#### Change Topic: User Range Accuracy (URA) Definition

This change package accommodates the text changes to support the proposed solution (see table below) within the public Signals-in-Space (SiS) documents. All comments must be submitted in Comments Resolution Matrix (CRM) form.

The columns in the WAS/IS table following this page are defined below:

Section Number: This number indicates the location of the text change within the document.

(WAS) <Document Title>: Contains the baseline text of the impacted document.

Proposed Heading: Contains proposed changes to existing section titles and/or the titles to new sections

Proposed Text: Contains proposed changes to baseline text.

Rationale: Contains the supporting information to explain the reason for the proposed changes.

#### **PROBLEM STATEMENT:**

Administrative errors in the public documents are resulting in incorrect calculations and/or ambiguous definitions relative to User Range Accuracy (URA). Incorrect URA calculations would impact user equipment design and incorrect definitions would impact the interpretation of the URA data from the SV, resulting in erroneous PNT calculations.

# **SOLUTION:** (Proposed)

Provide the correct URA equations and more concise definitions of the URA quantity for the users. The improvements provide the correct URA equations as well as include nomenclature that makes the equations easier to interpret for the user.

1

6 May 2011

#### Start of WAS/IS for IS-GPS-200E Changes

| Section | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces                             | Proposed | URA Definition Proposed Text                                                                                 | Rationale       |
|---------|---------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------|-----------------|
| Number  |                                                                                                   | Heading  |                                                                                                              |                 |
| 621     | User Range Accuracy (URA) is a statistical indicator of the GPS ranging accuracy obtainable       |          | User Range Accuracy (LIRA) is a statistical indicator of the GPS ranging accuracy obtainable with a          | Rationale #5-   |
| 0.2.1   | with a specific signal and SV. Whether the integrity status flag is 'off' or 'on'. 4.42 times URA |          | specific signal and SV. URA provides a conservative RMS estimate of the user range error (URE) in            | There are       |
|         | bounds instantaneous URE under all conditions with 1 -1e-5 per hour probability. When the         |          | the associated navigation data for the transmitting SV. It includes all errors for which the Space           | numerous        |
|         | integrity status flag is 'on', 5.73 times URA bounds instantaneous URE under all conditions       |          | and Control Segments are responsible. Whether the integrity status flag is 'off' or 'on', 4.42 times         | inconsistencies |
|         | with 1-1e-8 per hour probability. Integrity properties of the URA are specified with respect to   |          | URA bounds the instantaneous URE under all conditions with 1-1e-5 per hour probability ('legacy'             | between ICDs    |
|         | the upper bound values of the URA index.                                                          |          | level of integrity assurance). When the integrity status flag is 'on', 5.73 times URA bounds the             | and             |
|         |                                                                                                   |          | instantaneous URE under all conditions with 1-1e-8 per hour probability ('enhanced' level of                 | clarifications  |
|         |                                                                                                   |          | integrity assurance). Integrity properties of the URA are specified with respect to the scaled               | and additions   |
|         |                                                                                                   |          | (multiplied by either 4.42 or 5.73 as appropriate) upper bound value <del>s</del> of the URA index or to the | that are        |
|         |                                                                                                   |          | scaled composite of the upper bound values of all component URA indexes.                                     | needed for the  |
|         |                                                                                                   |          |                                                                                                              | users to        |
|         |                                                                                                   |          |                                                                                                              | compute URA.    |
|         |                                                                                                   |          |                                                                                                              | These changes   |
|         |                                                                                                   |          |                                                                                                              | resolve the     |
|         |                                                                                                   |          |                                                                                                              | inconsistencies |
|         |                                                                                                   |          |                                                                                                              | between the     |
|         |                                                                                                   |          |                                                                                                              | ICDS SO that    |
|         |                                                                                                   |          |                                                                                                              | properly        |
|         |                                                                                                   |          |                                                                                                              | compute URA.    |
|         |                                                                                                   |          |                                                                                                              |                 |
| 6.2.1   | Note #1: URA applies over the curve fit interval that is applicable to the NAV data from which    |          | Note #1: URA applies over the transmission interval that is applicable to the NAV data from which            | See Rationale   |
|         | the URA is read, for the worst-case location within the intersection of the satellite signal and  |          | the URA is read, for the worst-case location within the satellite footprint.                                 | #5              |
|         | the terrestrial service volume.                                                                   |          |                                                                                                              |                 |
| 6.2.1   | Note #2: The URA for a particular signal may be represented by a single parameter in the NAV      |          | Note #2: The URA for a particular signal may be represented by a single index in the NAV data or             | See Rationale   |
|         | data or by more than one parameter representing components of the total URA. Specific URA         |          | by a composite of more than one index representing components of the total URA. Specific URA                 | #5              |
|         | parameters and formulae for calculating the total URA for a signal are defined in the             |          | indexes and formulae for calculating the total URA for each signal are defined in appendix 20 for            |                 |
|         | applicable Space Segment to Navigation User Segment ICD's.                                        |          | the LNAV message and appendix 30 for the CNAV message.                                                       |                 |
| 6.2.1   | N/A                                                                                               |          | Note #3: The above integrity assured probability values do not apply if: (a) an alert is issued to the       | See Rationale   |
|         |                                                                                                   |          | users before the instantaneous URE exceeds either of the scaled URA bounds, or (b) an alert is               | #5              |
|         |                                                                                                   |          | issued to the users no more than 8.0 seconds after the instantaneous URE exceeds the 4.42 times              |                 |
|         |                                                                                                   |          | URA bound, and (c) if the integrity status flag is 'on' and an alert is issued to the users no more          |                 |
|         |                                                                                                   |          | than 5.2 seconds after the instantaneous URE exceeds the 5.73 times URA bound. In this context,              |                 |
|         |                                                                                                   |          | an "alert" is defined as any indication or characteristic of the conveying signal, as specified              |                 |
|         |                                                                                                   |          | elsewhere in this document, which signifies to users that the conveying signal may be invalid or             |                 |
|         |                                                                                                   |          | should not be used, such as the health bits not indicating operational-healthy, broadcasting non-            |                 |

| Section<br>Number | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces                                                                                                                                                                                                                                                                                                                                                          | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rationale           |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | standard code, parity error, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 6.2.1.1           | 6.2.1.1 Integrity Assured URA.                                                                                                                                                                                                                                                                                                                                                                                                 | <delete></delete>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 6.2.1.1           | When the integrity assurance monitoring is available, as indicated by the "integrity status flag" being set to "1", the URA value is chosen such that the probability of the "actual" URE exceeding a threshold is met (see section 3.5.3.10 for probability values). The URA value is conveyed to the user in the form of URA index values. The URA index represents a range of values; for integrity assurance applications. |                     | <delete></delete>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See Rationale<br>#5 |
| 6.2.1.1           | 6.2.1.1 User Differential Range Accuracy.                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 6.2.1.1           | User Differential Range Accuracy (UDRA) is a statistical indicator of the GPS ranging accuracy obtainable with a specific signal and SV after the application of the associated differential corrections (DC parameters).                                                                                                                                                                                                      |                     | User Differential Range Accuracy (UDRA) is a statistical indicator of the GPS ranging accuracy obtainable with a specific signal and SV after the application of the associated differential corrections (DC parameters). UDRA provides a conservative RMS estimate of the differential user range errors in the navigation data for that satellite. It includes all errors for which the Space and Control Segments are responsible.                                                                                              | See Rationale<br>#5 |
| 20.3.3.1          | In this context, an "alert" is defined as any indication or characteristic in the conveying signal,<br>as specified elsewhere in this document, which signifies that the conveying signal may be<br>invalid and should not be used, such as, not Operational-Healthy, Non-Standard Code, parity<br>error, etc.                                                                                                                 |                     | In this context, an "alert" is defined as any indication or characteristic of the conveying signal, as specified elsewhere in this document, which signifies to users that the conveying signal may be invalid or should not be used, such as the health bits not indicating operational-healthy, broadcasting non-standard code, parity error, etc.                                                                                                                                                                               | See Rationale<br>#5 |
| 20.3.3.2          | Bit 18 is an "alert" flag. When this flag is raised (bit 18 = "1"), it shall indicate to the standard positioning service (SPS) user (unauthorized user) that the SV URA may be worse than indicated in subframe 1 and that he shall use that SV at his own risk.                                                                                                                                                              |                     | Bit 18 is an "alert" flag. When this flag is raised (bit 18 = "1"), it shall indicate to the standard positioning service (SPS) user (unauthorized user) that the signal URA may be worse than indicated in subframe 1 and that he shall use that SV at his own risk.                                                                                                                                                                                                                                                              | See Rationale<br>#5 |
| 20.3.3.3.1        | The clock parameters describe the SV time scale during the period of validity. The parameters are applicable during the time in which they are transmitted. Beyond that time, they are still applicable; however, the most recent data set should be used since the accuracy degrades over time. The timing information for subframes, pages, and data sets is covered in Section 20.3.4.                                      |                     | The clock parameters describe the SV time scale during the period of validity. The parameters are applicable during the time in which they are transmitted. The timing information for subframes, pages, and data sets is covered in Section 20.3.4.                                                                                                                                                                                                                                                                               | See Rationale<br>#5 |
| 20.3.3.3.1.3      | Bits 13 through 16 of word three shall give the URA index of the SV (reference paragraph 6.2.1) for the standard positioning service user. Except for Block IIR/IIR-M SVs in the Autonav mode, the URA index (N) is an integer in the range of 0 through 15 and has the following relationship to the URA of the SV:                                                                                                           |                     | Bits 13 through 16 of word three shall give the URA index of the SV (reference paragraph 6.2.1) for<br>the standard positioning service user. While the URA may vary over the ephemeris curve fit<br>interval, the URA index (N) in the LNAV message shall correspond to the maximum URA expected<br>over the entire ephemeris curve fit interval. Except for Block IIR/IIR-M SVs in the Autonav mode,<br>the URA index (N) is an integer in the range of 0 through 15 and has the following relationship to<br>the URA of the SV. | See Rationale<br>#5 |

