\{ \frac{\sin v_{\mathbf{k}}}{\cos v_{\mathbf{k}}} \right\}$	True Anomaly
$= \tan^{-1} \left\{ \frac{\sqrt{1 - e_n^2} \sin E_k / (1 - e_n \cos E_k)}{(\cos E_k - e_n) / (1 - e_n \cos E_k)} \right\}$	
$\underline{v_k} = 2 \tan^{-1} \left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E_k}{2} \right)$	True Anomaly (unambiguous quadrant)
$\underline{\mathbf{E}}_{\mathbf{k}} = \cos^{-1} \left\{ \frac{e_{\mathbf{k}} + \cos v_{\mathbf{k}}}{(1 + e_{\mathbf{k}} \cos v_{\mathbf{k}})} \right\}$	Eccentric Anomaly

* $A_{REF} = 26,559,710$ meters

** **t** is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_k shall be the actual total difference between the time **t** and the epoch time t_{oe} , and must account for beginning or end of week crossovers. That is if t_k is greater than 302,400 seconds, subtract 604,800 seconds from t_k . If t_k is less than -302,400 seconds, add 604,800 seconds to t_k .

IS : Table 3.5-2

Element/Equation	Description
$\mu = 3.986005 \ x \ 10^{14} \ meters^{3}/sec^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\hat{\Omega}_{e} = 7.2921151467 \text{ x } 10^{-5} \text{ rad/sec}$	WGS 84 value of the earth's rotation rate
$A_0 = A_{REF} + \Delta A \ *$	Semi-Major Axis at reference time
$A_k = A_0 + (\stackrel{\bullet}{A}) t_k$	Semi-Major Axis
$n_0 = \sqrt{\frac{\mu}{A_0^3}}$	Computed Mean Motion (rad/sec)
$t_k = t - t_{oe} \; \ast \ast$	Time from ephemeris reference time
$\Delta n_A = \Delta n_0 + \frac{1}{2} \Delta n_0^{\bullet} t_k$	Mean motion difference from computed value
$n_A = n_0 + \Delta n_A$	Corrected Mean Motion
$M_k = M_0 + n_A t_k$	Mean Anomaly
	Kepler's equation $(M_k = E_k - e \sin E_k)$ solved for Eccentric anomaly (E_k) by iteration:
$E_0 = \mathbf{M}_k$	– Initial Value (radians)
$E_{j} = E_{j-1} + \frac{M_{k} - E_{j-1} + e \sin E_{j-1}}{1 - e \cos E_{j-1}}$	– Refined Value, three iterations, (j=1,2,3)
$E_k = E_3$	– Final Value (radians)
$v_k = 2 \tan^{-1} \left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E_k}{2} \right)$	True Anomaly (unambiguous quadrant)

* $A_{REF} = 26,559,710$ meters

** t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_k shall be the actual total difference between the time t and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_k is greater than 302,400 seconds, subtract 604,800 seconds from t_k. If t_k is less than -302,400 seconds, add 604,800 seconds to t_k.

Rationale :

RFC 395: Implement and replace with improved Kepler equations for True and Eccentric Anomaly.

IS800-949 :

Section Number :

3.5.3.6.1.1-4

WAS :

Table 3.5-2. Elements of Coordinate System (part 2 of 2)

Redlines :

Table 3.5-2. <u>Elements of Broadcast</u> Coordinate Navigation System User Equations (partsheet 2 of 24)

IS :

Table 3.5-2. Broadcast Navigation User Equations (sheet 2 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

IS800-1009 :

Insertion after object IS800-182

Table 3.5-2. Part 2

Element/Equation	Description
$\Phi_k = v_k + \omega_n$	Argument of Latitude
$\delta u_k = C_{us-n} \sin 2\Phi_k + C_{uc-n} \cos 2\Phi_k$	Argument of Latitude Correction
$\delta r_k = C_{rs-n} \sin 2\Phi_k + C_{rc-n} \cos 2\Phi_k$	Radial Correction Second Harmonic Perturbations
$\delta i_k = C_{is-n} sin 2\Phi_k + C_{ic-n} cos 2\Phi_k$	Inclination Correction
$u_k = \Phi_k + \delta u_k$	Corrected Argument of Latitude
$r_k = A_k(1 - e_n \cos E_k) + \delta r_k$	Corrected Radius
$i_k = i_{0-n} + (i_{0-n}-DOT)t_k + \delta i_k$	Corrected Inclination
$\left. \begin{array}{l} x_k' = r_k \cos u_k \\ \\ y_k' = r_k \sin u_k \end{array} \right\}$	Positions in orbital plane
$\Omega = \Omega_{REF} + \Delta \Omega ***$ $\Omega_{k} = \Omega_{0-n} + (\Omega - \Omega_{e}) t_{k} - \Omega_{e} t_{oe}$ $x_{k} = x_{k}' \cos \Omega_{k} - y_{k}' \cos i_{k} \sin \Omega_{k}$ $y_{k} = x_{k}' \sin \Omega_{k} + y_{k}' \cos i_{k} \cos \Omega_{k}$ $z_{k} = y_{k}' \sin i_{k}$	Rate of Right Ascension Corrected Longitude of Ascending Node Earth-fixed coordinates of SV antenna phase center
*** $\Omega_{\text{REF}} = -2.6 \text{ x } 10^{-9} \text{ semi-circles/second.}$	

Section Number :

3.5.3.6.1.1-6

WAS :

N/A

Redlines :

<INSERTED OBJECT>

IS :

Broadcast Navigation User Equations (sheet 3 of 4)

Rationale : RFC 395: Change title to reflect the new change of equations

IS800-1011 :

Insertion after object IS800-1009 (See Previous)

