PROPOSED INTERFACE REVISION NOTICE (PIRN) Note: This Cover Page is not intended for signature. It is to be used during the document update (pre-ICWG) process. Affected ICD/IS: IS-GPS-800D PIRN Number: PIRN-IS-800D-004 Authority: PIRN Date: 17-JUN-2016 CLASSIFIED BY: NA

CLASSIFIED BY: NA DECLASSIFY ON: NA

Document Title: Navstar GPS Space Segment/User Segment L1C Interfaces

Reason For Change (Driver):

Modify public documents to clarify extraneous, ambiguous, redundant, or missing editorial and/or administrative information to enhance the public document quality (clear and concise communication) as suggested by Public Interface Control Working Group (ICWG) participants, stakeholders and key members.

Description of Change: Process the administrative and editorial changes as requested by stakeholders and update IS-GPS-800D.

Prepared By: <u>Drew Sapp/Huey Nguyenhuu</u> Checked By: <u>Perry Chang</u>

DISTRIBUTION STATEMENT A: Approved For Public Release; Distribution Is Unlimited

IS800-159:

Table 3.5-1. Subframe 2 Parameters (1 of 3)							
	Parameter	No. of Bits**	Scale Factor (LSB)	Effective Range***	Units		
WN	Week No.	13	1		weeks		
ITOW	Interval time of week	8		83	(see text)		
t_{op}	Data predict time of week	11	300	604,500	seconds		
L1C health		1			(see text)		
URA _{ED} Index	ED accuracy index	5*			(see text)		
t _{oe}	Ephemeris/clock data reference time of week	11	300	604,500	seconds		
ΔΑ ****	Semi-major axis difference at reference time	26*	2-9		meters		
Å	Change rate in semi-major axis	25*	2-21		meters/sec		
Δn_0	Mean Motion difference from computed value at reference time	17*	2 ⁻⁴⁴		semi-circles/sec		
$\Delta \hat{\mathbf{n}}_0$	Rate of mean motion difference from computed value	23*	2-57		semi-circles/sec ²		
M _{0-n}	Mean anomaly at reference time	33*	2-32		semi-circles		
e_n	Eccentricity	33	2-34		dimensionless		
$\omega_{\rm n}$	Argument of perigee	33*	2-32		semi-circles		

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} Relative to $A_{REF} = 26,559,710$ meters.

	Table 3.5-1. Subf	Table 3.5-1. Subframe 2 Parameters (1 of 3)							
	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units				
WN	Week No.	13	1		weeks				
ITOW	Interval time of week	8		83	(see text)				
t _{op}	Data predict time of week	11	300	604,500	seconds				
L1C health		1			(see text)				
URA _{ED} Index	ED accuracy index	5*			(see text)				
toe	Ephemeris/clock data reference time of week	11	300	0 to 604,500	seconds				
ΔΑ ****	Semi-major axis difference at reference time	26*	2-9		meters				
Å	Change rate in semi-major axis	25*	2-21		meters/sec				
Δn_0	Mean Motion difference from computed value at reference time	17*	2 ⁻⁴⁴		semi-circles/sec				
$\Delta \vec{n}_0$	Rate of mean motion difference from computed value	23*	2 ⁻⁵⁷		semi- circles/sec ²				
M_{0-n}	Mean anomaly at reference time	33*	2-32		semi-circles				
e_n	Eccentricity	33	2-34	0.0 to 0.03	dimensionless				
ω_{n}	Argument of perigee	33*	2-32		semi-circles				

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} Relative to $A_{REF} = 26,559,710$ meters.