| Section      | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces                              | Proposed | URA Definition Proposed Text                                                                        | Rationale         |
|--------------|----------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|-------------------|
| Number       |                                                                                                    | Heading  |                                                                                                     |                   |
| 20 2 2 2 1 2 | For each LIPA index (N) users may compute a nominal LIPA value (X) as given by:                    |          | For each LIPA index (N) users may compute a nominal LIPA value (X) as given by:                     | GDS antonna       |
| 20.3.3.3.1.3 | For each ORA index (N), users may compute a nominal ORA value (X) as given by:                     |          | For each ora index (N), users may compute a nominal ora value (X) as given by:                      | GPS antenna       |
|              |                                                                                                    |          | • If the value of N is 6 or less, $X = 2^{(1 + N/2)}$ ,                                             | along the         |
|              | • If the value of N is 6 or less, $X = 2^{(1 + N/2)}$ ,                                            |          | (11.2)                                                                                              | hore-sight        |
|              |                                                                                                    |          | • If the value of N is 6 or more, but less than 15, $X = 2^{(N-2)}$ ,                               | bore-signt        |
|              | (N 2)                                                                                              |          | • $N = 15$ shall indicate the absence of an accuracy prediction and shall advise the standard       | discovered        |
|              | • If the value of N is 6 or more, but less than 15, $X = 2^{(N-2)}$ ,                              |          | nositioning service user to use that SV at his own risk                                             | through IPI       |
|              |                                                                                                    |          |                                                                                                     | analysis          |
|              | • $N = 15$ shall indicate the absence of an accuracy prediction and shall advise the               |          | For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters, respectively.                |                   |
|              | standard positioning service user to use that SV at his own rick                                   |          |                                                                                                     | add SV            |
|              | standard positioning service user to use that sv at his own lisk.                                  |          | For Block IIR/IIR-M SVs in the Autonav mode, the URA shall be defined to mean "no better than X     | Antenna           |
|              |                                                                                                    |          | meters", with "X" as defined above for each URA index.                                              | Arrors to list of |
|              | For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters, respectively.               |          | The nominal URA value (X) is suitable for use as a conservative prediction of the RMS signal-in-    | errors that       |
|              |                                                                                                    |          | space (SIS) range errors for accuracy-related purposes in the pseudorange domain (e.g.              |                   |
|              |                                                                                                    |          | measurement de-weighting, receiver autonomous integrity monitoring (RAIM), figure of merit          | cover             |
|              | For Block IIR/IIR-M SVs in the Autonav mode, the URA shall be defined to mean "no better           |          | (FOM) computations). Integrity properties of the URA are specified with respect to the scaled       | cover.            |
|              | than X meters", with "X" as defined above for each URA index.                                      |          | (multiplied by either 4.42 or 5.73 as appropriate) upper bound values of the URA index (see         |                   |
|              |                                                                                                    |          |                                                                                                     |                   |
|              | Integrity properties of the URA are specified with respect to the upper bound values of the        |          | 20.5.5.1).                                                                                          |                   |
|              | URA index (see 20.3.3.1). URA accounts for signal-in-space contributions to user range error       |          | URA accounts for SIS-contributions to user range error which include, but are not limited to, the   |                   |
|              | that include, but are not limited to, the following: the net effect of clock parameter and code    |          | following: LSB representation/truncation error; the net effect of clock correction polynomial error |                   |
|              | phase error in the transmitted signal for single-frequency L1C/A or single-frequency L2C users     |          | and code phase error in the transmitted signal for single-frequency L1C/A or single-frequency L2C   |                   |
|              | who correct the code phase as described in Section 30.3.3.3.1.1.1. as well as the net effect of    |          | users who correct the code phase as described in Section 30.3.3.3.1.1.1; the net effect of clock    |                   |
|              | clock parameter, code phase, and intersignal correction error for dual-frequency L1/L2 and         |          | parameter, code phase, and inter-signal correction error for dual-frequency L1/L2 and L1/L5 users   |                   |
|              | L1/L5 users who correct for group delay and ionospheric effects as described in Section            |          | who correct for group delay and ionospheric effects as described in Section 30.3.3.1.1.2;           |                   |
|              | 30 3 3 3 1 1 2                                                                                     |          | ephemeris error; anisotropic antenna errors; and signal deformation error. URA does not account     |                   |
|              |                                                                                                    |          | for user range error contributions due to the inaccuracy of the broadcast ionospheric data          |                   |
|              |                                                                                                    |          | parameters used in the single-frequency ionospheric model or for other atmospheric effects.         |                   |
| 20 2 4 4     | The start of the transmission interval for each data set corresponds to the beginning of the       |          | The start of the transmission interval for each data set corresponds to the beginning of the surve  | See Pationale     |
| 20.3.4.4     | curve fit interval for the data set. Each data set remains valid for the duration of its curve fit |          | fit interval for the data set. Each data set remains valid for the duration of its transmission     |                   |
|              | interval                                                                                           |          | interval and nominally also remains valid for the duration of its curve fit interval. A data set is | π5                |
|              |                                                                                                    |          | rendered invalid before the and of its surve fit interval when it is superseded by the SV sutting   |                   |
|              |                                                                                                    |          | over to the first data set of a new unload                                                          |                   |
|              |                                                                                                    |          |                                                                                                     |                   |
| 30.3.3       | Each message starts with an 8-bit preamble - 10001011, followed by a 6-bit PRN number of           |          | Each message starts with an 8-bit preamble - 10001011, followed by a 6-bit PRN number of the        | See Rationale     |
|              | the transmitting SV, a 6-bit message type ID with a range of 0 (000000) to 63 (111111), and        |          | transmitting SV, a 6-bit message type ID with a range of 0 (000000) to 63 (111111), and the 17-bit  | #5                |
|              | the 17-bit message time of week (TOW) count. When the value of the message TOW count is            |          | message time of week (TOW) count. When the value of the message TOW count is multiplied by 6,       |                   |
|              | multiplied by 6, it represents SV time in seconds at the start of the next 12-second message.      |          | it represents SV time in seconds at the start of the next 12-second message. An "alert" flag, when  |                   |

| Section<br>Number | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces                                                                                                        | Proposed<br>Heading | URA Definition Proposed Text                                                                                    |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
|                   | An "alert" flag, when raised (bit 38 = "1"), indicates to the user that the SV URA and/or the SV                                                                             |                     | raised (bit 38 = "1"), indicates to the user that the signal URA                                                |
|                   | User Differential Range Accuracy (UDRA) may be worse than indicated in the respective                                                                                        |                     | indicated in the associated message types. For each default                                                     |
|                   | message types. For each default message (Message Type 0), bits 39 through 276 shall be                                                                                       |                     | through 276 shall be alternating ones and zeros and the mes                                                     |
|                   | alternating ones and zeros and the message shall contain a proper CRC parity block.                                                                                          |                     | block.                                                                                                          |
| 30.3.3            |                                                                                                                                                                              |                     | DIRECTION OF DATA FLOW FRC<br>DIRECTION OF DATA FLOW FRC<br>100 BITS                                            |
|                   | DIRECTION OF DATA FLOW FROM SV MSB FIRST                                                                                                                                     |                     | 38<br>   1  9  15  21  39   <sup>52</sup>  55                                                                   |
|                   | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                       |                     | PRN     MESSAGE<br>TOW COUNT*     WNn     top       6     6     17 BITS     13 BITS     11 BI                   |
|                   | 8 BITS     6     6     6     17 BITS     13 BITS     11 BITS     5     11 BITS     19 MSBs       MESSAGE TYPE ID     L1 HEALTH - 1 BIT     L1 HEALTH - 1 BIT     URAge INDEX |                     | MESSAGE TYPE ID<br>PREAMBLE "ALERT" FLAG - 1 BIT<br>L1 HEALTH - 1 BIT<br>L2 HEALTH - 1 BIT<br>L5 HEALTH - 1 BIT |
|                   | PREAMBLE "ALERT" FLAG - 1 BIT L5 HEALTH - 1 BIT                                                                                                                              |                     | DIRECTION OF DATA FLOW FR                                                                                       |
|                   | DIRECTION OF DATA FLOW FROM SV MSB FIRST      100 BITS 4 SECONDS                                                                                                             |                     |                                                                                                                 |
|                   | '<br>  101   108   133   150   173                                                                                                                                           |                     |                                                                                                                 |
|                   | ?A         ?no         ?no         ?Mon                                                                                                                                      |                     | 7 LSBs 25 BITS 17 BITS 23                                                                                       |
|                   | 7 LSBS 25 BITS 17 BITS 23 BITS 26 MSB s                                                                                                                                      |                     | DIBECTION OF DATA FLOW FR                                                                                       |
|                   | DIRECTION OF DATA FLOW FROM SV MSB FIRST      MSB FIRST      MSB FIRST                                                                                                       |                     | ← 100 BITS - 4 SECOND                                                                                           |
|                   |                                                                                                                                                                              |                     | 201 206 239                                                                                                     |
|                   |                                                                                                                                                                              |                     | M <sub>0-n</sub> e <sub>n</sub> w <sub>n</sub>                                                                  |
|                   | 33 BITS 33 BITS 24 BTs                                                                                                                                                       |                     | 33 BITS 33 BITS                                                                                                 |
|                   | Integrity Status Flag - 1 BIT       5 LSB s                                                                                                                                  |                     | 5 LSB s                                                                                                         |
|                   | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12 SECOND MESSAGE                                                                                          |                     | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEX                                                |
|                   | Figure 20.1 Massage Type 10 Enhamorie 1                                                                                                                                      |                     |                                                                                                                 |
|                   | Figure 30-1. Message Type 10 - Ephemens 1                                                                                                                                    |                     | Figure 30-1. Message Type 10 - E                                                                                |
|                   |                                                                                                                                                                              |                     |                                                                                                                 |
|                   |                                                                                                                                                                              |                     |                                                                                                                 |
|                   |                                                                                                                                                                              |                     |                                                                                                                 |
|                   |                                                                                                                                                                              |                     |                                                                                                                 |
|                   |                                                                                                                                                                              |                     |                                                                                                                 |

|                      |                                              |                     | Rationale                   |
|----------------------|----------------------------------------------|---------------------|-----------------------------|
| A compone            | nts mav                                      | be worse than       |                             |
| message (N           | ,<br>Message                                 | Type 0), bits 39    |                             |
| ssage shall (        | contain a                                    | a proper CRC parity |                             |
| U                    |                                              | ,                   |                             |
|                      |                                              |                     | Dationals #1                |
| DM SV ———<br>DS ———— | - MSB FI                                     |                     | Kationale #1-               |
|                      | 1                                            | eo                  | URA <sub>oc</sub> and       |
|                      | +                                            |                     | URA <sub>oe</sub> are       |
| 5                    | L <sub>OE</sub>                              |                     | redefined into              |
|                      | 11 BITS                                      | 19 MSBs             | an elevation-               |
|                      | - URAen INI                                  | DEX                 | dependent                   |
|                      | <b>00</b>                                    |                     | component                   |
|                      |                                              |                     | (URA <sub>ED</sub> ) and a  |
| OM SV                | — MSB FI                                     | AST                 | non-elevation-              |
| S                    |                                              |                     | dependent                   |
|                      | 173                                          |                     | component                   |
| n <sub>o</sub>       |                                              | M <sub>0-n</sub>    | (URA <sub>NED</sub> ). This |
| BITS                 |                                              | 28 MSBs             | will enable                 |
|                      |                                              |                     | users to de-                |
|                      |                                              |                     | weight the                  |
|                      |                                              |                     | elevation-                  |
| OMSV ———<br>DS ————  | - NSB FI                                     |                     | angle-                      |
| 272                  | 2<br>       277                              |                     | dependent                   |
|                      |                                              | 000                 | component                   |
|                      |                                              |                     | with the                    |
|                      | <u>│                                    </u> | 24 BITS             | elevation                   |
| BUT                  | -                                            |                     | angle of the                |
| BITs —               |                                              |                     | SV, resulting in            |
| T 12 SEGOND N        | /IESSAGE                                     |                     | a smaller                   |
|                      |                                              |                     | composite                   |
| -<br>                | 1                                            |                     | URA, in many                |
| -phemens.            | L                                            |                     | cases. A                    |
|                      |                                              |                     | smaller                     |
|                      |                                              |                     | composite                   |
|                      |                                              |                     | URA means                   |
|                      |                                              |                     | higher                      |
|                      |                                              |                     | availability for            |
|                      |                                              |                     | applications                |
|                      |                                              |                     | that have                   |

| Section | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces | Proposed | URA Definition Proposed Text |
|---------|-----------------------------------------------------------------------|----------|------------------------------|
| Number  |                                                                       | Heading  |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |
|         |                                                                       |          |                              |

