PROPOSED CHANGE NOTICE

Affected Document: IS-GPS-705 Rev F	IRN/SCN Number XXX-XXXX-XXX	Date: DD-MMM-YYY
Authority: RFC-00395	Proposed Change Notice IS705F-RFC395	Dat 31-MAY-201
CLASSIFIED BY: N/A DECLASSIFY ON: N/A		
Document Title: Navstar GPS Space Segment/User Segment L5 Interfaces		
RFC Title: 2019 Public Documents Proposed Changes		
Reason For Change (Driver): 1. IS-GPS-705 identifies dual frequency users as "L1/L2" and "L1/L5 (recommended)". Users may interpret frequency pair (L2/L5) as a viable dual frequency; that is not recommended. 2. The user implementation community has identified equations in the Elements of Coordinates Systems tables in documents IS-GPS-200, IS-GPS-705, and IS-GPS-800 that can benefit from an improvement. 3. Documents IS-GPS-200, IS-GPS-705, and IS-GPS 800 are not consistent in their definition of when to broadcast CNAV UTC data. These documents need to be made consistent. 4. ICD-GPS-870 Appendices 1-6, public release GPS products, were derived and developed from ICD-GPS-240 (AEP) to account for OCX transition. Currently OCX uses a translator tool to convert modernized into legacy format to maintain backwards compatibility that AEP produces. Appendices 1-6 must reflect the backwards compatibility format until the public users are well-informed of availability of the modernized format (GPS community). 5. OCX provides a utility to convert modernized GPS products to the legacy, AEP-formatted GPS products. The legacy formats are characterized with default filenames, which are important for the public user community to interpret and process the GPS products. However, these default filenames are not described in ICD-GPS-870. 6. Public documents need clarification and clean-up, as identified in past Public ICWGs and as newly-identified changes of administrative nature. 7. Currently the Operational Advisories (OAs) that are published and archived contain plane/slot descriptions that are not in the constellation definition provided to the public in the SPS Performance Standard as well as the data provided by the National Geospatial-Intelligence Agency (NGA) (refer to http://earth-info.nga.mil/GandG/sathtml/satinfo.html). The OA does not have the capability to correctly publish information regarding fore/aft position since moving to the $24+3$ constellation with three expanded slots. (Moved from RFC-374)		
Description of Change: 1. In IS-GPS-705, state operational use of the group of signals (L2/L5) is at the users own risk. 2. Recommend a different, less complicated kinematic formulation that improves the equations in the Elements of Coordinate Systems tables in the Signal in Space (SiS) documents. 3. Ensure consistency across documentation of when to broadcast CNAV UTC data in documents IS-GPS-200, IS-GPS-705, and IS-GPS 800. 4. Clarify ICD-GPS-870 Appendix 1-6 are legacy and update definitions in Appendices 1-6 read as built (eg. Appendix 1 describes the legacy NANU types and NANU message format. The sample file in this section is consistent with the legacy format. Sample file for the modernized format will be provided by the GPS community). 5. Add in ICD-GPS-870 a description of default filenames for all legacy GPS products. 6. Provide clarity and clean up identified administrative changes in all public documents. 7. This topic was originally addressed in RFC-374 but needs to be re-addressed in order to update ICD-GPS-870 such that OCX produces an OA with section one set to the original data or set to "RESERVED."		
Authored By: RE: Albert Sicam Checked By: RE: Jennifer Lemus		
AUTHORIZED SIGNATURES	REPRESENTING	DATE
	GPS Directorate Space \& Missile Systems Center (SMC) - LAAFB	

DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution Is Unlimited

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED.

Interface Control Contractor: SAIC (GPS SE\&I)
200 N. Pacific Coast Highway, Suite 1800 El Segundo, CA 90245 CODE IDENT 66RP1

Section Number :

2.1.0-4

WAS :
Other Publications

IS-GPS-200
current issue

GP-03-001
current issue

Redlines:

Other Publications

Navstar GPS Space Segment / Navigation User Interfaces

GPS Interface Control Working Group (ICWG) Charter

IS-GPS-200
current issue

GP-03-001
current issue

Navstar GPS Space Segment / Navigation User Interfaces

GPS Interface Control Working Group (ICWG) Charter GPS Adjudication Working Group (AWG) and Rough Order of Magnitude (ROM)/

Impact Assessment (IA) Charter

IS-GPS-200
current issue
GP-03-001
current issue

Navstar GPS Space Segment / Navigation
User Interfaces
GPS Adjudication Working Group (AWG) and Rough Order of Magnitude (ROM)/ Impact Assessment (IA) Charter

Rationale :

Update the ICWG Charter to the new AWG Charter

IS705-54 :

Section Number :

3.3.1.6.0-2

WAS :
The GPS III SV shall provide L5 signals with the following characteristic: the L5 off-axis relative power (referenced to peak transmitted power) shall not decrease by more than 2 dB from the Edge-of-Earth (EOE) to nadir, and no more than 18 dB from EOE to 26 degrees off nadir; the power drop off between EOE and ± 26 degrees shall be in a monotonically decreasing fashion.

Redlines :

The GPS III and GPS IIIF SV shall provide L5 signals with the following characteristic: the L5 off-axis relative power (referenced to peak transmitted power) shall not decrease by more than 2 dB from the Edge-of-Earth (EOE) to nadir, and no more than 18 dB from EOE to 26 degrees off nadir; the power drop off between EOE and ± 26 degrees shall be in a monotonically decreasing fashion.

IS:

The GPS III and GPS IIIF SV shall provide L5 signals with the following characteristic: the L5 off-axis relative power (referenced to peak transmitted power) shall not decrease by more than 2 dB from the Edge-of-Earth (EOE) to nadir, and no more than 18 dB from EOE to 26 degrees off nadir; the power drop off between EOE and ± 26 degrees shall be in a monotonically decreasing fashion.

Rationale :

make distinctions between GPS III and GPS IIIF

Section Number :

3.3.1.6.0-6

WAS :
Table 3-III.

SV	Signal	
	I5	Q5
Block IIF	-157.9 dBW	-157.9 dBW
GPS III	-157.0 dBW	-157.0 dBW

Redlines:

Table 3-III.