IS800-160:

	Table 3.5-1. Subframe 2 Parameters (2 of 3)							
	Parameter	No. of Bits**	Scale Factor (LSB)	Effective Range***	Units			
Ω _{0-n}	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	33*	2-32		semi-circles			
Δ ****	Rate of right ascension difference	17*	2-44		semi-circles/sec			
$egin{array}{c} \Omega \ i_{0 ext{-}n} \end{array}$	Inclination angle at reference time	33*	2-32		semi-circles			
i _{0-n} –DOT	Rate of inclination angle	15*	2-44		semi-circles/sec			
C _{is-n}	Amplitude of the sine harmonic correction term to the angle of inclination	16*	2-30		radians			
C _{ic-n}	Amplitude of the cosine harmonic correction term to the angle of inclination	16*	2-30		radians			
C _{rs-n}	Amplitude of the sine correction term to the orbit radius	24*	2-8		meters			
C _{rc-n}	Amplitude of the cosine correction term to the orbit radius	24*	2-8		meters			
C _{us-n}	Amplitude of the sine harmonic correction term to the argument of latitude	21*	2-30		radians			
C _{uc-n}	Amplitude of the cosine harmonic correction term to the argument of latitude	21*	2-30		radians			

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} Relative to $\mathring{\Omega}_{REF} = -2.6 \times 10^{-9} \text{ semi-circles/second.}$

Table 3.5-1. Subframe 2 Parameters (2 of 3)							
	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units		
$\Omega_{0 ext{-n}}$	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	33*	2-32		semi-circles		
Δ ****	Rate of right ascension difference	17*	2-44		semi-circles/sec		
$\Omega top i_{0-n}$	Inclination angle at reference time	33*	2-32		semi-circles		
i _{0-n} –DOT	Rate of inclination angle	15*	2-44		semi-circles/sec		
C _{is-n}	Amplitude of the sine harmonic correction term to the angle of inclination	16*	2-30		radians		
C _{ic-n}	Amplitude of the cosine harmonic correction term to the angle of inclination	16*	2-30		radians		
C _{rs-n}	Amplitude of the sine correction term to the orbit radius	24*	2-8		meters		
C _{rc-n}	Amplitude of the cosine correction term to the orbit radius	24*	2-8		meters		
C _{us-n}	Amplitude of the sine harmonic correction term to the argument of latitude	21*	2-30		radians		
C _{uc-n}	Amplitude of the cosine harmonic correction term to the argument of latitude	21*	2-30		radians		

Parameters so indicated are in two's complement notation;

^{**}

See Figure 3.5-1 for complete bit allocation in Subframe 2; Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated *** bit allocation and scale factor.

Relative to $\hat{\Omega}_{REF} = -2.6 \times 10^{-9} \text{ semi-circles/second.}$

IS800-161:

Table 3.5-1. Subframe 2 Parameters (3 of 3)							
	Parameter	No. of Bits**	Scale Factor (LSB)	Effective Range***	Units		
URA _{NED0} Index	NED Accuracy Index	5*			(see text)		
URA _{NED1} Index	NED Accuracy Change Index	3			(see text)		
URA _{NED2} Index	NED Accuracy Change Rate Index	3			(see text)		
a _{f2-n}	SV Clock Drift Rate Correction Coefficient	10*	2-60		sec/sec ²		
a _{fI-n}	SV Clock Drift Correction Coefficient	20*	2-48		sec/sec		
a _{f0-n}	SV Clock Bias Correction Coefficient	26*	2-35		seconds		
T _{GD} ****	Inter-Signal Correction for L1 or L2 P(Y)	13*	2-35		seconds		
ISC _{LICP} ****	Inter-Signal Correction for L1C _P	13*	2-35		seconds		
ISC _{LICD} ****	Inter-Signal Correction for L1C _D	13*	2-35		seconds		
WN _{OP}	Data Predict Week Number	8	1		weeks		

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} The bit string of "1000000000000" will indicate that the group delay value is not available.

IS:

Table 3.5-1. Subframe 2 Parameters (3 of 3)								
	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units			
URA _{NED0} Index	NED Accuracy Index	5*			(see text)			
URA _{NED1} Index	NED Accuracy Change Index	3			(see text)			
URA _{NED2} Index	NED Accuracy Change Rate Index	3			(see text)			
a _{f2-n}	SV Clock Drift Rate Correction Coefficient	10*	2 ⁻⁶⁰		sec/sec ²			
a _{fl-n}	SV Clock Drift Correction Coefficient	20*	2^{-48}		sec/sec			
a _{f0-n}	SV Clock Bias Correction Coefficient	26*	2 ⁻³⁵		seconds			
T _{GD} ****	Inter-Signal Correction for L1 or L2 P(Y)	13*	2-35		seconds			
ISC _{LICP} ****	Inter-Signal Correction for L1C _P	13*	2 ⁻³⁵		seconds			
ISC _{L1CD} ****	Inter-Signal Correction for L1C _D	13*	2-35		seconds			
WN _{OP}	Data Predict Week Number	8	1		weeks			

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} The bit string of "1000000000000" will indicate that the group delay value is not available.