| Rationale     |
|---------------|
|               |
| requirements  |
| for a minimum |
| level of      |
| accuracy      |
| and/or        |
| integrity. In |
| order to      |
| achieve a     |
| technical     |
| consensus on  |
| how to        |
| proceed       |
| forward with  |
| GPS IIIA      |
| deriving URA  |
| from the      |
| uploaded      |
| covariance,   |
| then the      |
| following     |
| changes were  |
| needed to the |
| user ICDs.    |
|               |

| Section<br>Number | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                       | Proposed<br>Heading                                                                                                                                  | URA Defir                                                 | nition P | roposed   | Text                                                                                                      |                                                                                                   |                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                               |
|-------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|-----------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 30.3.3            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | DIREC<br>10<br>21<br>MESSAGE<br>TOW COUNT*<br>17 BITS<br>PE ID<br>AG - 1 BIT<br>DIREC<br>10 BITS<br>13 BITS<br>DIREC<br>10 BITS<br>13 BITS<br>DIREC<br>10<br>10<br>10<br>1225<br>233<br>% βο βι<br>TS 8 BITS<br>8 BITS<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | CTION OF DATA FI         0 BITS       4         39       50         top       5         11 BITS       BITS         URAoc IN       0         CTION OF DATA FI       0         0 BITS       4         141       ISCLICA         13 BITS       13 BITS         CTION OF DATA FI       4         141       ISCLICA         13 BITS       4         241       249         β2       β         8 BITS       8 BITS | LOW FROM SV<br>SECONDS<br>55 58 61<br>S 11<br>URAcc<br>NDEX<br>LOW FROM SV<br>SECONDS<br>154<br>ISCL2C<br>13 BITS<br>LOW FROM SV<br>SECONDS<br>257<br>33 RESE<br>ITS 20 | MSE<br>72<br>t_oc<br>1 BITS<br>RA <sub>oc2</sub> INDEX - 3 BIT<br>MSE<br>MSE<br>MSE<br>MSE<br>MSE<br>MSE<br>MSE<br>2<br>ERVED<br>ВITS | B FIRST<br>26 BITS<br>3 BITS<br>3 BITS<br>3 artm - 3 MS<br>4 fim - 3 MS<br>18 FIRST<br>180<br>13 BITS<br>3 BITS<br>3 BFIRST<br>277<br>CRC<br>24 BITS | 98<br>98<br>5Bs<br>5Bs<br>193<br>α <sub>0</sub><br>8 BITS |          |           | 9 1<br>PRN 6<br>BITS<br>MESSAC<br>Ξ "ALEF<br>a <sub>f1-n</sub><br>LSBs<br>209<br>α <sub>2</sub><br>8 BITS | 5 21<br>6 T<br>BITS<br>C TYPE ID<br>AT" FLAG -<br>118<br>10 BI<br>217<br>α <sub>3</sub><br>8 BITS | MESSAG<br>OW COUI<br>17 BITS<br>1 BIT<br>1 BIT<br>128<br>128<br>175 1<br>128<br>175 1<br>128<br>175 1<br>1<br>128<br>175 1<br>1<br>128<br>175 1<br>1<br>128<br>175 1<br>1<br>128<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | - DIRECT<br>- DIRECT<br>- DIRECT<br>- DIRECT<br>- DIRECT<br>- DIRECT<br>- 100<br>- 233<br>β1<br>8 BITS | ΓΙΟΝ OF D/<br>BITS           9           top           11 BITS           UI           ΠΟΝ OF D/<br>BITS           141           ISCL10           13 BIT           ΠΟΝ OF D/<br>BITS           241           β2           8 BITS | ATA FLOW<br>50 5<br>BITS<br>BITS<br>ATA FLOW<br>4 SEC<br>154<br>4 SEC<br>154<br>7<br>4 SEC<br>249<br>β <sub>3</sub><br>8 BITS | / FROM S<br>SONDS -<br>5 58 6<br>-<br>5 58 6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
|                   | * MESSAGE TOW COUNT =                                                 | 17 MSB OF ACTUAL TO                                                                                                                                                                                                                                                                | ow COUNT AT STA                                                                                                                                                                                                                                                                                                                                                                                             | art of next 1:<br>0 - Clock, I(                                                                                                                                         | 2-SECOND ME                                                                                                                           | essage<br>oup Delay                                                                                                                                  |                                                           |          | * MESSAGE | TOW CO                                                                                                    | UNT = 17 M<br>F                                                                                   | sb of ac<br>igure 3                                                                                                                                                                                                                                            | ο-3. Με                                                                                                | v count A<br>essage T                                                                                                                                                                                                           | t start                                                                                                                       | of Nex<br>- Clocl                                                                                             |

|                            |                                  |                     |                                        |                | Rationale    |
|----------------------------|----------------------------------|---------------------|----------------------------------------|----------------|--------------|
| sv -                       |                                  | MSB F               | IRST                                   |                | Rationale #1 |
| 51                         |                                  | 72                  |                                        | <b></b><br> 98 |              |
|                            | t <sub>oc</sub>                  |                     | af0-n                                  |                |              |
| 11                         | BITS                             |                     | 26 BITS                                |                |              |
| - UR.<br>RA <sub>ned</sub> | A <sub>NED2</sub> IND<br>1 INDEX | )EX - 3<br>- 3 BITS | BITS<br>S<br>a <sub>f1-n</sub> – 3 MSI | Bs             |              |
| SV -                       |                                  | MSB F               | IRST ———                               |                |              |
|                            | 167                              |                     | 180                                    | 193            |              |
|                            | ISC                              | L515                | ISC <sub>L5Q5</sub>                    | α0             |              |
| 3                          | 13 B                             | ITS                 | 13 BITS                                | 8 BITS         |              |
| sv -                       |                                  | MSB F               | -IRST                                  |                |              |
|                            |                                  | 107                 | 7                                      |                |              |
| ESF                        | RVED                             |                     | CBC                                    |                |              |
| 20 E                       | BITS                             |                     | 24 BITS                                |                |              |
| (T 12                      |                                  |                     | SAGE                                   |                |              |
| ж, Ι                       |                                  | Gro                 | up Delay                               |                |              |

| Section<br>Number | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces                                                                                                                                                                                                                                                                                                                                                                               | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.3.3            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                              |                     | DIRECTION OF DATA FLOW FROM SV -<br>100 BITS 4 SECONDS<br>1 9 15 21 38<br>38<br>39 50 55 58 61<br>100 BITS 5 55 68 61<br>100 COUNT*<br>11 BITS BITS 11 B<br>MESSAGE TYPE ID<br>PREAMBLE "ALERT" FLAG - 1 BIT<br>URA <sub>NED</sub> INDEX<br>100 BITS 4 SECONDS<br>100 BITS 4 SECONDS<br>100 BITS 4 SECONDS<br>100 BITS 4 SECONDS<br>101 118 128 141 149<br>Reduced Alm<br>Packet 1<br>17 LSBs 10 BITS 13 BITS 8 BITS 31 BITS |
|                   | DIRECTION OF DATA FLOW FROM SV       MSB FIRST         100 BITS       4 SECONDS         201       211         Reduced Almanac       273         Packet 3       31 BITS         10 LSBs       31 BITS         31 BITS       31 BITS         Reduced Almanac Packet 2       RESERVED         * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12-SECOND MESSAGE         Figure 30-4.       Message Type 31 - Clock & Reduced Almanac |                     | DIRECTION OF DATA FLOW FROM SV -<br>100 BITS 4 SECONDS<br>201 211 242<br>Reduced Almanac Packet 3<br>10 LSBs 31 BITS 31 BITS<br>Reduced Almanac Packet 2<br>* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12-5<br>Figure 30-4. Message Type 31 - Clock                                                                                                                                                   |



| Section<br>Number | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Proposed<br>Heading | URA Definition Proposed Text                                                                        |         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------|---------|
| 30.3.3            | 30.3.3       DIRECTION OF DATA FLOW FROM SV       MSB FIRST         1       9       15       21       138         100 BITS       4 SECONDS       4       172         1       9       15       21       18         1       9       15       21       18         1       9       15       21       18         1       9       15       21       19         15       11       15       11       17         10       BITS       17       BITS       11       BITS         11       BITS       17       BITS       11       BITS       26       BITS         11       BITS       BITS       17       BITS       11       BITS       26       BITS         11       BITS       BITS       17       BITS       11       BITS       26       BITS         10       MESSAGE       TYPE ID       URAoc INDEX       3       BITS       attan - 3       MSBs         PREAMBLE       "ALERT" FLAG - 1       BIT       URAoc INDEX       3       BITS       attan - 3       MSBs         101       118       128       144       < |                           | B FIRST<br>26 BITS<br>BITS<br>S<br>a <sub>t1-n</sub> – 3 MSBs<br>B FIRST<br>180<br>PM-Y<br>21 BITS |              | DIRECTION OF DATA FLOW FROM SV<br>100 BITS 4 SECONDS<br>1 9 15 21 38<br>39 50 55 58 61<br>1 9 15 21 $t_{op}$ 5<br>8 BITS BITS 17 BITS 11 BITS BITS 1<br>MESSAGE TYPE ID<br>PREAMBLE "ALERT" FLAG - 1 BIT URANED INDEX<br>100 BITS 4 SECONDS<br>100 BITS 4 SECONDS<br>100 BITS 4 SECONDS<br>100 BITS 21 $t_{op}$ 5<br>11 BITS BITS 1<br>11 BITS 1<br>15 1 1<br>10 BITS 4 SECONDS<br>100 BITS 4 SECONDS<br>101 118 128 144 1<br>11 BITS 12 1BITS 1<br>11 BITS 21 BITS 1<br>11 BITS 21 BITS 1<br>11 BITS 21 BITS 1<br>15 1 1<br>16 BITS 21 BITS 1<br>17 LSBS 10 BITS 16 BITS 21 BITS 1<br>10 BITS 21 BITS 1<br>11 BITS 1<br>11 BITS 1<br>10 BITS 21 BITS 1<br>10 | 1<br>               |                                                                                                     |         |
|                   | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DIRECTI                   | ON OF DATA FLOW FROM S<br>ITS ————————————————————————————————————                                 | V MSE        | B FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | DIRECTION OF DATA FLOW FROM SV<br>DIRECTION OF DATA FLOW FROM SV<br>4 SECONDS                       | / -<br> |
|                   | 201 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 216                       | 247                                                                                                | 266 2        | 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | PM-Υ ΔUT1 ΔUT1                                                                                      | +       |
|                   | PM-Ŷ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΔUT1                      | ∆UT1                                                                                               | RESERVED     | CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 15 BITS 31 BITS 19 BITS                                                                             |         |
|                   | 15 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31 BITS                   | 19 BITS                                                                                            | 11 BITS      | 24 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                                                                     |         |
|                   | * MESSAGE TOW COU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NT = 17 MSB OF ACTUAL TOW | COUNT AT START OF NEXT<br>Message Type 32 - Cl                                                     | 12-SECOND ME | SSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT<br>Figure 30-5. Message Type 32 - | 12<br>C |