SV	Signal	
	I5	Q5
Block IIF	-157.9 dBW	-157.9 dBW
GPS III/IIIF	-157.0 dBW	-157.0 dBW

IS :
Table 3-III.

SV	Signal	
	I5	Q5
Block IIF	-157.9 dBW	-157.9 dBW
GPS III/IIIF	-157.0 dBW	-157.0 dBW

Rationale :

make distinctions between GPS III and GPS IIIF

Section Number :

3.3.1.6.1.0-2

WAS :
Table 3-IV. Space Service Volume (SSV) Received Minimum RF Signal Strength for GPS III and Subsequent Satellites over the Bandwidth Specified in 3.3.1.1 - GEO Based Antennas

Redlines:

Table 3-IV. Space Service Volume (SSV) Received Minimum RF Signal Strength for GPS III, GPS IIIF, and Subsequent Satellites over the Bandwidth Specified in 3.3.1.1 - GEO Based Antennas

IS :
Table 3-IV. Space Service Volume (SSV) Received Minimum RF Signal Strength for GPS III, GPS IIIF, and Subsequent Satellites over the Bandwidth Specified in 3.3.1.1 - GEO Based Antennas

Rationale :

make distinctions between GPS III and GPS IIIF

IS705-119 :

Section Number :

6.2.2.2.0-1

WAS :

The operational satellites are designated Block IIA, Block IIR, Block IIRM, Block IIF and GPS III SVs. Characteristics of these SVs are provided below. These SVs transmit configuration codes as specified in paragraph 20.3.3.5.1.4 of IS-GPS200. The navigation signal provides no direct indication of the type of the transmitting SV.

Redlines :

The operational satellites are designated Block IIA, Block IIR, Block IIRM, Block IIF, GPS III, and GPS HIIIF SVs. Characteristics of these SVs are provided below. These SVs transmit configuration codes as specified in paragraph 20.3.3.5.1.4 of IS-GPS-200. The navigation signal provides no direct indication of the type of the transmitting SV.

IS :

The operational satellites are designated Block IIA, Block IIR, Block IIRM, Block IIF, GPS III, and GPS IIIF SVs. Characteristics of these SVs are provided below. These SVs transmit configuration codes as specified in paragraph 20.3.3.5.1.4 of IS-GPS-200. The navigation signal provides no direct indication of the type of the transmitting SV.

Rationale :

make distinctions between GPS III and GPS IIIF

IS705-129 :

Section Number :

6.2.2.2.6.0-1

WAS :
See paragraph 6.2.2.2.6 of IS-GPS-200. The III operational SVs do broadcast the L5 signal.

Redlines :

See paragraph 6.2.2.2.6 of IS-GPS-200. The GPS III and GPS IIIF operational SVs do broadcast the L5 signal.
IS :
See paragraph 6.2.2.2.6 of IS-GPS-200. The GPS III and GPS IIIF operational SVs do broadcast the L5 signal.

Rationale :

make distinctions between GPS III and GPS IIIF

IS705-1521 :

Section Number :

6.2.8.1-2

WAS:
Table 6-I-1.

Symbol	Parameter Name	Message
\dot{A}	Change Rate in Semi-major Axis	10
ΔA	Semi-major Axis Difference at Reference Time	10
Δn_{0}	Mean Motion Difference from Computed Value at Reference Time	10
$\Delta \dot{r}_{0}$	Rate of Mean Motion Difference from Computed Value	10
ω	Argument of Perigee	10
e	Eccentricity	10
ISF	Integrity Status Flag NoTE1	10
$($ L1/L2/L5)	Signal Health (3 bits)	10
M $_{0}$	Mean Anomaly at Reference Time	10
URAED	Elevation Dependent User Range Accuracy	10
WN $_{\mathrm{n}}$	Week Number	10
t_{oe}	Time of Ephemeris	10,11
$\mathrm{t}_{\text {op }}$	CEI Data Sequence Propagation Time of Week	$10,30-37$
$\dot{\Omega}$	Rate of Right Ascension	11

Symbol	Parameter Name	Message
Ω_{0}	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	11
$\mathrm{Cic}_{\text {c }}$	Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination	11
$\mathrm{Cis}_{\text {is }}$	Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination	11
$\mathrm{Crc}_{\mathrm{rc}}$	Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius	11
$\mathrm{Cr}_{\text {rs }}$	Amplitude of the Sine Correction Term to the Orbit Radius	11
Cuc	Amplitude of Cosine Harmonic Correction Term to the Argument of Latitude	11
Cus	Amplitude of Sine Harmonic Correction Term to the Argument of Latitude	11
i_{0}	Inclination Angle at Reference Time	11
$\mathrm{i}_{0-\mathrm{n}}$-DOT	Rate of Inclination Angle	11
ISC ${ }_{\text {L1//A }}$	Inter-signal Correction	30
$\mathrm{ISC}_{\text {L2C }}$	Inter-signal Correction	30
$\mathrm{ISC}_{\text {LII5 }}$	Inter-signal Correction	30
$\mathrm{ISC}_{\text {L50, }}$	Inter-signal Correction	30
$\mathrm{T}_{\text {GD }}$	Group Delay Differential	30
afo	SV Clock Bias Correction Coefficient	30-37
$\mathrm{af}_{\text {f1 }}$	SV Clock Drift Correction Coefficient	30-37
$\mathrm{a}_{\mathrm{f} 2}$	Drift Rate Correction Coefficient Index	30-37
t_{oc}	Time of Clock	30-37
URA $_{\text {NED }}$	NED Accuracy Index	30-37
URA $_{\text {NED } 1}$	NED Accuracy Change Index	30-37
URA $_{\text {NED } 2}$	NED Accuracy Change Rate Index	30-37
Alert	Alert Flag Note1	All
NOTE1: Parameters so indicated are for CEI Refinement - not limited to curve fit. Parameters not indicated are needed for/limited to curve fit. Updates to parameters in table shall prompt changes in $\mathrm{t}_{\mathrm{o} e} / \mathrm{t}_{\mathrm{oc}}$. Any parameter marked with NOTE1 may be changed with or without a change in $t_{o e} / t_{o c}$.		