IS800-224:

	Table 3.5-3. UTC Parameters								
Parameter		No. of Bits**	Scale Factor (LSB)	Effective Range***	Units				
A _{0-n}	Bias coefficient of GPS time scale relative to UTC time scale	16*	2-35		seconds				
A _{1-n}	Drift coefficient of GPS time scale relative to UTC time scale	13*	2 ⁻⁵¹		sec/sec				
A _{2-n}	Drift rate correction coefficient of GPS time scale relative to UTC time scale	7*	2 ⁻⁶⁸		sec/sec ²				
Δt_{LS}	Current or past leap second count	8*	1		seconds				
t _{ot}	Time data reference Time of Week	16	2^4	604,784	seconds				
WN_{ot}	Time data reference Week Number	13	1		weeks				
WN_{LSF}	Leap second reference Week Number	13	1		weeks				
DN	Leap second reference Day Number	4****	1		days				
Δt_{LSF}	Current or future leap second count	8*	1		seconds				

^{*} Parameters so indicated shall be in two's complement notation;

^{**} See Figure 3.5-2 for complete bit allocation;

^{***} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor;

^{****} Right justified.

IS:

	Table 3.5-3. UTC Parameters								
Parameter		No. of Bits**	Scale Factor (LSB)	Valid Range***	Units				
A _{0-n}	Bias coefficient of GPS time scale relative to UTC time scale	16*	2 ⁻³⁵		seconds				
A _{1-n}	Drift coefficient of GPS time scale relative to UTC time scale	13*	2 ⁻⁵¹		sec/sec				
A _{2-n}	Drift rate correction coefficient of GPS time scale relative to UTC time scale	7*	2 ⁻⁶⁸		sec/sec ²				
Δt_{LS}	Current or past leap second count	8*	1		seconds				
t _{ot}	Time data reference Time of Week	16	2^4	0 to 604,784	seconds				
WN _{ot}	Time data reference Week Number	13	1		weeks				
WN_{LSF}	Leap second reference Week Number	13	1		weeks				
DN	Leap second reference Day Number	4	1	1 to 7	days				
Δt_{LSF}	Current or future leap second count	8*	1		seconds				

^{*} Parameters so indicated shall be in two's complement notation;

^{**} See Figure 3.5-2 for complete bit allocation;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor;

IS800-655:

WAS:

000 = no data available,

001 = Galileo.

010 = GLONASS,

011 through 111 = reserved for other systems.

IS:

000 = no data available,

001 = Galileo,

010 = GLONASS,

011 through 111 = reserved Reserved for in other order systems to preserve the use of these values in a future version of this IS. Until such a revision, the user segment developing to this version of this IS should interpret these values as indicating that the GPS/GNSS Time Offset Parameter data, to which the GNSS Type ID applies, is presently unusable.

IS800-236:

	Table 3.5-4. GPS/GNSS Time Offset Parameters								
	Parameter	No. of Bits**	Scale Factor (LSB)	Effective Range***	Units				
A_{0GGTO}	Bias coefficient of GPS time scale relative to GNSS time scale	16*	2-35		seconds				
$A_{\rm IGGTO}$	Drift coefficient of GPS time scale relative to GNSS time scale	13*	2-51		sec/sec				
A _{2GGTO}	Drift rate correction coefficient of GPS time scale relative to GNSS time scale	7*	2 ⁻⁶⁸		sec/sec ²				
$t_{ m GGTO}$	Time data reference Time of Week	16	2^{4}	604,784	seconds				
WN _{GGTO}	Time data reference Week Number	13	2^0		weeks				
GNSS ID	GNSS Type ID	3			see text				

Parameters so indicated shall be in two's complement notation;

See Figure 3.5-3 for complete bit allocation; Unless otherwise indicated in this column, effective range is the maximum range *** attainable with indicated bit allocation and scale factor.