| Section<br>Number | IS-GPS-200 Rev E Navstar GPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Space Segment/Navig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ation Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er Interfaces                                                                                                                                       |                                                                     | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 30.3.3            | 1       9       15       21         PRN       MESS         6       6         8 BITS       BITS       BITS         MESSAGE TYPE ID         PREAMBLE       "ALERT" FLAG - 1 BIT         101       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118         111       118 | DIRECTION OF DATA FLC           100 BITS         4 SI           38         39         50           SAGE         top         5           DIRECTION OF DATA FLC         5         BITS           DIRECTION OF DATA FLC         0         0           DIRECTION OF DATA FLC         100 BITS         4 SI           28         144         4 SI           16 BITS         13 BITS         13 BITS           DIRECTION OF DATA FLC         100 BITS         4 SI           28         144         4 SI           16 BITS         13 BITS         13 BITS           ADIRECTION OF DATA FLC         100 BITS         4 SI | W FROM SV           ECONDS           55         58           61           11           UR           URA <sub>oc1</sub> VEX           W FROM SV           ECONDS           117           Acn           Acn      < | MSB FIRST 72 toc BITS 26 Aoc2 INDEX - 3 BITS INDEX - 3 BITS INDEX - 3 BITS Acc2 INDEX - 3 BITS INDEX - 10 BITS 1172 tLS 1172 tLS 116 BITS MSB FIRST | 98<br>aton<br>BITS<br>1-n - 3 MSBs<br>188<br>188<br>WNot<br>13 BITS |                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                        |  |  |  |
|                   | 201         214         218         226           WNLsF         DN         ΔtLsF         4           13 BITS         BITS         8 BITS         8           * MESSAGE TOW COUNT = 17 MSB OF         Figure 3                                                                                                                                                                                                                                                                                                                                                                                                   | RESERVED<br>51 BITS<br>F ACTUAL TOW COUNT AT STAR<br>30-6. Message Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RT OF NEXT 12<br>e 33 - Cloo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 277<br>2-SECOND MESSAGE                                                                                                                             | CRC<br>24 BITS                                                      |                     | 4 SECONDS         201       214       218       226         WNLSF       DN       ΔtLSF       RESERVED         13 BITS       BITS       8 BITS       51 BITS         * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12         Figure 30-6. |  |  |  |





|                         |                    |                   |   | Rationale    |
|-------------------------|--------------------|-------------------|---|--------------|
|                         |                    |                   |   |              |
|                         |                    |                   |   | Rationale #1 |
| —— M                    | ISB FIRST          |                   |   |              |
| 72                      | 2                  | 98                |   |              |
| oc                      | a                  | f0-n              |   |              |
| ITS                     | 26                 |                   |   |              |
| NED2 INDEX<br>INDEX - 3 | ( - 3 BITS<br>BITS |                   |   |              |
|                         | an                 | -n - 5 Wolls      |   |              |
| —— M                    | SB FIRST           |                   |   |              |
|                         |                    | 185               |   |              |
|                         |                    | EDC               |   |              |
| S                       |                    | 16 MSBs           |   |              |
|                         |                    |                   |   |              |
| M                       | ISB FIRST          |                   |   |              |
|                         |                    |                   |   |              |
|                         | 277                |                   |   |              |
|                         |                    | CRC               |   |              |
|                         |                    | 24 BITS           |   |              |
|                         |                    |                   |   |              |
|                         | MESSAG             | E                 |   |              |
| 2-SECOND                | MESSAG             | E                 |   |              |
|                         |                    |                   |   |              |
|                         |                    |                   |   |              |
| Clock &                 | Differ             | ential Correction | า |              |

| Section<br>Number | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces                                                              | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.3.3            | DIRECTION OF DATA FLOW FROM SVMSB FIRST                                                                                            |                     | DIRECTION OF DATA FLOW FROM SV -<br>100 BITS 4 SECONDS<br>1 9 15 21 38<br>39 50 55 58 61<br>PRN 6 6 TOW COUNT*<br>8 BITS BITS BITS 17 BITS 11 1<br>MESSAGE TYPE ID<br>PREAMBLE "ALERT" FLAG - 1 BIT URANED<br>DIRECTION OF DATA FLOW FROM SV -<br>100 BITS 4 SECONDS<br>101 118 128 144 157 160<br>101 118 128 144 157 160<br>101 118 128 144 157 160<br>101 118 16 BITS 13 BITS 16 E<br>GNSS ID - 3 BITS<br>201<br>RESERVED<br>76 BITS |
|                   | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12-SECOND MESSAGE<br>Figure 30-8. Message Type 35 - Clock & GGTO |                     | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12<br>Figure 30-8. Message Typ                                                                                                                                                                                                                                                                                                                                        |



| Section | IS-GPS-200 Rev E                                                                                                                                                                                    | Navstar                                                                                     | GPS Space Segment/Navigation User Interfaces                                                                                                                                                                                                                                                                                               | Proposed | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number  |                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                                                                                                                            | Heading  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30.3.3  | 1       9       15         1       9       15         8       BITS       BITS         MESSAGE       PREAMBLE       "ALERT         101       ann       17         101       ann       17         201 | 21<br>6<br>TS 17<br>TYPE ID<br>"FLAG - 1 BI<br>118<br>10 BITS<br>TEX1<br>NT = 17 MSB<br>Fig | DIRECTION OF DATA FLOW FROM SV MSB FIRST<br>100 BITS 4 SECONDS<br>SAGE<br>139<br>50<br>55<br>58<br>61<br>72<br>400-0<br>11 BITS<br>26 BITS<br>11 BITS<br>26 BITS<br>4 SECONDS<br>0 URA <sub>oc</sub> INDEX - 3 BITS<br>0 URA <sub>oc</sub> INDEX - 3 BITS<br>100 BITS<br>4 SECONDS<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128 |          | DIRECTION OF DATA FLOW FROM<br>100 BITS 4 SECONDS<br>1 9 15 21 ESSAGE<br>1 8 BITS BITS 17 BITS 17 BITS 17 BITS<br>MESSAGE TYPE ID<br>PREAMBLE 'ALERT' FLAG - 1 BIT URANED INDEX<br>DIRECTION OF DATA FLOW FROM<br>100 BITS 4 SECONDS<br>101 118 128<br>101 118 73 MS<br>101 118 128<br>101 118 73 MS<br>100 BITS 73 MS<br>201 TEXT MESSAGE (18 8-BIT CHAR)<br>71 LSBs<br>TEXT<br>MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NES<br>Figure 30-9. Message Type 36 - C |
|         |                                                                                                                                                                                                     | Fig                                                                                         | ure 30-9. Message Type 36 - Clock & Text                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Section                                                        | on IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces Pro                   |                   |                                |            |            | terfaces                     | Proposed | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rationale       |  |  |  |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------|--------------------------------|------------|------------|------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Number                                                         |                                                                                                |                   |                                |            |            |                              | пеасілд  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
| 30.3.3                                                         |                                                                                                | DIRECT            | 10N OF DATA FLOW               | FROM SV -  | —— M       | SB FIRST                     |          | DIRECTION OF DATA FLOW FROM SV —— MSB FIRST ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rationale #1    |  |  |  |  |
|                                                                |                                                                                                | 38                | BI 13                          |            | 1          |                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                | 1 9 15 21<br>PRN                                                                               | MESSAGE           | ) 50 55<br>+                   | 5 58 61    | + /2       | 98                           |          | PRN         MESSAGE         tm         tm <thtm< th="">         tm         tm         <t< td=""><td></td></t<></thtm<> |                 |  |  |  |  |
|                                                                |                                                                                                | TOW COUNT*        | <sup>lop</sup><br>11 DITS BITS | 11         |            |                              |          | 6     6     5       8 BITS     BITS     17 BITS       11 BITS     BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |  |
|                                                                |                                                                                                |                   |                                |            |            |                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                | MESSAGE TYPE I<br>PREAMBLE "ALERT" FLAG                                                        | ID<br>- 1 BIT     |                                |            | INDEX-3B   | an- 3 MSBs                   |          | MESSAGE TYPE ID     URA <sub>NED1</sub> INDEX - 3 BITS       PREAMBLE     "ALERT" FLAG - 1 BIT       URA <sub>NED</sub> INDEX     ar1-n - 3 MSBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
|                                                                |                                                                                                |                   |                                |            |            |                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                |                                                                                                | DIRECT            | 10N OF DATA FLOW               | FROM SV -  | ——— M      | SB FIRST                     |          | ← 100 BITS ← 4 SECONDS ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |  |
|                                                                |                                                                                                |                   |                                |            |            |                              |          | 101 118 128 141 149 155 158 169 180 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |  |
|                                                                | 101 118                                                                                        | 128 1-            | t DDN                          | 001<br>P   | δ          |                              |          | $a_{i1 \cdot n}$ $a_{i2 \cdot n}$ $WN_{a \cdot n}$ $t_{oa}$ $PRN_{a}$ $e$ $\delta_{i}$ $\mathring{\Omega}$ $\sqrt{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |  |  |  |
|                                                                | 17 LSBs 10 B                                                                                   |                   |                                | 11 BITS    | 11 BITS    |                              |          | 17 LSBs 10 BITS 13 BITS 8 BITS 6 BITS 11 BITS 11 BITS 11 BITS 10 MSBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |  |  |  |
|                                                                |                                                                                                | L1 H              |                                |            |            |                              |          | L1 HEALTH – 1 BIT –<br>L2 HEALTH – 1 BIT –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |  |  |  |  |
|                                                                | $L1 HEALIH - 1 BII \rightarrow$ $L2 HEALTH - 1 BII \rightarrow$                                |                   |                                |            |            |                              |          | L5 HEALTH – 1 BIT – – – – – – – – – – – – – – – – – – –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |  |
|                                                                |                                                                                                |                   |                                |            | N          |                              |          | DIRECTION OF DATA FLOW FROM SV MSB FIRST      100 BITS 4 SECONDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
| ■ DIFECTION OF DATA FLOW FROM SV =<br>■ 100 BITS — 4 SECONDS — |                                                                                                |                   |                                |            |            | 201 208 224 240 256 267 277  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                | 201 208                                                                                        | 224               | 240 2                          | 256        | 267        | 277                          |          | $\sqrt{A}$ $\Omega_0$ $\omega$ $M_0$ $a_{r_0}$ $a_{r_1}$ CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |  |  |
|                                                                | $\sqrt{\mathrm{A}}$ $\Omega_0$                                                                 | ω                 | Mb                             | $a_{f0}$   | $a_{f1}$   | CRC                          |          | 7 LSBs         16 BITS         16 BITS         16 BITS         11 BITS         10 BITS         24 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |  |
|                                                                | 7 LSBs 16 BITS                                                                                 | 16 BITS           | 16 BITS                        | 11 BITS    | 10 BITS    | 24 BITS                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                |                                                                                                |                   |                                |            |            |                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                |                                                                                                |                   |                                |            |            |                              |          | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12-SECOND MESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |  |  |  |
|                                                                | * MESSAGE TOW COUNT = 17                                                                       | MSB OF ACTUAL TOW | COUNT AT START                 | OF NEXT 12 | 2-SECOND N | NESSAGE                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                |                                                                                                |                   |                                |            |            |                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                | Figu                                                                                           | ire 30-10. M      | essage Type 3                  | 7 - Clock  | k & Midi   | Almanac                      |          | Figure 30-10. Message Type 37 - Clock & Midi Almanac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |
| 20 2 2 1 1                                                     | The enhameric param                                                                            | ators in the me   | ccago tupo 10                  | and two    | o 11 doc   | criba tha arbit of tha       |          | The ophemoric parameters in the message type 10 and type 11 describe the orbit of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pationalo #1    |  |  |  |  |
| 50.5.5.1.1                                                     | transmitting SV during                                                                         | the curve fit in  | ssage type 10                  | e hours    | The no     | minal transmission interv    | val      | transmitting SV during the curve fit interval of three hours. The nominal transmission interval is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rationale #1, , |  |  |  |  |
|                                                                | is two hours, and shall                                                                        | coincide with t   | the first two h                | ours of t  | the curv   | e fit interval. The period   | of       | two hours, and shall coincide with the first two hours of the curve fit interval. The predicted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |  |  |
|                                                                | applicability for epher                                                                        | neris data coinc  | cides with the                 | entire tl  | hree-hou   | ur curve fit interval. Table | e        | period of applicability for ephemeris data coincides with the entire three-hour curve fit interval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |  |  |  |
|                                                                | 30-I gives the definition                                                                      | n of the orbital  | parameters u                   | using ter  | minolog    | y typical of Keplerian       |          | Table 30-I gives the definition of the orbital parameters using terminology typical of Keplerian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
|                                                                | orbital parameters; it                                                                         | is noted, howe    | ver, that the t                | ransmit    | ted para   | meter values are express     | ed       | orbital parameters; it is noted, however, that the transmitted parameter values are expressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |  |  |  |  |
|                                                                | such that they provide                                                                         | the best trajec   | ctory fit in Eart              | th-Cente   | ered, Ear  | th-Fixed (ECEF) coordinat    | tes      | such that they provide the best trajectory fit in Earth-Centered, Earth-Fixed (ECEF) coordinates for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |
|                                                                | for each specific fit interval. The user shall not interpret intermediate coordinate values as |                   |                                |            |            | ate coordinate values as     |          | each specific fit interval. The user shall not interpret intermediate coordinate values as pertaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |  |  |  |
|                                                                | pertaining to any conv                                                                         | entional coord    | inate system.                  |            |            |                              |          | to any conventional coordinate system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |  |
| 30.3.3.1.1                                                     | N/A                                                                                            |                   |                                |            |            |                              |          | The t <sub>oe</sub> term shall provide the user with a convenient means for detecting any change in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rationale #1,   |  |  |  |  |
|                                                                |                                                                                                |                   |                                |            |            |                              |          | ephemeris representation parameters. The $t_{oe}$ is provided in both message type 10 and 11 for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |  |