Redlines :
Table 6-I-1.
(see Week Number)

Symbol	Parameter Name	Message
\dot{A}	Change Rate in Semi-major Axis	10
ΔA	Semi-major Axis Difference at Reference Time	10
Δn_{0}	Mean Motion Difference from Computed Value at Reference Time	10
$\Delta \dot{n}_{0}$	Rate of Mean Motion Difference from Computed Value	10
ω	Argument of Perigee	10
e	Eccentricity	10
ISF	Integrity Status Flag ${ }^{\text {NOTE1 }}$	10
(L1/L2/L5)	Signal Health (3 bits)	10
Mo	Mean Anomaly at Reference Time	10
URA ED	Elevation Dependent User Range Accuracy	10
WN ${ }_{\text {f }}$	Week Number	10
$\mathrm{t}_{\text {oe }}$	Time of Ephemeris	10, 11
$\mathrm{t}_{\text {op }}$	CEI Data Sequence Propagation Time of Week	10,30-37
$\dot{\Omega}$	Rate of Right Ascension	11
Ω_{0}	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	11
$\mathrm{Cic}_{\text {c }}$	Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination	11
$\mathrm{Cis}_{\text {is }}$	Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination	11
$\mathrm{Crc}_{\mathrm{rc}}$	Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius	11
$\mathrm{Crs}^{\text {S }}$	Amplitude of the Sine Correction Term to the Orbit Radius	11
Cuc	Amplitude of Cosine Harmonic Correction Term to the Argument of Latitude	11
Cus	Amplitude of Sine Harmonic Correction Term to the Argument of Latitude	11
i_{0}	Inclination Angle at Reference Time	11
ion-n-DOT	Rate of Inclination Angle	11
ISC ${ }_{\text {L1C/A }}$	Inter-signal Correction	30
$\mathrm{ISC}_{\text {L2C }}$	Inter-signal Correction	30
$I_{\text {SC }}^{\text {LII5 }}$	Inter-signal Correction	30
ISC ${ }_{\text {L5Q }}$	Inter-signal Correction	30
$\mathrm{T}_{\text {GD }}$	Group Delay Differential	30
a_{fo}	SV Clock Bias Correction Coefficient	30-37

Symbol	Parameter Name	Message
$a_{\mathrm{f} 1}$	SV Clock Drift Correction Coefficient	$30-37$
$\mathrm{a}_{\mathrm{f} 2}$	Drift Rate Correction Coefficient Index	$30-37$
$\mathrm{t}_{\text {oc }}$	Time of Clock	$30-37$
URA $_{\text {NEDO }}$	NED Accuracy Index	$30-37$
URA $_{\text {NED1 }}$	NED Accuracy Change Index	$30-37$
URA $_{\text {NED2 }}$	NED Accuracy Change Rate Index	$30-37$
Alert	Alert Flag NOTE1	All

NOTE1: Parameters so indicated are for CEI Refinement - not limited to curve fit. Parameters not indicated are needed for/limited to curve fit.
Updates to parameters in table shall prompt changes in $t_{o e} / t_{\mathrm{oc}}$. Any parameter marked with NOTE1 may be changed with or without a change in $t_{o e} / t_{o c}$.

IS :

Table 6-I-1.

Symbol	Parameter Name	Message
\dot{A}	Change Rate in Semi-major Axis	10
ΔA	Semi-major Axis Difference at Reference Time	10
Δn_{0}	Mean Motion Difference from Computed Value at Reference Time	10
Δn_{0}	Rate of Mean Motion Difference from Computed Value	10
ω	Argument of Perigee	10
e	Eccentricity	10
ISF	Integrity Status Flag Note1	10
$($ L1/L2/L5)	Signal Health (3 bits)	10
M_{0}	Mean Anomaly at Reference Time	10
URA	Elevation Dependent User Range Accuracy	10
WN	Week Number	10
$\mathrm{t}_{\text {oe }}$	Time of Ephemeris	10,11
$\mathrm{t}_{\text {op }}$	CEl Data Sequence Propagation Time of Week	$10,30-37$
$\dot{\Omega}$	Rate of Right Ascension	11
Ω_{0}	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	11
C_{ic}	Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination	11
$\mathrm{C}_{\text {is }}$	Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination	11

Symbol	Parameter Name	Message
$\mathrm{Crc}_{\mathrm{rc}}$	Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius	11
$\mathrm{Crs}^{\text {S }}$	Amplitude of the Sine Correction Term to the Orbit Radius	11
Cuc	Amplitude of Cosine Harmonic Correction Term to the Argument of Latitude	11
Cus	Amplitude of Sine Harmonic Correction Term to the Argument of Latitude	11
i_{0}	Inclination Angle at Reference Time	11
$\mathrm{i}_{0-\mathrm{n}}$-DOT	Rate of Inclination Angle	11
ISC ${ }_{\text {L1C/A }}$	Inter-signal Correction	30
$\mathrm{ISC}_{12 \mathrm{C}}$	Inter-signal Correction	30
ISC_{1515}	Inter-signal Correction	30
ISC ${ }_{\text {L50. }}$	Inter-signal Correction	30
$\mathrm{T}_{\text {GD }}$	Group Delay Differential	30
afo	SV Clock Bias Correction Coefficient	30-37
$\mathrm{a}_{\mathrm{f} 1}$	SV Clock Drift Correction Coefficient	30-37
$\mathrm{a}_{\mathrm{f} 2}$	Drift Rate Correction Coefficient Index	30-37
$\mathrm{t}_{\text {oc }}$	Time of Clock	30-37
URA ${ }_{\text {NED }}$	NED Accuracy Index	30-37
URA $_{\text {NED } 1}$	NED Accuracy Change Index	30-37
URA $_{\text {NED2 }}$	NED Accuracy Change Rate Index	30-37
Alert	Alert Flag Note1	All
NOTE1: Parameters so indicated are for CEI Refinement - not limited to curve fit. Parameters not indicated are needed for/limited to curve fit. Updates to parameters in table shall prompt changes in $\mathrm{t}_{\mathrm{o} e} / \mathrm{t}_{\mathrm{oc}}$. Any parameter marked with NOTE1 may be changed with or without a change in $\mathrm{t}_{\mathrm{oe}} / \mathrm{t}_{\mathrm{oc}}$.		