Table 3.5-4. GPS/GNSS Time Offset Parameters								
	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units			
A ₀ GGTO	Bias coefficient of GPS time scale relative to GNSS time scale	16*	2-35		seconds			
$A_{\rm IGGTO}$	Drift coefficient of GPS time scale relative to GNSS time scale	13*	2-51		sec/sec			
A _{2GGTO}	Drift rate correction coefficient of GPS time scale relative to GNSS time scale	7*	2-68		sec/sec ²			
$t_{\rm GGTO}$	Time data reference Time of Week	16	2^{4}	0 to 604,784	seconds			
WN _{GGTO}	Time data reference Week Number	13	2^{0}		weeks			
GNSS ID	GNSS Type ID	3			see text			

Parameters so indicated shall be in two's complement notation;

^{**}

See Figure 3.5-3 for complete bit allocation; Unless otherwise indicated in this column, valid range is the maximum range attainable *** with indicated bit allocation and scale factor.

IS800-241:

	Table 3.5-5. Earth Orientation Parameters						
Parameter			Scale Factor (LSB)	Effective Range***	Units		
$t_{\rm EOP}$	EOP Data Reference Time	16	24	604,784	seconds		
PM_X [†]	X-Axis Polar Motion Value at Reference Time.	21*	2-20	1	arc-seconds		
PM_X	X-Axis Polar Motion Drift at Reference Time.	15*	2-21	7.8125 x 10 ⁻³	arc-seconds/day		
PM_Y ^{††}	Y-Axis Polar Motion Value at Reference Time.	21*	2-20	1	arc-seconds		
PM_Y	Y-Axis Polar Motion Drift at Reference Time.	15*	2-21	7.8125 x 10 ⁻³	arc-seconds/day		
ΔUT1 †††	UT1-UTC Difference at Reference Time.	31*	2 ⁻²⁴	64	seconds		
ΔUŤ1 †††	Rate of UT1-UTC Difference at Reference Time	19*	2-25	7.8125 x 10 ⁻³	seconds/day		

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-3 for complete bit allocation in subframe 3, page 2;

^{***} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

[†] Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.

Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.

^{†††} With zonal tides restored.

	Table 3.5-5. Earth Orientation Parameters							
Parameter			Scale Factor (LSB)	Valid Range***	Units			
t _{EOP}	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds			
PM_X [†]	X-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds			
PM_X	X-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day			
PM_Y ††	Y-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds			
PM_Y	Y-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day			
ΔUT1 ^{†††}	UT1-UTC Difference at Reference Time.	31*	2-24		seconds			
ΔU Ť 1 †††	Rate of UT1-UTC Difference at Reference Time	19*	2-25		seconds/day			

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-3 for complete bit allocation in subframe 3, page 2;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

[†] Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.

Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.

^{†††} With zonal tides restored.

IS800-894:

WAS:

An 8-bit value of "00000000" in the PRN_a field shall indicate that no further Status Words are contained in the remainder of the data block. In this event, all subsequent bits in the data block field shall be filler bits, i.e., alternating ones and zeros beginning with one.

IS:

An 8-bit value of "00000000" in the PRNa field shall indicate that no further Statusthere Wordsis areno contained at in the remainder of the reduced data almanac blockpacket. In this event, all subsequent bits into the data end block field the message that contains the packet shall be filler bits, i.e., alternating ones and zeros beginning with one.