| Section<br>Number | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proposed<br>Heading             | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rationale                     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | purpose of comparison with the $t_{oc}$ term in message type 30 - 37. Whenever these three terms do not match, a data set cutover has occurred and new data must be collected. The timing of the $t_{oe}$ and constraints on the $t_{oc}$ and $t_{oe}$ are defined in paragraph 30.3.4.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rationale #2                  |
| 30.3.3.1.1        | Any change in the Message Type 10 and 11 ephemeris data will be accomplished with a simultaneous change in the $t_{oe}$ value. The CS (Block IIR-M/IIF) and SS (Block III) will assure that the $t_{oe}$ value, for at least the first data set transmitted by an SV after an upload, is different from that transmitted prior to the cutover. See Section 20.3.4.5 for additional information regarding $t_{oe}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | Any change in the message type 10 and 11 ephemeris data will be accomplished with a simultaneous change in the $t_{oe}$ value. The CS will assure the $t_{oe}$ value for Block IIR-M/IIF and SS will assure the $t_{oe}$ value for Block III, for at least the first data set transmitted by an SV after an upload, is different from that transmitted prior to the cutover. See Section 30.3.4.5 for additional information regarding $t_{oe}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rationale #1,<br>Rationale #2 |
|                   | The CNAV message will contain information that allows users to operate when integrity is assured. This is accomplished using an integrity assured URA value in conjunction with an integrity status flag. The URA value is the RSS of URAoe and URAoc; URA is integrity assured to the enhanced level only when the integrity status flag is "1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | The CNAV messages-contain information that allows users to take advantage of situations when integrity is assured to the enhanced level. This is accomplished using a composite integrity assured URA value in conjunction with an integrity status flag. The composite integrity assured URA (IAURA) value is the RSS of an elevation-dependent function of the upper bound value of the URA <sub>ED</sub> component and the upper bound value of the URA <sub>NED</sub> component. The composite IAURA value is assured to the enhanced level only when the integrity status flag is "1"; otherwise the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
|                   | Bit 272 of Message Type 10 is the Integrity Status Flag (ISF). A "0" in bit position 272 indicates that the conveying signal is provided with the legacy level of integrity assurance. That is, the probability that the instantaneous URE of the conveying signal exceeds 4.42 times the upper bound value of the current broadcast URA index, for more than 5.2 seconds, without an accompanying alert, is less than 1E-5 per hour. A "1" in bit-position 272 indicates that the conveying signal is provided with an enhanced level of integrity assurance. That is, the probability that the instantaneous URE of the conveying signal exceeds 5.73 times the upper bound value of the current broadcast URA index, for more than 5.2 seconds, without an accompanying alert, is less than 1E-8 per hour. The probabilities associated with the nominal and lower bound values of the current broadcast URA index are not defined. |                                 | Bit 272 of Message Type 10 is the Integrity Status Flag (ISF). A "0" in bit position 272 indicates that the conveying signal is provided with the legacy level of integrity assurance. That is, the probability that the instantaneous URE of the conveying signal exceeds 4.42 times the current broadcast IAURA value, for more than 5.2 seconds, without an accompanying alert, is less than 1E-5 per hour. A "1" in bit-position 272 indicates that the conveying signal is provided with an enhanced level of integrity assurance. That is, the probability that the instantaneous URE of the conveying signal is provided with an enhanced level of integrity assurance. That is, the probability that the instantaneous URE of the conveying signal exceeds 5.73 times the current broadcast IAURA value, for more than 5.2 seconds, without an accompanying alert, is less than 1E-8 per hour. The probabilities associated with the nominal and lower bound values of the current broadcast URA <sub>ED</sub> index, URA <sub>NED</sub> indexes, and related URA values are not defined. |                               |
|                   | In this context, an "alert" is defined as any indication or characteristic in the conveying signal, as specified elsewhere in this document, which signifies that the conveying signal may be invalid and should not be used, such as, not Operational-Healthy, Non-Standard Code, parity error, etc. In this context, the term URA refers to the composite URA, calculated as the root-sum-squared of the individual URA components in the conveying signal.<br>Bit 273 of Message Type 10 indicates the phase relationship between L2C and L2P(Y) as specified in section 3.3.1.5.1.                                                                                                                                                                                                                                                                                                                                                 |                                 | In this context, an "alert" is defined as any indication or characteristic of the conveying signal, as specified elsewhere in this document, which signifies to users that the conveying signal may be invalid or-should not be used, such as the health bits not indicating operational-healthy, broadcasting non-standard code-parity error, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| 30.3.3.1.1.4      | 30.3.3.1.1.4 SV Accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elevation-<br>Dependent<br>(ED) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |

| Section<br>Number | IS-GPS-200 Rev E Nav                                                                                                                                        | star GPS Space S                                                                                                                                | Segment/Naviga                                                                                                                        | tion User Interfaces                                                                                                                                                                                                         | Proposed<br>Heading | URA Definition Pro                                                                                                                                                                    | posed Text                                     |                                                            | Rationale    |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|--------------|
|                   |                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                              | Accuracy            |                                                                                                                                                                                       |                                                |                                                            |              |
| 30.3.3.1.1.4      | Bits 66 through 70 of f<br>(URA <sub>oe</sub> ) index of the S<br>the ephemeris-related<br>ephemeris message c<br>ephemeris message c<br>to the maximum URA | message type 10<br>V for the standa<br>d user range accu<br>urve fit interval.<br>urve fit interval,<br><sub>oe</sub> expected over             | ) shall contain the<br>rd positioning ser<br>uracy index of the<br>While the epher<br>the URA <sub>oe</sub> index<br>the entire curve | e ephemeris User Range Accuracy<br>rvice user. URA <sub>oe</sub> index shall provide<br>e SV as a function of the current<br>neris-related URA may vary over the<br>(N) in message type 10 shall correspond<br>fit interval. |                     | Bits 66 through 70 c<br>Range Accuracy (UR<br>provide the ED-relat<br>URA may vary over<br>index (N) in message<br>ephemeris curve fit<br>the edge of the SV f<br>the SV along the SV | Rationale #1                                   |                                                            |              |
| 30.3.3.1.1.4      | The URA <sub>oe</sub> index is a si<br>following relationship                                                                                               | e URA <sub>oe</sub> index is a signed, two's complement integer in the range of +15 to -16 and has the owing relationship to the ephemeris URA: |                                                                                                                                       |                                                                                                                                                                                                                              |                     | The URA <sub>ED</sub> index is a following relationsh                                                                                                                                 | a signed, two's compleme<br>nip to the ED URA: | nt integer in the range of +15 to -16 and has the          | Rationale #1 |
|                   | <u>URA<sub>oe</sub> Index</u>                                                                                                                               | <u>URA<sub>oe</sub> (meter</u>                                                                                                                  | <u>rs)</u>                                                                                                                            |                                                                                                                                                                                                                              |                     | <u>URA<sub>ED</sub> Index</u>                                                                                                                                                         | <u>URA<sub>ED</sub> (mete</u>                  | ers)                                                       |              |
|                   | 15                                                                                                                                                          | 6144.00                                                                                                                                         | < URA <sub>oe</sub>                                                                                                                   |                                                                                                                                                                                                                              |                     | 15                                                                                                                                                                                    | 6144.00 < L                                    | JRA <sub>ED</sub> (or no accuracy prediction is available) |              |
|                   | 14                                                                                                                                                          | 3072.00                                                                                                                                         | < URA <sub>oe</sub>                                                                                                                   | ≤ 6144.00                                                                                                                                                                                                                    |                     | 14                                                                                                                                                                                    | 3072.00 < L                                    | $JRA_{ED} \leq 6144.00$                                    |              |
|                   | 13                                                                                                                                                          | 1536.00                                                                                                                                         | < URA <sub>oe</sub>                                                                                                                   | ≤ 3072.00                                                                                                                                                                                                                    |                     | 13                                                                                                                                                                                    | 1536.00 < U                                    | JRA <sub>ED</sub> ≤ 3072.00                                |              |
|                   | 12                                                                                                                                                          | 768.00 <                                                                                                                                        | $URA_{oe} \leq$                                                                                                                       | 1536.00                                                                                                                                                                                                                      |                     | 12                                                                                                                                                                                    | 768.00 < URA <sub>ED</sub> ≤                   | s 1536.00                                                  |              |
|                   | 11                                                                                                                                                          | 384.00 <                                                                                                                                        | $URA_{oe} \leq$                                                                                                                       | 768.00                                                                                                                                                                                                                       |                     | 11                                                                                                                                                                                    | 384.00 < URA <sub>ED</sub> ≤                   | 5 768.00                                                   |              |
|                   | 10                                                                                                                                                          | 192.00 <                                                                                                                                        | $URA_{oe} \leq$                                                                                                                       | 384.00                                                                                                                                                                                                                       |                     | 10                                                                                                                                                                                    | $192.00 < URA_{ED} \leq$                       | 384.00                                                     |              |
|                   | 9                                                                                                                                                           | 96.00 <                                                                                                                                         | $URA_{oe} \leq$                                                                                                                       | 192.00                                                                                                                                                                                                                       |                     | 9                                                                                                                                                                                     | $96.00 < URA_{ED} \leq$                        | 192.00                                                     |              |
|                   | 8                                                                                                                                                           | 48.00 <                                                                                                                                         | $URA_{oe} \leq$                                                                                                                       | 96.00                                                                                                                                                                                                                        |                     | 8                                                                                                                                                                                     | $48.00 < URA_{ED} \leq$                        | 96.00                                                      |              |
|                   | 7                                                                                                                                                           | 24.00 <                                                                                                                                         | $URA_{oe} \leq$                                                                                                                       | 48.00                                                                                                                                                                                                                        |                     | 7                                                                                                                                                                                     | $24.00 < URA_{ED} \leq$                        | 48.00                                                      |              |
|                   | 6                                                                                                                                                           | 13.65 <                                                                                                                                         | $URA_{oe} \leq$                                                                                                                       | 24.00                                                                                                                                                                                                                        |                     | 6                                                                                                                                                                                     | $13.65 < URA_{ED} \leq$                        | 24.00                                                      |              |
|                   | 5                                                                                                                                                           | 9.65 <                                                                                                                                          | $URA_{oe} \leq$                                                                                                                       | 13.65                                                                                                                                                                                                                        |                     | 5                                                                                                                                                                                     | 9.65 < URA <sub>ED</sub> ≤                     | 13.65                                                      |              |
|                   | 4                                                                                                                                                           | 6.85 <                                                                                                                                          | $URA_{oe} \leq$                                                                                                                       | 9.65                                                                                                                                                                                                                         |                     | 4                                                                                                                                                                                     | $6.85 < URA_{ED} \leq$                         | 9.65                                                       |              |
|                   | 3                                                                                                                                                           | 4.85 <                                                                                                                                          | $URA_{oe} \leq$                                                                                                                       | 6.85                                                                                                                                                                                                                         |                     | 3                                                                                                                                                                                     | $4.85 < URA_{ED} \leq$                         | 6.85                                                       |              |
|                   | 2                                                                                                                                                           | 3.40 <                                                                                                                                          | $URA_{oe} \leq$                                                                                                                       | 4.85                                                                                                                                                                                                                         |                     | 2                                                                                                                                                                                     | $3.40 < URA_{ED} \leq$                         | 4.85                                                       |              |

#### IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces **URA Definition Proposed Text** Section Proposed Number Heading $2.40 < URA_{ED} \leq$ 3.40 1 2.40 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 3.40 1 0 $1.70 < URA_{ED} \leq$ 2.40 0 1.70 < $URA_{oe} \leq$ 2.40 $1.20 < URA_{ED} \leq$ -1 1.70 -1 1.20 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 1.70 -2 $0.85 < URA_{ED} \leq$ 1.20 -2 0.85 < $URA_{oe} \leq$ 1.20 -3 $0.60 < URA_{ED} \leq$ 0.85 0.60 -3 < $URA_{oe} \leq$ 0.85 $0.43 < URA_{ED} \leq$ -4 0.60 0.43 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.60 -4 -5 $0.30 < URA_{ED} \leq$ 0.43 0.30 < $URA_{oe} \leq$ 0.43 -5 -6 $0.21 < URA_{ED} \leq$ 0.30 0.21 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.30 -6 -7 $0.15 < URA_{ED} \leq$ 0.21 0.15 < $URA_{oe} \leq$ 0.21 -7 $0.11 < URA_{ED} \leq$ -8 0.15 0.11 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.15 -8 -9 $0.08 < URA_{ED} \leq$ 0.11 0.08 < $\mathsf{URA}_{\mathsf{oe}} \leq$ -9 0.11 -10 $0.06 < URA_{ED} \leq$ 0.08 0.06 < $URA_{oe} \leq$ 0.08 -10 -11 $0.04 < URA_{ED} \leq$ 0.06 0.04 < $URA_{oe} \leq$ -11 0.06 -12 $0.03 < URA_{FD} \leq$ 0.04 0.03 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.04 -12 -13 $0.02 < URA_{ED} \leq$ 0.03 0.02 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.03 -13 $0.01 < URA_{ED} \leq$ 0.02 -14 0.01 < $URA_{oe} \leq$ 0.02 -14 URA<sub>ED</sub> ≤ -15 0.01 -15 $URA_{oe} \leq$ 0.01 -16 No accuracy prediction available-use No accuracy prediction available-use at own risk -16 For each URA<sub>ED</sub> index (N), users may compute a nominal URA • If the value of N is 6 or less, but more than -16, $X = 2^{(1+1)}$ Integrity properties of the URA are specified with respect to the upper bound values of the URA index (see 20.3.3.1). • If the value of N is 6 or more, but less than 15, $X = 2^{(N-2)}$ • N = -16 or N = 15 shall indicate the absence of an accura standard positioning service user to use that SV at his own ris

|                                         | Rationale |
|-----------------------------------------|-----------|
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
|                                         |           |
| e at own risk                           |           |
| A <sub>ED</sub> value (X) as given by:  |           |
| N/2)                                    |           |
| )<br>,                                  |           |
| acy prediction and shall advise the sk. |           |

| Section | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces | Proposed | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rationale |
|---------|-----------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number  |                                                                       | Heading  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|         |                                                                       |          | For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|         |                                                                       |          | The nominal URA <sub>ED</sub> value (X) is suitable for use as a conservative prediction of the RMS ED range<br>errors for accuracy-related purposes in the pseudorange domain (e.g., measurement deweighting,<br>RAIM, FOM computations). Integrity properties of the IAURA <sub>ED</sub> are specified with respect to the<br>scaled (multiplied by either 4.42 or 5.73 as appropriate) upper bound values of the broadcast<br>URA <sub>ED</sub> index (see 30.3.3.1.1).<br>For the nominal URA <sub>ED</sub> value and the IAURA <sub>ED</sub> value, users may compute an adjusted URA <sub>ED</sub> value<br>as a function of SV elevation angle (E) as follows: |           |
|         |                                                                       |          | Adjusted IAURA <sub>ED</sub> = IAURA <sub>ED</sub> (sin(E+90 degrees))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|         |                                                                       |          | URA <sub>ED</sub> and IAURA <sub>ED</sub> account for SIS-contributions to user range error which include, but are not<br>limited to, the following: LSB representation/truncation error, alongtrack ephemeris errors, and<br>crosstrack ephemeris errors. URA <sub>ED</sub> and IAURA <sub>ED</sub> do not account for user range error contributions<br>due to the inaccuracy of the broadcast ionospheric data parameters used in the single-frequency<br>ionospheric model or for other atmospheric effects.                                                                                                                                                      |           |

| Section<br>Number | IS-GPS-200 Rev           | E Navstar GPS Space Segm                                                                                                                     | nent/Navig                                                                                                            | ation Use                                                                          | r Interface                                                | S                             | Proposed<br>Heading | URA Definition Proposed Text |                                                                                                                                              |                                                                                               |                                                                                     |                                                              |                                            | Rationale |
|-------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------|---------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|-----------|
| 30.3.3.1.3        |                          | Table 30-I. Message Ty                                                                                                                       | pes 10 and 11                                                                                                         | Parameters                                                                         | (1 of 2)                                                   |                               |                     |                              |                                                                                                                                              | Rationale #1                                                                                  |                                                                                     |                                                              |                                            |           |
|                   |                          | Parameter                                                                                                                                    | Scale         Scale           No. of         Factor         Effective           Bits**         (LSB)         Range*** |                                                                                    | Units                                                      |                               | Parameter           |                              | No. of<br>Bits**                                                                                                                             | Scale<br>Factor<br>(LSB)                                                                      | Effective<br>Range***                                                               | Units                                                        |                                            |           |
|                   | WN                       | Week No.                                                                                                                                     | 13                                                                                                                    | 1                                                                                  |                                                            | weeks                         |                     | WN                           | Week No.                                                                                                                                     | 13                                                                                            | 1                                                                                   |                                                              | weeks                                      |           |
|                   | URA <sub>OE</sub> Index  | SV accuracy                                                                                                                                  | 5*                                                                                                                    |                                                                                    |                                                            | (see text)                    |                     | URA <sub>ED</sub> Index      | ED Accuracy Index                                                                                                                            | 5*                                                                                            |                                                                                     |                                                              | (see text)                                 |           |
|                   | Signal health (L1/L2/L5) |                                                                                                                                              | 3                                                                                                                     | 1                                                                                  |                                                            | (see text)                    |                     | Signal health<br>(L1/L2/L5)  |                                                                                                                                              | 3                                                                                             | 1                                                                                   |                                                              | (see text)                                 |           |
|                   | t <sub>op</sub>          | Data predict time of week                                                                                                                    | 11                                                                                                                    | 300                                                                                | 604,500                                                    | seconds                       |                     | t <sub>op</sub>              | Data predict time of week                                                                                                                    | 11                                                                                            | 300                                                                                 | 604,500                                                      | seconds                                    |           |
|                   | ?A****                   | Semi-major axis difference at reference time                                                                                                 | 26*                                                                                                                   | 29                                                                                 |                                                            | meters                        |                     | ?A****                       | Semi-major axis difference at reference time                                                                                                 | 26*                                                                                           | 2-9                                                                                 |                                                              | meters                                     |           |
|                   | • A                      | Change rate in semi-major<br>axis                                                                                                            | 25*                                                                                                                   | 2 <sup>-21</sup>                                                                   |                                                            | meters/sec                    |                     | • A                          | Change rate in semi-major<br>axis                                                                                                            | 25*                                                                                           | 2 <sup>-21</sup>                                                                    |                                                              | meters/sec                                 |           |
|                   | ?n <sub>0</sub>          | Mean Motion difference from<br>computed value at reference<br>time                                                                           | 17*                                                                                                                   | 2-44                                                                               |                                                            | semi-circles/sec              |                     | ?n <sub>0</sub>              | Mean Motion difference from<br>computed value at reference<br>time                                                                           | 17*                                                                                           | 2-44                                                                                |                                                              | semi-circles/sec                           |           |
|                   | • ?n <sub>0</sub>        | Rate of mean motion<br>difference from computed<br>value                                                                                     | 23*                                                                                                                   | 2-57                                                                               |                                                            | semi-circles/sec <sup>2</sup> |                     | • ?n <sub>0</sub>            | Rate of mean motion<br>difference from computed<br>value                                                                                     | 23*                                                                                           | 2-57                                                                                |                                                              | semi-circles/sec <sup>2</sup>              |           |
|                   | M <sub>0-n</sub>         | Mean anomaly at reference<br>time                                                                                                            | 33*                                                                                                                   | 2 <sup>-32</sup>                                                                   |                                                            | semi-circles                  |                     | M <sub>0-n</sub>             | Mean anomaly at reference<br>time                                                                                                            | 33*                                                                                           | 2-32                                                                                |                                                              | semi-circles                               |           |
|                   | e <sub>n</sub>           | Eccentricity                                                                                                                                 | 33                                                                                                                    | 2-34                                                                               | 0.03                                                       | dimensionless                 |                     | e <sub>n</sub>               | Eccentricity                                                                                                                                 | 33                                                                                            | 2-34                                                                                | 0.03                                                         | dimensionless                              |           |
|                   | ω <sub>n</sub>           | Argument of perigee                                                                                                                          | 33*                                                                                                                   | 2-32                                                                               |                                                            | semi-circles                  |                     | ω <sub>h</sub>               | Argument of perigee                                                                                                                          | 33*                                                                                           | 2-32                                                                                |                                                              | semi-circles                               |           |
|                   | * Para                   | ameters so indicated are two's com<br>** See Figure 30-1 for com<br>ss otherwise indicated in this colum<br>indicated bi<br>**** Relative to | plement, with<br>plete bit alloc<br>nn, effective ra<br>t allocation ar<br>$A_{REF} = 26,55$                          | n the sign bit<br>cation in Mes<br>ange is the m<br>nd scale facto<br>9,710 meters | (+ or -) occup<br>sage Type 10<br>aximum rang<br>or.<br>s. | ying the MSB;                 |                     | * Para<br>*** Unles          | ameters so indicated are two's com<br>** See Figure 30-1 for con<br>ss otherwise indicated in this colum<br>indicated bi<br>**** Relative to | plement, with<br>plete bit alloc<br>nn, effective r<br>it allocation a<br>$0 A_{RFF} = 26,55$ | h the sign bit<br>cation in Mes<br>ange is the n<br>nd scale facto<br>19,710 meters | (+ or -) occup<br>ssage Type 10<br>naximum rang<br>or.<br>s. | bying the MSB;<br>);<br>re attainable with | 10        |