Rationale :

WNn is not consistently used throughout the document. Remove subscript n from WNn from table and figure to maintain consistency.

Section Number :

6.3.2.0-1

WAS :

As an aid to user equipment receiver designers, plots are provided (Figure 6-1 and Figure 6-2) of a typical GPS Block IIF and GPS III phase noise spectral density for the un-modulated L5 carrier.

Redlines:

As an aid to user equipment receiver designers, plots are provided (Figure 6-1 and Figure 6-2) of a typical GPS Block IIF_{2} GPS III, and GPS IHIIIF phase noise spectral density for the un-modulated L5 carrier.

IS :

As an aid to user equipment receiver designers, plots are provided (Figure 6-1 and Figure 6-2) of a typical GPS Block IIF, GPS III, and GPS IIIF phase noise spectral density for the un-modulated L5 carrier.

Rationale :

make distinctions between GPS III and GPS IIIF

IS705-1576 :

Section Number :

6.3.2.0-5

WAS :

Figure 6-2 Typical GPS III L5 Carrier Phase Noise Spectral Density

Redlines:

Figure 6-2 Typical GPS III and GPS IIIF L5 Carrier Phase Noise Spectral Density
IS :
Figure 6-2 Typical GPS III and GPS IIIF L5 Carrier Phase Noise Spectral Density

Rationale :

make distinctions between GPS III and GPS IIIF

Section Number :

6.3.3.0-1

WAS :
As an aid to user equipment receiver designers, a table is provided (Table 6-I) of a typical GPS Block IIF and GPS III ellipticity as a function of off-boresight angle.

Redlines:

As an aid to user equipment receiver designers, a table is provided (Table 6-I) of a typical GPS Block IIF, GPS III, and GPS HIIIF ellipticity as a function of off-boresight angle.

IS :
As an aid to user equipment receiver designers, a table is provided (Table 6-I) of a typical GPS Block IIF, GPS III, and GPS IIIF ellipticity as a function of off-boresight angle.

Rationale :

make distinctions between GPS III and GPS IIIF

IS705-1386 :

Section Number :

20.3.2.0-3

WAS :

Block IIF SVs have the capability of storing at least 48 hours of CNAV navigation data, with current memory margins, to provide CNAV positioning service without contact from the CS for that period. GPS III SVs have the capability of providing up to 60 days of CNAV positioning service without contact from the CS. The timeframe is defined by the CS.

Redlines:

Block IIF SVs have the capability of storing at least 48 hours of CNAV navigation data, with current memory margins, to provide CNAV positioning service without contact from the CS for that period. GPS III and GPS IIIF SVs have the capability of providing up to 60 days of CNAV positioning service without contact from the CS. The timeframe is defined by the CS.

IS

Block IIF SVs have the capability of storing at least 48 hours of CNAV navigation data, with current memory margins, to provide CNAV positioning service without contact from the CS for that period. GPS III and GPS IIIF SVs have the capability of providing up to 60 days of CNAV positioning service without contact from the CS. The timeframe is defined by the CS.

Rationale:

make distinctions between GPS III and GPS IIIF

IS705-198 :

Section Number :

20.3.3.0-2

WAS :

101	108	133	150	173
$\Delta \mathrm{A}$	A	$\Delta \mathrm{n} 0$	$\Delta \dot{n} 0$	Mo-n
7 LSBs	25 BITS	17 BITS	23 BITS	28 MSBs

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6 SECOND MESSAGE

Figure 20-1. Message Type 10 - Ephemeris 1

Redlines :

101	108	133	150	
$\Delta \mathrm{~A}$		\bullet	$\Delta \mathrm{n}_{0}$	$\Delta \dot{\mathrm{n}}_{0}$
7 ASBs		25 BITS	17 BITS	

Figure 20-1. Message Type 10 - Ephemeris 1

IS

Figure 20-1. Message Type 10 - Ephemeris 1

Rationale :

WNn is not consistently used throughout the document. Remove subscript n from WNn from table and figure to maintain consistency.

Section Number :

20.3.3.1.1.0-4

WAS :
Any change in the message type 10 and 11 ephemeris data will be accomplished with a simultaneous change in the $t_{0 e}$ value. The CS (Block IIF) and SS (GPS III) will assure that the $t_{\text {oe }}$ value, for at least the first CEI data set transmitted by an SV from a new CEI data sequence propagation, is different from that transmitted from the prior CEI data sequence propagation. (reference paragraph 20.3.4.5)

Redlines:

Any change in the message type 10 and 11 ephemeris data will be accomplished with a simultaneous change in the $t_{o e}$ value. The CS (Block IIF) and SS (GPS III and GPS IIIF) will assure that the toe value, for at least the first CEI data set transmitted by an SV from a new CEI data sequence propagation, is different from that transmitted from the prior CEI data sequence propagation. (reference paragraph 20.3.4.5)

IS :

Any change in the message type 10 and 11 ephemeris data will be accomplished with a simultaneous change in the $t_{o e}$ value. The CS (Block IIF) and SS (GPS III and GPS IIIF) will assure that the toe value, for at least the first CEI data set transmitted by an SV from a new CEI data sequence propagation, is different from that transmitted from the prior CEI data sequence propagation. (reference paragraph 20.3.4.5)

Rationale :

make distinctions between GPS III and GPS IIIF

IS705-239 :

Section Number :

20.3.3.1.3.0-1

WAS :
The user shall compute the ECEF coordinates of position for the SV's antenna phase center (APC) utilizing a variation of the equations shown in Table 20-II. The ephemeris parameters are Keplerian in appearance; the values of these parameters; however, are produced by the CS (Block IIF) or the SV (GPS III) via a least squares curve fit of the propagated ephemeris of the SV APC (time-position quadruples; $\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ expressed in ECEF coordinates). Particulars concerning the applicable coordinate system are given in Sections 20.3.3.4.3.3 and 20.3.3.4.3.4 of IS-GPS-200.