Section Number :

3.5.3.6.1.1-7

WAS :

N/A

Redlines :

<INSERTED OBJECT>

IS :

Table 3.5-2. Part 3

Element/Equation	Description
SV Velocity	
$\dot{E}_k = n/(1 - e \cos E_k)$	Eccentric Anomaly Rate
$\dot{v}_k = \dot{\mathrm{E}}_k \sqrt{1-e^2}/(1-e\cos E_k)$	True Anomaly Rate
$(di_k/dt) = (\text{IDOT}) + 2 \dot{v}_k (c_{\text{is}} \cos 2\phi_k - c_{\text{ic}} \sin 2\phi_k)$	Corrected Inclination Angle Rate
$\dot{u}_k = \dot{v}_k + 2\dot{v}_k (c_{us} \cos 2\phi_k - c_{uc} \sin 2\phi_k)$	Corrected Argument of Latitude Rate
$\dot{r}_k = eA\dot{E}_k \sin Ek + 2\dot{v}_k (c_{rs} \cos 2\phi_k - c_{rc} \sin 2\phi_k)$	Corrected Radius Rate
$\dot{\Omega}_{ m k}=\dot{\Omega}$ - $\dot{\Omega}_{ m e}$	Longitude of Ascending Node Rate
$\dot{\mathbf{x}}_k' = \dot{r}_k \cos \mathbf{u}_k - r_k \dot{\mathbf{u}}_k \sin \mathbf{u}_k$	In- plane x velocity
$\dot{y}_k' = \dot{r}_k \sin u_k + r_k \dot{u}_k \cos u_k$	In- plane y velocity
$\dot{x}_{k} = -x'_{k} \dot{\Omega}_{k} \sin \Omega_{k} + \dot{x}'_{k} \cos \Omega_{k} - \dot{y}'_{k} \sin \Omega_{k} \cos i_{k} -y'_{k} (\dot{\Omega}_{k} \cos \Omega_{k} \cos i_{k} - (di_{k} / dt) \sin \Omega_{k} \sin i_{k})$	Earth- Fixed x velocity (m/s)
$\dot{y}_{k} = x'_{k} \dot{\Omega}_{k} \cos \Omega_{k} + \dot{x}'_{k} \sin \Omega_{k} + \dot{y}'_{k} \cos \Omega_{k} \cos i_{k} -y'_{k} (\dot{\Omega}_{k} \sin \Omega_{k} \cos i_{k} + (di_{k}/dt) \cos \Omega_{k} \sin i_{k})$	Earth- Fixed y velocity (m/s)
$\dot{z}_{k} = \dot{y}_{k}' \sin i_{k} + y_{k}' (di_{k}/dt) \cos i_{k}$	Earth- Fixed z velocity (m/s)

Rationale :

RFC 395: Add new and improved velocity and acceleration equation tables

IS800-1008 :

Insertion after object IS800-1011 (See Previous)

Section Number :

3.5.3.6.1.1-8

WAS :

N/A

Redlines :

<INSERTED OBJECT>

IS :

Table 3.5-2. Broadcast Navigation User Equations (sheet 4 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

IS800-1010 :

Insertion after object IS800-1008 (See Previous)

Section Number :

3.5.3.6.1.1-9

WAS :

N/A

Redlines :

<INSERTED OBJECT>

IS :

Table 3.5-2. Part 4

Element/Equation	Description
SV Acceleration	
$R_E = 6378137.0$ meters	WGS 84 Earth Equatorial Radius
$J_2 = 0.0010826262$	Oblate Earth Gravity Coefficient
$\mathbf{F} = - (3/2) \mathbf{J}_2 (\mu / r_k^2) (\mathbf{R}_{\mathrm{E}} / r_k)^2$	Oblate Earth acceleration Factor
$\ddot{x}_{k} = -\mu (x_{k} / r_{k}^{3}) + F [(1 - 5 (z_{k} / r_{k})^{2})(x_{k} / r_{k})] + 2\dot{y}_{k}\dot{\Omega}_{e} + x_{k}\dot{\Omega}_{e}^{2}$	Earth- Fixed <i>x</i> acceleration (m/s ²)
$\ddot{y}_{k} = -\mu (y_{k} / r_{k}^{3}) + F [(1 - 5 (z_{k} / r_{k})^{2})(y_{k} / r_{k})] -2\dot{x}_{k}\dot{\Omega}_{e} + y_{k}\dot{\Omega}_{e}^{2}$	Earth- Fixed y Acceleration (m/s ²)
$\ddot{z}_{k} = -\mu (z_{k} / r_{k}^{3}) + F [(3 - 5 (z_{k} / r_{k})^{2})(z_{k} / r_{k})]$	Earth- Fixed <i>z</i> Acceleration (m/s ²)

Rationale :

RFC 395: Add new and improved velocity and acceleration equation tables

IS800-902 :

Section Number :

6.3.3.0-1

WAS :

As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III phase noise spectral density for the un-modulated L1C carrier.

Redlines :

As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III and GPS IIIF phase noise spectral density for the un-modulated L1C carrier.

IS :

As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III and GPS IIIF phase noise spectral density for the un-modulated L1C carrier.

Rationale :

make distinctions between GPS III and GPS IIIF

IS800-1007 :

Section Number :

6.3.3.0-1.0-2

WAS :

Figure 6-1 Typical GPS III L1C Carrier Phase Noise Spectral Density

Redlines :

Figure 6-1 Typical GPS III and GPS IIIF L1C Carrier Phase Noise Spectral Density

IS :

Figure 6-1 Typical GPS III and GPS IIIF L1C Carrier Phase Noise Spectral Density

Rationale :

make distinctions between GPS III and GPS IIIF