| Section<br>Number | IS-GPS-200 Re                                                                                            | ev E Navstar GPS Space Segment/Na                                                                                                                                                                                                                                       | vigation                                                                              | User Into                                                        |                                                                                              | Proposed<br>Heading                                          | URA Definition Proposed Text                                                |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 303323            |                                                                                                          | Table 30-III Clock Correcti                                                                                                                                                                                                                                             | ion and Ac                                                                            | curacy Para                                                      | meters                                                                                       |                                                              |                                                                             |                                                                                                                                                               | Table 30-III Clock Correct                                                                                                                                                                                                                                                                                                                                                                                 | ion and A                                                                                                          |
| 50.5.5.2.5        |                                                                                                          |                                                                                                                                                                                                                                                                         |                                                                                       | Scale                                                            |                                                                                              |                                                              |                                                                             |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
|                   |                                                                                                          | Parameter                                                                                                                                                                                                                                                               | No. of<br>Bits**                                                                      | Factor<br>(LSB)                                                  | Effective<br>Range***                                                                        | Units                                                        |                                                                             |                                                                                                                                                               | Parameter                                                                                                                                                                                                                                                                                                                                                                                                  | No. of<br>Bits**                                                                                                   |
|                   | t <sub>oc</sub>                                                                                          | Clock Data Reference Time of Week                                                                                                                                                                                                                                       | 11                                                                                    | 300                                                              | 604,500                                                                                      | seconds                                                      |                                                                             | t <sub>oc</sub>                                                                                                                                               | Clock Data Reference Time of Week                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                 |
|                   | $URA_{\infty}$ Index                                                                                     | SV Clock Accuracy Index                                                                                                                                                                                                                                                 | 5*                                                                                    |                                                                  |                                                                                              | (see text)                                                   |                                                                             | URA <sub>NED</sub><br>Index                                                                                                                                   | NED Accuracy Index                                                                                                                                                                                                                                                                                                                                                                                         | 5*                                                                                                                 |
|                   | $URA_{\infty 1}$ Index                                                                                   | SV Clock Accuracy Change Index                                                                                                                                                                                                                                          | 3                                                                                     |                                                                  |                                                                                              | (see text)                                                   |                                                                             | писх                                                                                                                                                          | NED Accuracy Change Index                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                  |
|                   | $URA_{\infty 2}$ Index                                                                                   | SV Clock Accuracy Change Rate Index                                                                                                                                                                                                                                     | 3                                                                                     | (0)                                                              |                                                                                              | (see text)                                                   | URA <sub>NEDI</sub><br>Index                                                |                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |
|                   | a <sub>f2-n</sub>                                                                                        | SV Clock Drift Rate Correction Coefficient                                                                                                                                                                                                                              | 10*                                                                                   | $2^{-60}$                                                        |                                                                                              | sec/sec <sup>2</sup>                                         |                                                                             | URA <sub>NED2</sub><br>Index                                                                                                                                  | NED Accuracy Change Rate Index                                                                                                                                                                                                                                                                                                                                                                             | 10*                                                                                                                |
|                   | a <sub>fl-n</sub>                                                                                        | SV Clock Drift Correction Coefficient                                                                                                                                                                                                                                   | 20*                                                                                   | 2                                                                |                                                                                              | sec/sec                                                      |                                                                             | пасх                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                            | 20*                                                                                                                |
|                   | a <sub>f0-n</sub>                                                                                        | SV Clock Bias Correction Coefficient                                                                                                                                                                                                                                    |                                                                                       | a <sub>f2-n</sub>                                                | SV Clock Drift Rate Correction Coefficient                                                   | 26*                                                          |                                                                             |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
|                   | *                                                                                                        | Parameters so indicated are two's complemen<br>See Figure 30-3 through 30-10 for comple                                                                                                                                                                                 | t, with the                                                                           | sign bit (+ c                                                    |                                                                                              | a <sub>f1-n</sub>                                            | SV Clock Drift Correction Coefficient                                       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
|                   | *** U                                                                                                    | Juless otherwise indicated in this column, effec                                                                                                                                                                                                                        | tive range                                                                            | is the maxi                                                      |                                                                                              | a <sub>f0-n</sub>                                            | SV Clock Bias Correction Coefficient                                        |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
|                   |                                                                                                          |                                                                                                                                                                                                                                                                         |                                                                                       |                                                                  |                                                                                              | *** [                                                        | Juless otherwise indicated in this column, effectively indicated bit alloca | tion and s                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
| 30.3.3.2.4        | 30.3.3.2.4 SV                                                                                            | Clock Accuracy Estimates.                                                                                                                                                                                                                                               |                                                                                       |                                                                  |                                                                                              |                                                              | Non-<br>Elevation-<br>Dependent<br>(NED)<br>Accuracy<br>Estimates.          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
| 30.3.3.2.4        | Bits 50 throug<br>shall contain t<br>(reference par<br>together with<br>of the SV as a<br>correction pol | h 54, and 55 through 57, and 58 thro<br>he URA <sub>oc</sub> Index,URA <sub>oc1</sub> Index, and UF<br>ragraph 6.2.1) for the standard positi<br>URA <sub>oc1</sub> Index and URA <sub>oc2</sub> Index shall<br>function of time since the prediction<br>ynomial terms. | ough 60<br>RA <sub>oc2</sub> Ind<br>ioning se<br>give the<br>I (t <sub>op</sub> ) use | of messag<br>ex, respec<br>ervice use<br>clock-rela<br>ed to gen | ge types 30 t<br>ctively, of the<br>r. The URA <sub>o</sub><br>ated user rar<br>erate the up | hrough 37<br>e SV<br>c Index<br>nge accuracy<br>loaded clock |                                                                             | Bits 50 throug<br>contain the no<br>Index, respect<br>The following<br>Index shall giv<br>clock/epheme<br>footprint, the<br>the current clo<br>worst-case loc | h 54, and 55 through 57, and 58 through<br>on-elevation-dependent (NED) compon-<br>ively, of the SV (reference paragraph 6<br>equations together with the broadcast<br>e the clock-related user range accurace<br>ris fit interval. While the actual NED re<br>IAURA <sub>NED</sub> calculated using the parameter<br>ock/ephemeris fit interval shall bound<br>action within the satellite footprint at t | gh 60 of<br>ent URA<br>2.1) for<br>URA <sub>NEDU</sub><br>Of-IAUI<br>lated UF<br>ers in m<br>the maxi<br>hat insta |

| _                                                                                                                         |                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                  |              |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                           |                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                  | Rationale    |
| с                                                                                                                         | curacy Parai                                                                                                                                  | neters                                                                                                                                                                    |                                                                                                                                  | Rationale #1 |
|                                                                                                                           | Scale<br>Factor<br>(LSB)                                                                                                                      | Effective<br>Range***                                                                                                                                                     | Units                                                                                                                            |              |
|                                                                                                                           | 300                                                                                                                                           | 604,500                                                                                                                                                                   | seconds                                                                                                                          |              |
|                                                                                                                           |                                                                                                                                               |                                                                                                                                                                           | (see text)                                                                                                                       |              |
|                                                                                                                           |                                                                                                                                               |                                                                                                                                                                           | (see text)                                                                                                                       |              |
|                                                                                                                           |                                                                                                                                               |                                                                                                                                                                           | (see text)                                                                                                                       |              |
|                                                                                                                           | 2-60                                                                                                                                          |                                                                                                                                                                           | sec/sec <sup>2</sup>                                                                                                             |              |
|                                                                                                                           | 2 <sup>-48</sup>                                                                                                                              |                                                                                                                                                                           | sec/sec                                                                                                                          |              |
|                                                                                                                           | 2-35                                                                                                                                          |                                                                                                                                                                           | seconds                                                                                                                          |              |
|                                                                                                                           |                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                  |              |
| ;<br>c<br>c                                                                                                               | ale factor.                                                                                                                                   | ssage types 30 to                                                                                                                                                         |                                                                                                                                  |              |
|                                                                                                                           |                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                  |              |
| I<br>A <sub>l</sub> i<br>0<br>R<br>R<br>R<br>R<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | message ty<br><sub>NEDO</sub> Index, I<br>the standa<br>Index, UR,<br>A <sub>NED</sub> over t<br>A may vary<br>essage type<br>mum IAUR<br>nt. | vpes 30 throu<br>URA <sub>NED1</sub> Index<br>rd positionin<br>A <sub>NED1</sub> Index, a<br>the current<br>y over the sat<br>e 10 at each i<br>A <sub>NED</sub> expected | gh 37 shall<br>k, and URA <sub>NED2</sub><br>g service user.<br>Ind URA <sub>NED2</sub><br>cellite<br>nstant during<br>d for the |              |