Redlines :

The user shall compute the ECEF coordinates of position for the SV's antenna phase center (APC) utilizing a variation of the equations shown in Table 20-II. The ephemeris parameters are Keplerian in appearance; the values of these parameters; however, are produced by the CS (Block IIF) or the SV (GPS III and GPS IIIF) via a least squares curve fit of the propagated ephemeris of the SV APC (time-position quadruples; t, x, y, z expressed in ECEF coordinates). Particulars concerning the applicable coordinate system are given in Sections 20.3.3.4.3.3 and 20.3.3.4.3.4 of IS-GPS-200.

IS:

The user shall compute the ECEF coordinates of position for the SV's antenna phase center (APC) utilizing a variation of the equations shown in Table 20-II. The ephemeris parameters are Keplerian in appearance; the values of these parameters; however, are produced by the CS (Block IIF) or the SV (GPS III and GPS IIIF) via a least squares curve fit of the propagated ephemeris of the SV APC (time-position quadruples; t, x, y, z expressed in ECEF coordinates). Particulars concerning the applicable coordinate system are given in Sections 20.3.3.4.3.3 and 20.3.3.4.3.4 of IS-GPS-200.

Rationale :

make distinctions between GPS III and GPS IIIF

IS705-1598:

Insertion after object IS705-239

The user shall compute the ECEF coordinates of position for the SV's antenna phase center (APC) utilizing a variation of the equations shown in Table 20-II. The ephemeris parameters are Keplerian in appearance; the values of these parameters; however, are produced by the CS (Block IIF) or the SV (GPS III) via a least squares curve fit of the propagated ephemeris of the SV APC (time-position quadruples; t, x, y, z expressed in ECEF coordinates). Particulars concerning the applicable coordinate system are given in Sections 20.3.3.4.3.3 and 20.3.3.4.3.4 of IS-GPS-200.

Section Number :

20.3.3.1.3.1

WAS :
N/A

Redlines :

<INSERTED OBJECT>

IS :

The user can compute velocity and acceleration for the SV utilizing a variation of the equations, as required, shown in Table 20-II Part 3 and 4.

Rationale :

Adding an explaination that the new velocity and acceleration equations are optional for the users.

IS705-1537 :

Section Number :

20.3.3.1.3.1-6

WAS :

Table 20-II. Elements of Coordinate System (Part 1 of 2)

Redlines:

Table 20-II. Elements ofBroadcast CoordinateNavigation SystemUser Equations (Partsheet 1 of $2 \underline{4}$)

IS :

Table 20-II. Broadcast Navigation User Equations (sheet 1 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

Section Number :

20.3.3.1.3.1-7

WAS :

Table 20-II.

Element/Equation	Description
$\mu=3.986005 \times 10^{14} \mathrm{~meters}^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
	WGS 84 value of the earth's rotation rate
$\mathrm{A}_{0}=\mathrm{A}_{\text {ReF }}+\Delta \mathrm{A} *$	Semi-Major Axis at reference time
$\mathrm{A}_{\mathrm{k}}=\mathrm{A}_{0}+(\dot{\mathrm{A}}) \mathrm{t}_{\mathrm{k}}$	Semi-Major Axis
$\mathrm{n}_{0}=\sqrt{\frac{\mu}{\mathrm{A}_{0}{ }^{3}}}$	Computed Mean Motion (rad/sec)
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{\mathrm{oe}} * *$	Time from ephemeris reference time
$\Delta \mathrm{n}_{\mathrm{A}}=\Delta \mathrm{n}_{0}+1 / 2 \Delta \mathrm{n}_{0} \mathrm{t}_{\mathrm{k}}$	Mean motion difference from computed value
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{0}+\Delta \mathrm{n}_{\mathrm{A}}$	Corrected Mean Motion
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{n}_{\mathrm{A}} \mathrm{t}_{\mathrm{k}}$	Mean Anomaly
$\mathrm{M}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}}-\mathrm{e}_{\mathrm{n}} \sin \mathrm{E}_{\mathrm{k}}$	Kepler's equation for Eccentric Anomaly (radians) (may be solved by iteration)
$v_{\mathrm{k}}=\tan ^{-1}\left\{\frac{\sin v_{\mathrm{k}}}{\cos v_{\mathrm{k}}}\right\}$	True Anomaly
$=\tan ^{-1}\left\{\frac{\sqrt{1-\mathrm{e}_{\mathrm{n}}^{2}} \sin \mathrm{E}_{\mathrm{k}} /\left(1-\mathrm{e}_{\mathrm{n}} \cos \mathrm{E}_{\mathrm{k}}\right)}{\left(\cos \mathrm{E}_{\mathrm{k}}-\mathrm{e}_{\mathrm{n}}\right) /\left(1-\mathrm{e}_{\mathrm{n}} \cos \mathrm{E}_{\mathrm{k}}\right)}\right\}$	
$E_{k}=\cos ^{-1}\left\{\frac{e_{n}+\cos v_{k}}{1+e_{n} \cos v_{k}}\right\}$	Eccentric Anomaly
* $\quad \mathrm{A}_{\text {ReF }}=26,559,710$ meters	
** $\quad \mathbf{t}$ is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time \mathbf{t} and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than -302,400 seconds, add 604,800 seconds to t_{k}.	

Redlines :
Table 20-II.

* $\quad \mathrm{A}_{\text {REF }}=26,559,710$ meters
** $\quad \mathbf{t}$ is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time \mathbf{t} and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than $-302,400$ seconds, add 604,800 seconds to t_{k}.

IS :
Table 20-II.