IS800-260:

WAS:

Table 3.5-6. Reduced Almanac Parameters *****					
Parameter****	No. of Bits	Scale Factor (LSB)	Effective Range **	Units	
δα ***	8 *	2+9	**	Meters	
Ω_0	7 *	2-6	**	semi-circles	
Φ ₀ ****	7 *	2 ⁻⁶	**	semi-circles	

^{*} Parameters so indicated shall be in two's complement notation;

$$e = 0$$

 $\delta_i = +0.0056$ semi-circles (i = 55 degrees)

 Ω =-2.6 x 10⁻⁹ semi-circles/second

^{**} Effective range is the maximum range attainable with indicated bit allocation and scale factor;

^{***} Relative to $A_{ref} = 26,559,710$ meters;

^{****} Φ_0 = Argument of Latitude at Reference Time = $M_0 + \omega$;

^{*****} Relative to following reference values:

IS:

Table 3.5-6. Reduced Almanac Parameters *****						
Parameter****	No. of Bits	Scale Factor (LSB)	Valid Range **	Units		
δ _A *** Ω ₀ Φ ₀ ****	8 * 7 * 7 *	2 ⁺⁹ 2 ⁻⁶ 2 ⁻⁶	** **	Meters semi-circles semi-circles		

^{*} Parameters so indicated shall be in two's complement notation;

$$e = 0$$

 $\delta_i \ = \ +0.0056 \ semi\text{-circles} \ \ (i=55 \ degrees)$

 Ω =-2.6 x 10⁻⁹ semi-circles/second

^{**} Valid range is the maximum range attainable with indicated bit allocation and scale factor;

^{***} Relative to $A_{ref} = 26,559,710$ meters;

^{****} Φ_0 = Argument of Latitude at Reference Time = $M_0 + \omega$;

^{*****} Relative to following reference values:

IS800-263:

Table 3.5-7. Midi Almanac Parameters						
Parameter	No. of Bits**	Scale Factor (LSB)	Effective Range***	Units		
t_{oa}	8	212	602,112	seconds		
e	11	2-16		dimensionless		
δ_{i} ****	11*	2-14		semi-circles		
$\dot{\Omega}$	11*	2 ⁻³³		semi-circles/sec		
$\sqrt{\mathrm{A}}$	17	2-4		$\sqrt{\text{meters}}$		
Ω_0	16*	2-15		semi-circles		
ω	16*	2-15		semi-circles		
M_0	16*	2-15		semi-circles		
$a_{ m f0}$	11*	2-20		seconds		
a_{fl}	10*	2 ⁻³⁷		sec/sec		

^{*} Parameters so indicated shall be in two's complement notation;

^{**} See Figure 3.5-5 for complete bit allocation in subframe 3, page 4;

^{***} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor;

^{****} Relative to $i_0 = 0.30$ semi-circles.

IS:

Table 3.5-7. Midi Almanac Parameters						
Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units		
t_{oa}	8	212	0 to 602,112	seconds		
e	11	2-16	0.0 to 0.03	dimensionless		
δ _i ****	11*	2-14		semi-circles		
$\dot{\Omega}$	11*	2-33	-6.33E-07 to 0	semi-circles/sec		
\sqrt{A}	17	2-4	2530 to 8192	√meters		
Ω_0	16*	2-15		semi-circles		
ω	16*	2-15		semi-circles		
\mathbf{M}_0	16*	2-15		semi-circles		
$a_{ m f0}$	11*	2-20		seconds		
a_{fl}	10*	2-37		sec/sec		

^{*} Parameters so indicated shall be in two's complement notation;

^{**} See Figure 3.5-5 for complete bit allocation in subframe 3, page 4;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor;

^{****} Relative to $i_0 = 0.30$ semi-circles.

IS800-280:

Table 3.5-8. Differential Correction Parameters					
Parameter		No. of Bits**	Scale Factor (LSB)	Effective Range***	Units
PRN ID		8			see text
$\delta a_{ m f0}$	SV Clock Bias Correction	13*	2-35		seconds
$\delta a_{\rm fl}$	SV Clock Drift Correction	8*	2-51		seconds/second
UDRA	User Differential Range Accuracy Index	5*			see text
Δα	Alpha Correction to Ephemeris Parameters	14*	2-34		dimensionless
Δβ	Beta Correction to Ephemeris Parameters	14*	2-34		dimensionless
Δγ	Gamma Correction to Ephemeris Parameters	15*	2-32		semi-circles
Δi	Angle of Inclination Correction	12*	2-32		semi-circles
ΔΩ	Angle of Right Ascension Correction	12*	2-32		semi-circles
ΔΑ	Semi-Major Correction	12*	2-9		meters
UDRA	Change Rate of User Differential Range Accuracy Index.	5*			see text

Parameters so indicated are in two's complement notation;

^{**}

See Figure 3.5-6 for complete bit allocation in subframe 3, page 5; Unless otherwise indicated in this column, effective range is the maximum range attainable with *** indicated bit allocation and scale factor.