Element/Equation	Description
$\mu=3.986005 \times 10^{14} \mathrm{~meters}^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\dot{\Omega}_{\mathrm{e}}=7.2921151467 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$	WGS 84 value of the earth's rotation rate
$\mathrm{A}_{0}=\mathrm{A}_{\text {REF }}+\Delta \mathrm{A} *$	Semi-Major Axis at reference time
$\mathrm{A}_{\mathrm{k}}=\mathrm{A}_{0}+(\dot{\mathrm{A}}) \mathrm{t}_{\mathrm{k}}$	Semi-Major Axis
$\mathrm{n}_{0}=\sqrt{\frac{\mu}{\mathrm{A}_{0}{ }^{3}}}$	Computed Mean Motion (rad/sec)
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{\text {oe }} * *$	Time from ephemeris reference time
$\Delta \mathrm{n}_{\mathrm{A}}=\Delta \mathrm{n}_{0}+1 / 2 \Delta \mathrm{n}_{0} \mathrm{t}_{\mathrm{k}}$	Mean motion difference from computed value
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{0}+\Delta \mathrm{n}_{\mathrm{A}}$	Corrected Mean Motion
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{n}_{\mathrm{A}} \mathrm{t}_{\mathrm{k}}$	Mean Anomaly
	Kepler's equation ($M_{k}=E_{k}-e \sin E_{k}$) solved for Eccentric anomaly (E_{k}) by iteration:
$\mathrm{E}_{0}=\mathrm{M}_{\mathrm{k}}$	- Initial Value (radians)
$E_{j}=E_{j-1}+\frac{M_{k}-E_{j-1}+e \sin E_{j-1}}{1-e \cos E_{j-1}}$	- Refined Value, three iterations, ($\mathrm{j}=1,2,3$)
$\mathrm{E}_{\mathrm{k}}=\mathrm{E}_{3}$	- Final Value (radians)
$v_{\mathrm{k}}=2 \tan ^{-1}\left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E_{k}}{2}\right)$	True Anomaly (unambiguous quadrant)

* $\quad \mathrm{A}_{\text {REF }}=26,559,710$ meters
** \mathbf{t} is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time \mathbf{t} and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than $-302,400$ seconds, add 604,800 seconds to t_{k}.

Rationale :

RFC 395: Implement and replace with improved Kepler equations for True and Eccentric Anomaly.

IS705-1538 :

Section Number :

20.3.3.1.3.1-8

WAS :

Table 20-II. Elements of Coordinate System (Part 2 of 2)

Redlines:

Table 20-II. ElementsBroadcast ofNavigation CoordinateUser SystemEquations (Partsheet 2 of $z \underline{4}$)
IS:
Table 20-II. Broadcast Navigation User Equations (sheet 2 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

IS705-1593 :
Insertion after object IS705-244
Table 20-II part 2

Element/Equation *	Description
	Corrected Argument of Latitude Corrected Radius Corrected Inclination Positions in orbital plane Rate of Right Ascension Corrected Longitude of Ascending Node Earth-fixed coordinates of SV antenna phase center

Section Number :

20.3.3.1.3.1-10

WAS :
N/A

Redlines :

<INSERTED OBJECT>
IS:
Table 20-II. Broadcast Navigation User Equations (sheet 3 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

IS705-1594 :
Insertion after object IS705-1593 (See previous)

Section Number :

20.3.3.1.3.1-11

WAS :
N/A

Redlines:

<INSERTED OBJECT>

IS :
Table 20-II part 3

Element/Equation	Description
SV Velocity	
$\dot{E}_{k}=\mathrm{n} /\left(1-\mathrm{e} \cos \mathrm{E}_{\mathrm{k}}\right)$	Eccentric Anomaly Rate
$\dot{v}_{k}=\dot{\mathrm{E}}_{\mathrm{k}} \sqrt{1-e^{2}} /\left(1-e \cos E_{k}\right)$	True Anomaly Rate
$\left(d i_{k} / d t\right)=($ IDOT $)+2 \dot{\nu}_{k}\left(\mathrm{c}_{\text {is }} \cos 2 \phi_{\mathrm{k}}-\mathrm{c}_{\text {ic }} \sin 2 \phi_{\mathrm{k}}\right)$	Corrected Inclination Angle Rate
$\dot{u}_{k}=\dot{v}_{k}+2 \dot{v}_{k}\left(\mathrm{c}_{\mathrm{us}} \cos 2 \phi_{\mathrm{k}}-\mathrm{c}_{\mathrm{uc}} \sin 2 \phi_{\mathrm{k}}\right)$	Corrected Argument of Latitude Rate
$\dot{r}_{k}=\mathrm{eAE} \dot{\mathrm{E}}_{\mathrm{k}} \sin \mathrm{Ek}+2 \dot{v}_{k}\left(\mathrm{c}_{\mathrm{rs}} \cos 2 \phi_{\mathrm{k}}-\mathrm{c}_{\mathrm{rc}} \sin 2 \phi_{\mathrm{k}}\right)$	Corrected Radius Rate
$\dot{\Omega}_{\mathrm{k}}=\dot{\Omega}-\dot{\Omega}_{\mathrm{e}}$	Longitude of Ascending Node Rate
$\dot{\mathrm{x}}_{k}^{\prime}=\dot{r}_{k} \cos \mathrm{u}_{\mathrm{k}}-r_{k} \dot{\mathrm{u}}_{\mathrm{k}} \sin \mathrm{u}_{\mathrm{k}}$	In- plane x velocity
$\dot{y}_{k}^{\prime}=\dot{r}_{k} \sin \mathrm{u}_{\mathrm{k}}+r_{k} \dot{\mathrm{u}}_{\mathrm{k}} \cos \mathrm{u}_{\mathrm{k}}$	In- plane y velocity
$\begin{array}{r} \dot{x}_{\mathrm{k}}=-x_{k}^{\prime} \dot{\Omega}_{\mathrm{k}} \sin \Omega_{\mathrm{k}}+\dot{x}_{k}^{\prime} \cos \Omega_{\mathrm{k}}-\dot{y}_{k}^{\prime} \sin \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}} \\ -y_{k}^{\prime}\left(\dot{\Omega}_{\mathrm{k}} \cos \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}}-\left(d i_{k} / d t\right) \sin \Omega_{\mathrm{k}} \sin \mathrm{i}_{\mathrm{k}}\right) \end{array}$	Earth-Fixed x velocity (m/s)
$\begin{array}{r} \dot{y}_{\mathrm{k}}=x_{k}^{\prime} \dot{\Omega}_{\mathrm{k}} \cos \Omega_{\mathrm{k}}+\dot{x}_{k}^{\prime} \sin \Omega_{\mathrm{k}}+\dot{y}_{k}^{\prime} \cos \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}} \\ -y_{k}^{\prime}\left(\dot{\Omega}_{\mathrm{k}} \sin \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}}+\left(d i_{k} / d t\right) \cos \Omega_{\mathrm{k}} \sin \mathrm{i}_{\mathrm{k}}\right) \end{array}$	Earth- Fixed y velocity (m/s)
$\dot{z}_{\mathrm{k}}=\dot{y}_{k}^{\prime} \sin \mathrm{i}_{\mathrm{k}}+y_{k}^{\prime}\left(d i_{k} / d t\right) \cos \mathrm{i}_{\mathrm{k}}$	Earth-Fixed z velocity (m/s)

Rationale:

RFC 395: Add new and improved velocity and acceleration equation tables

IS705-1592 :

Insertion after object IS705-1594 (See Previous)

Section Number :

20.3.3.1.3.1-12

WAS :
N/A

Redlines:
<INSERTED OBJECT>

IS :
Table 20-II. Broadcast Navigation User Equations (sheet 4 of 4)

Rationale :

RFC 395: Change title to reflect the new change of equations

IS705-1591 :
Insertion after object IS705-1592 (See Previous)

Section Number :

20.3.3.1.3.1-13

WAS :
N/A
Redlines:
<INSERTED OBJECT>
IS :
Table 20-II part 4

Element/Equation	Description
SV Acceleration	
$\mathrm{R}_{\mathrm{E}}=6378137.0$ meters	WGS 84 Earth Equatorial Radius
$\mathrm{J}_{2}=0.0010826262$	Oblate Earth Gravity Coefficient
$\mathrm{F}=-(3 / 2) \mathrm{J}_{2}\left(\mu / r_{k}^{2}\right)\left(\mathrm{R}_{\mathrm{E}} / r_{\mathrm{k}}\right)^{2}$	Oblate Earth acceleration Factor
$\begin{aligned} & \ddot{x}_{k}=-\mu\left(x_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(1-5\left(z_{k} / r_{k}\right)^{2}\right)\left(x_{k} / r_{k}\right)\right] \\ &+2 \dot{y}_{k} \dot{\Omega}_{e}+x_{k} \dot{\Omega}_{e}^{2} \end{aligned}$	Earth- Fixed x acceleration (m/s ${ }^{2}$)
$\begin{aligned} & \ddot{y}_{k}=-\mu\left(y_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(1-5\left(z_{k} / r_{k}\right)^{2}\right)\left(y_{k} / r_{k}\right)\right] \\ &-2 \dot{x}_{k} \dot{\Omega}_{e}+y_{k} \dot{\Omega}_{e}^{2} \end{aligned}$	Earth- Fixed y Acceleration (m/s ${ }^{2}$)
$\ddot{z}_{k}=-\mu\left(z_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(3-5\left(z_{k} / r_{k}\right)^{2}\right)\left(z_{k} / r_{k}\right)\right]$	Earth- Fixed z Acceleration (m/s ${ }^{2}$)

Rationale :

RFC 395: Add new and improved velocity and acceleration equation tables

Section Number :

20.3.3.3.1.1.0-1

WAS :
The group delay differential correction terms, $\mathrm{T}_{G D}, \mathrm{ISC}_{\mathrm{L1C/A}}, \mathrm{ISC}_{\mathrm{L} 2 \mathrm{C}}$ are contained in bits 128 through 166 of message type 30. See paragraph 30.3.3.3.1.1 of IS-GPS-200. The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-IV. These group delay differential correction terms are also used for the benefit of single frequency L515 and L5-Q5 users and dual frequency L1/L5 and L2/L5 users.

Redlines:

The group delay differential correction terms, $\mathrm{T}_{\mathrm{GD}}, \mathrm{IS}_{\mathrm{CL1} 1 / \mathrm{A},}, \mathrm{ISC}_{\mathrm{L} 2 \mathrm{C}}$ are contained in bits 128 through 166 of message type 30. See paragraph 30.3.3.3.1.1 of IS-GPS-200. The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-IV. These group delay differential correction terms are also used for the benefit of single frequency L515 and L5-Q5 users and dual frequency L1/L5 and L2/L5-users.

IS :

The group delay differential correction terms, $\mathrm{T}_{6 \mathrm{D}}, \mathrm{ISC}_{\mathrm{L1} / \mathrm{A}, ~}, \mathrm{ISC}_{\mathrm{L} 2 \mathrm{C}}$ are contained in bits 128 through 166 of message type 30. See paragraph 30.3.3.3.1.1 of IS-GPS-200. The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-IV. These group delay differential correction terms are also used for the benefit of single frequency L515 and L5-Q5 users and dual frequency L1/L5 users.

Rationale :

Deleted L2/L5 Dual Frequency not defined as a valid group of frequencies, In addition, according to new SPS PS, L2/L5 is not recommended as a pair of frequencies.

IS705-271 :

Section Number :

20.3.3.3.1.1.1

WAS :

L1/L2 Inter-Signal Group Delay Differential Correction.

Redlines :

```
<DELETED OBJECT>
```


IS:

<DELETED OBJECT>

Rationale :

Delete section because its entirety is a reference to another document. Topics described are L1/L2 which belong in IS-GPS-200; the reader shouldn't be looking at IS-GPS-705 for L1/L2.

Section Number :

20.3.3.3.1.1.1.0-1

WAS :

See paragraph 30.3.3.3.1.1.1 of IS-GPS-200.

Redlines:

<DELETED OBJECT>

IS :

<DELETED OBJECT>

Rationale :

Delete the L1/L2 inter-signal group delay section from IS-GPS-705 because this section points to IS-GPS-200 only; this section does not belong in a document for L5 users. L1/L2 users should instead just refer to IS-GPS-200 for that information (without even needing to check IS-GPS-705).

IS705-274 :

Section Number :

20.3.3.3.1.2.0-1

WAS :

The group delay differential correction terms, $T_{G D}, I S C_{L 515}$ and $I S C_{L 5 Q 5}$, for the benefit of single frequency L5-I5 and L5-Q5 users and dual frequency L1/L5 and L2/L5 users are contained in bits 128 through 140 and 167 through 192 of message type 30 (see Figure 20-3 for complete bit allocation). The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-IV. The bit string of " 100000000000 " shall indicate that the group delay value is not available. The related algorithms are given in paragraphs 20.3.3.3.1.2.1, 20.3.3.3.1.2.2, and 20.3.3.3.1.2.3.