IS:

Table 3.5-8. Differential Correction Parameters					
Parameter		No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
PRN ID		8			see text
$t_{op\text{-}D}$	DC Data Predict Time of Week	11	300	0 to 604,500	seconds
t_{OD}	Time of DC Data	11	300	0 to 604,500	seconds
$\delta a_{\rm f0}$	SV Clock Bias Correction	13*	2-35		seconds
$\delta a_{\rm fl}$	SV Clock Drift Correction	8*	2-51		seconds/second
UDRA	User Differential Range Accuracy Index	5*			see text
Δα	Alpha Correction to Ephemeris Parameters	14*	2-34		dimensionless
Δβ	Beta Correction to Ephemeris Parameters	14*	2-34		dimensionless
$\Delta\gamma$	Gamma Correction to Ephemeris Parameters	15*	2-32		semi-circles
Δi	Angle of Inclination Correction	12*	2-32		semi-circles
$\Delta\Omega$	Angle of Right Ascension Correction	12*	2-32		semi-circles
ΔΑ	Semi-Major Correction	12*	2-9		meters
UDRA	Change Rate of User Differential Range Accuracy Index.	5*			see text

Parameters so indicated are in two's complement notation; See Figure 3.5-6 for complete bit allocation in subframe 3, page 5; **

Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit *** allocation and scale factor.

IS800-871:

WAS:

The t_{oe} shall be equal to the t_{oc} of the same CNAV data set. The following rules govern the transmission of t_{oe} and t_{oc} values in different data sets: (1) The transmitted t_{oc} will be different from any value transmitted by the SV during the preceding seven days; (2) The transmitted t_{oe} will be different from any value transmitted by the SV during the preceding six hours.

Cutovers to new data sets will occur only on hour boundaries except for the first data set of a new upload. The first data set may be cut-in (reference paragraph 3.5.5.1) at any time during the hour and therefore may be transmitted by the SV for less than one hour.

The start of the transmission interval for each data set corresponds to the beginning of the curve fit interval for the data set. Each data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval. A data set is rendered invalid before the end of its curve fit interval when it is superseded by the SV cutting over to the first data set of a new upload.

Normal Operations. The subframe 2 data sets are transmitted by the SV for periods of two hours. The corresponding curve fit interval is three hours.

IS:

The toe shall be equal to the toc of the same CNAV data set. The following rules rule governgoverns the transmission of toe and toc values in different data sets: (1) The transmitted toe toe will be different from any value transmitted by the SV during the preceding seven days; (2) The transmitted toe will be different from any value transmitted by the SV during the preceding six hours.

Cutovers to new data sets will occur only on hour boundaries except for the first data set of a new upload. The first data set may be cut-in (reference paragraph 3.5.5.1) at any time during the hour and therefore may be transmitted by the SV for less than one hour.

The start of the transmission interval for each data set corresponds to the beginning of the curve fit interval for the data set. Each data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval. A data set is rendered invalid before the end of its curve fit interval when it is superseded by the SV cutting over to the first data set of a new upload.

Normal Operations. The subframe 2 data sets are transmitted by the SV for periods of two hours. The corresponding curve fit interval is three hours.

IS800-907:

Insertion after object IS800-308

WAS: N/A

IS:

Reserved Data

See paragraph 6.2.6 of IS-GPS-200.

IS800-909:

Insertion after object IS800-907

WAS:

N/A

IS:

Valid Range

See paragraph 6.2.7 of IS-GPS-200.

IS800-910:

Insertion after object IS800-909

WAS:

N/A

IS:

Invalid Range

See paragraph 6.2.8 of IS-GPS-200.