Redlines:

The group delay differential correction terms, $T_{G D}, I S C_{L 515}$ and $I S C_{L 5 Q 5}$, for the benefit of single frequency $\mathrm{L} 5-\mathrm{I} 5$ and $\mathrm{L5}-\mathrm{Q} 5$ users and dual frequency L1/L5 and L2/L5-users are contained in bits 128 through 140 and 167 through 192 of message type 30 (see Figure 20-3 for complete bit allocation). The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-IV. The bit string of " 100000000000 " shall indicate that the group delay value is not available. The related algorithms are given in paragraphs 20.3.3.3.1.2.1, 20.3.3.3.1.2.2, and 20.3.3.3.1.2.3.

IS:

The group delay differential correction terms, $T_{G D}, I S C_{L 515}$ and $I S C_{L 5 Q 5}$, for the benefit of single frequency L5-I5 and L5-Q5 users and dual frequency L1/L5 users are contained in bits 128 through 140 and 167 through 192 of message type 30 (see Figure 20-3 for complete bit allocation). The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-IV. The bit string of " 1000000000000 " shall indicate that the group delay value is not available. The related algorithms are given in paragraphs 20.3.3.3.1.2.1, 20.3.3.3.1.2.2, and 20.3.3.3.1.2.3.

Rationale:

Deleted L2/L5 Dual Frequency not defined as a valid group of frequencies. In addition, according to new SPS PS, L2/L5 is not recommended as a pair of frequencies.

IS705-282 :

Section Number :

20.3.3.3.1.2.3

WAS :
L2/L5 Ionospheric Correction.

Redlines:

<DELETED OBJECT>
IS :
<DELETED OBJECT>

Rationale :

Deleted L2/L5 Dual Frequency according to government system level docs, this DF not defined as a group of frequencies. In addition, according to new SPS PS, L2/L5 DF is not recommended as a pair of frequencies.

Section Number :

20.3.3.3.1.2.3.0-1

WAS :

The dual-frequency (L2 C and L5 I5) user shall correct for the group delay and ionospheric effects by applying the relationship:

$$
\mathrm{PR}=\frac{\left(\mathrm{PR}_{\mathrm{L} 515}-\gamma_{25} \mathrm{PR}_{\mathrm{L} 2 \mathrm{C}}\right)+\mathrm{c}\left(\mathrm{ISC}_{\mathrm{L} 515}-\gamma_{25} \mathrm{ISC}_{\mathrm{L} 2 \mathrm{C}}\right)}{1-\gamma_{25}}-\mathrm{cT}_{\mathrm{GD}}
$$

Redlines:

<DELETED OBJECT>

IS :
<DELETED OBJECT>

Rationale :

Deleted L2/L5 Dual Frequency according to government system level docs, this DF not defined as a group of frequencies. In addition, according to new SPS PS, L2/L5 DF is not recommended as a pair of frequencies.

Section Number :

20.3.3.3.1.2.3.0-2

WAS :

The dual-frequency (L2 C and L5 Q5) user shall correct for the group delay and ionospheric effects by applying the relationship:

$$
\mathrm{PR}=\frac{\left(\mathrm{PR}_{\mathrm{L} 5 \mathrm{Q} 5}-\gamma_{25} \mathrm{PR}_{\mathrm{L} 2 \mathrm{C}}\right)+\mathrm{c}\left(\mathrm{ISC}_{\mathrm{L} 5 \mathrm{Q} 5}-\gamma_{25} \mathrm{ISC}_{\mathrm{L} 2 \mathrm{C}}\right)}{1-\gamma_{25}}-\mathrm{cT} \mathrm{G}_{\mathrm{GD}}
$$

where

PR = pseudorange corrected for ionospheric effects,
$\mathrm{PR}_{\mathrm{i}}=$ pseudorange measured on the channel indicated by the subscript,
$\mathrm{ISC}_{\mathrm{i}}=$ inter-signal correction for the channel indicated by the subscript (see paragraph 20.3.3.3.1.2),
$\mathrm{T}_{G D} \quad=$ see paragraph 20.3.3.3.3.2 of IS-GPS-200,
$\mathrm{c} \quad=$ speed of light (see paragraph 20.3.4.3).
and where, denoting the nominal center frequencies of $L 2$ and $L 5$ as $f_{L 2}$ and $f_{L 5}$ respectively.
$\gamma_{25}=\left(f_{L 2} / f_{L 5}\right)^{2}=(1227.6 / 1176.45)^{2}=(24 / 23)^{2}$

Redlines:

<DELETED OBJECT>
IS :
<DELETED OBJECT>

Rationale :

Deleted L2/L5 Dual Frequency according to government system level docs, this DF not defined as a group of frequencies. In addition, according to new SPS PS, L2/L5 DF is not recommended as a pair of frequencies

Section Number :

20.3.3.3.1.3.0-2

WAS :
The ionospheric data shall be updated by the CS at least once every six days while the CS is able to upload the SVs. If the CS is unable to upload the SVs, the ionospheric data transmitted by the SVs may not be accurate. During extended operations or in the Autonav mode, if the CS is unable to upload the SVs, the use of this model will yield unpredictable results.

Redlines :

The ionospheric data shall be updated by the CS at least once every six days while the CS is able to upload the SVs. If the CS is unable to upload the SVs, the ionospheric data transmitted by the SVs may not be accurate. During extended operations-or in the Autonav mode, if the CS is unable to upload the SVs, the use of this model will yield unpredictable results.

IS:
The ionospheric data shall be updated by the CS at least once every six days while the CS is able to upload the SVs. If the CS is unable to upload the SVs, the ionospheric data transmitted by the SVs may not be accurate. During extended operations, if the CS is unable to upload the SVs, the use of this model will yield unpredictable results.

Rationale :

Autonav is not in present SV nor will it be in GPS IIIF. Removing references of Autonav.