| Section<br>Number | IS-GPS-200 Rev E Nav                                                                                                                                                                                                                                                                                                               | vstar GPS Space                                                      | Segment/Naviga                                           | tion User Interfaces                 | Proposed<br>Heading                                         | URA Definitio                                                                                                                                                                                                                               | on Proposed Text                                                                                                                                                                                                                                                                               |                                                                                    |                       |                                                                                                                              | Rationale    |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
| 30.3.3.2.4        | The user shall calculat                                                                                                                                                                                                                                                                                                            | te the clock-rela                                                    | ted URA with the                                         | equation (in meters);                |                                                             | The user shal                                                                                                                                                                                                                               | I calculate the NED-                                                                                                                                                                                                                                                                           | related URA                                                                        | with the              | equation (in meters);                                                                                                        | Rationale #1 |  |  |
|                   | URA <sub>oc</sub> = URA <sub>or</sub>                                                                                                                                                                                                                                                                                              | <sub>cb</sub> + URA <sub>oc1</sub> (t - t <sub>o</sub>               | <sub>p</sub> ) for t-t <sub>op</sub> <                   | 93,600 seconds                       |                                                             | IAURA <sub>NED</sub>                                                                                                                                                                                                                        | $= URA_{NED0} + URA_{f}$ $= URA_{NED0} + URA_{f}$                                                                                                                                                                                                                                              | <sub>NED1</sub> (t - t <sub>op</sub> )<br><sub>NED1</sub> (t - t <sub>op</sub> ) + | URA <sub>NED2</sub> ( | for t-t <sub>op</sub> < 93,600 seconds<br>(t - t <sub>op</sub> - 93,600) <sup>2</sup> for t-t <sub>op</sub> > 93,600 seconds |              |  |  |
|                   | URA <sub>oc</sub> = URA <sub>or</sub><br>seconds                                                                                                                                                                                                                                                                                   | <sub>cb</sub> + URA <sub>oc1</sub> (t - t <sub>o</sub>               | <sub>p</sub> ) + URA <sub>oc2</sub> (t - t <sub>op</sub> | $-93,600)^2$ for $t-t_{op} > 93,600$ |                                                             | where                                                                                                                                                                                                                                       | where                                                                                                                                                                                                                                                                                          |                                                                                    |                       |                                                                                                                              |              |  |  |
|                   | where                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                          |                                      |                                                             | t                                                                                                                                                                                                                                           | t = GPS time (must account for beginning or end of week crossovers),                                                                                                                                                                                                                           |                                                                                    |                       |                                                                                                                              |              |  |  |
|                   | t = GPS time (                                                                                                                                                                                                                                                                                                                     | t = GPS time (must account for beginning or end of week crossovers), |                                                          |                                      |                                                             |                                                                                                                                                                                                                                             | = time of week o                                                                                                                                                                                                                                                                               | f the state es                                                                     | timate u              | tilized for the prediction of satellite clock                                                                                |              |  |  |
|                   | t <sub>op</sub> = time of v<br>correction parameter                                                                                                                                                                                                                                                                                | I for the prediction of satellite clock                              |                                                          | /ep                                  | /ephemeris parameters.                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                |                                                                                    |                       |                                                                                                                              |              |  |  |
| 30.3.3.2.4        | The CS shall derive URA <sub>ocb</sub> at time t <sub>op</sub> which, when used together with URA <sub>oc1</sub> and URA <sub>oc2</sub> in t<br>above equations, results in the minimum URA <sub>oc</sub> that is greater than the predicted URA <sub>oc</sub><br>during the entire duration up to 14 days after t <sub>op</sub> . |                                                                      |                                                          |                                      |                                                             | The CS shall c<br>equations, re<br>clock/epheme                                                                                                                                                                                             | The CS shall derive URA <sub>NED0</sub> , URA <sub>NED1</sub> , and URA <sub>NED2</sub> indexes which, when used together in the above equations, results in the minimum IAURA <sub>NED</sub> that is greater than the predicted IAURA <sub>NED</sub> during the clock/ephemeris fit interval. |                                                                                    |                       |                                                                                                                              |              |  |  |
| 30.3.3.2.4        | The user shall use the broadcast URA <sub>oc</sub> Index to derive URA <sub>ocb</sub> . The index is a signed, two's complement integer in the range of +15 to -16 and has the following relationship to the clock-related user derived URA <sub>ocb</sub> :                                                                       |                                                                      |                                                          |                                      | The user shal<br>signed, two's<br>the URA <sub>NEDO</sub> v | The user shall use the broadcast $URA_{NED0}$ index to derive the $URA_{NED0}$ value. The $URA_{NED0}$ index is a signed, two's complement integer in the range of +15 to -16 and has the following relationship to the $URA_{NED0}$ value: |                                                                                                                                                                                                                                                                                                |                                                                                    |                       |                                                                                                                              |              |  |  |
|                   | <u>URA<sub>oc</sub> Index</u>                                                                                                                                                                                                                                                                                                      | <u>URA<sub>ocb</sub> (mete</u>                                       | ers)                                                     |                                      |                                                             | URA <sub>NED0</sub> Index                                                                                                                                                                                                                   | x URA <sub>NEDO.</sub>                                                                                                                                                                                                                                                                         | (meters)                                                                           |                       |                                                                                                                              |              |  |  |
|                   | 15                                                                                                                                                                                                                                                                                                                                 | 6144.00                                                              | < URA <sub>oct</sub>                                     |                                      |                                                             | 15                                                                                                                                                                                                                                          | 6144.00                                                                                                                                                                                                                                                                                        | < URA <sub>NED0</sub>                                                              | (or n                 | o accuracy prediction is available)                                                                                          |              |  |  |
|                   | 14                                                                                                                                                                                                                                                                                                                                 | 3072.00                                                              | < URA <sub>oct</sub>                                     | , ≤ 6144.00                          |                                                             | 14                                                                                                                                                                                                                                          | 3072.00                                                                                                                                                                                                                                                                                        | < URA <sub>NED0</sub>                                                              | ≤ 6144.               | 00                                                                                                                           |              |  |  |
|                   | 13                                                                                                                                                                                                                                                                                                                                 | 1536.00                                                              | < URA <sub>oct</sub>                                     | , ≤ 3072.00                          |                                                             | 13                                                                                                                                                                                                                                          | 1536.00                                                                                                                                                                                                                                                                                        | < URA <sub>NED0</sub>                                                              | ≤ 3072.               | 00                                                                                                                           |              |  |  |
|                   | 12                                                                                                                                                                                                                                                                                                                                 | 768.00 <                                                             | $URA_ocb \leq$                                           | 1536.00                              |                                                             | 12                                                                                                                                                                                                                                          | 768.00                                                                                                                                                                                                                                                                                         | < URA <sub>NED0</sub>                                                              | ≤                     | 1536.00                                                                                                                      |              |  |  |
|                   | 11                                                                                                                                                                                                                                                                                                                                 | 384.00 <                                                             | $URA_ocb$ $\leq$                                         | 768.00                               |                                                             | 11                                                                                                                                                                                                                                          | 384.00                                                                                                                                                                                                                                                                                         | < URA <sub>NED0</sub>                                                              | ≤                     | 768.00                                                                                                                       |              |  |  |
|                   | 10                                                                                                                                                                                                                                                                                                                                 | 192.00 <                                                             | $URA_ocb \leq$                                           | 384.00                               |                                                             | 10                                                                                                                                                                                                                                          | 192.00                                                                                                                                                                                                                                                                                         | < URA <sub>NED0</sub>                                                              | ≤                     | 384.00                                                                                                                       |              |  |  |
|                   | 9                                                                                                                                                                                                                                                                                                                                  | 96.00 <                                                              | $URA_{ocb} \leq$                                         | 192.00                               |                                                             | 9                                                                                                                                                                                                                                           | 96.00                                                                                                                                                                                                                                                                                          | < URA <sub>NED0</sub>                                                              | ≤                     | 192.00                                                                                                                       |              |  |  |
|                   | 8                                                                                                                                                                                                                                                                                                                                  | 48.00 <                                                              | $URA_{ocb} \leq$                                         | 96.00                                |                                                             | 8                                                                                                                                                                                                                                           | 48.00                                                                                                                                                                                                                                                                                          | $< URA_{NED0}$                                                                     | ≤                     | 96.00                                                                                                                        |              |  |  |
|                   | 7                                                                                                                                                                                                                                                                                                                                  | 24.00 <                                                              | $URA_ocb \leq$                                           | 48.00                                |                                                             | 7                                                                                                                                                                                                                                           | 24.00                                                                                                                                                                                                                                                                                          | < URA <sub>NED0</sub>                                                              | ≤                     | 48.00                                                                                                                        |              |  |  |
|                   | 6                                                                                                                                                                                                                                                                                                                                  | 13.65 <                                                              | $URA_ocb$ $\leq$                                         | 24.00                                |                                                             | 6                                                                                                                                                                                                                                           | 13.65                                                                                                                                                                                                                                                                                          | < URA <sub>NED0</sub>                                                              | ≤                     | 24.00                                                                                                                        |              |  |  |

| Section    | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces |          | Proposed URA Definition Proposed Text |                               |                                        |         |                                  |                | Rationale             |             |                                               |               |
|------------|-----------------------------------------------------------------------|----------|---------------------------------------|-------------------------------|----------------------------------------|---------|----------------------------------|----------------|-----------------------|-------------|-----------------------------------------------|---------------|
| Number     |                                                                       |          |                                       |                               |                                        | Heading |                                  |                |                       |             |                                               |               |
|            | 5                                                                     | 9.65     | <                                     | $URA_{ocb} \leq$              | 13.65                                  |         | 5                                | 9.65           | < URA <sub>NED0</sub> | ٤           | 13.65                                         |               |
|            | 4                                                                     | 6.85     | <                                     | $URA_ocb$ $\leq$              | 9.65                                   |         | 4                                | 6.85           | < URA <sub>NED0</sub> | ≤           | 9.65                                          |               |
|            | 3                                                                     | 4.85     | <                                     | $URA_ocb \leq$                | 6.85                                   |         | 3                                | 4.85           | < URA <sub>NED0</sub> | ≤           | 6.85                                          |               |
|            | 2                                                                     | 3.40     | <                                     | $URA_ocb \leq$                | 4.85                                   |         | 2                                | 3.40           | < URA <sub>NED0</sub> | ≤           | 4.85                                          |               |
|            | 1                                                                     | 2.40     | <                                     | $URA_ocb$ $\leq$              | 3.40                                   |         | 1                                | 2.40           | < URA <sub>NED0</sub> | ≤           | 3.40                                          |               |
|            | 0                                                                     | 1.70     | <                                     | $URA_ocb \leq$                | 2.40                                   |         | 0                                | 1.70           | < URA <sub>NED0</sub> | ≤           | 2.40                                          |               |
|            | -1                                                                    | 1.20     | <                                     | $URA_ocb \leq$                | 1.70                                   |         | -1                               | 1.20           | < URA <sub>NEDO</sub> | ≤           | 1.70                                          |               |
|            | -2                                                                    | 0.85     | <                                     | $URA_ocb$ $\leq$              | 1.20                                   |         | -2                               | 0.85           | < URA <sub>NED0</sub> | ≤           | 1.20                                          |               |
|            | -3                                                                    | 0.60     | <                                     | $URA_{ocb} \leq$              | 0.85                                   |         | -3                               | 0.60           | < URA <sub>NED0</sub> | ≤           | 0.85                                          |               |
|            | -4                                                                    | 0.43     | <                                     | $URA_ocb$ $\leq$              | 0.60                                   |         | -4                               | 0.43           | < URA <sub>NED0</sub> | ≤           | 0.60                                          |               |
|            | -5                                                                    | 0.30     | <                                     | $URA_ocb$ $\leq$              | 0.43                                   |         | -5                               | 0.30           | < URA <sub>NEDO</sub> | ≤           | 0.43                                          |               |
|            | -6                                                                    | 0.21     | <                                     | $URA_ocb$ $\leq$              | 0.30                                   |         | -6                               | 0.21           | < URA <sub>NED0</sub> | ≤           | 0.30                                          |               |
|            | -7                                                                    | 0.15     | <                                     | $URA_{ocb} \leq$              | 0.21                                   |         | -7                               | 0.15           | < URA <sub>NED0</sub> | ≤           | 0.21                                          |               |
|            | -8                                                                    | 0.11     | <                                     | $URA_ocb \leq$                | 0.15                                   |         | -8                               | 0.11           | < URA <sub>NEDO</sub> | ≤           | 0.15                                          |               |
|            | -9                                                                    | 0.08     | <                                     | $URA_ocb$ $\leq$              | 0.11                                   |         | -9                               | 0.08           | < URA <sub>NED0</sub> | ≤           | 0.11                                          |               |
|            | -10                                                                   | 0.06     | <                                     | $URA_ocb$ $\leq$              | 0.08                                   |         | -10                              | 0.06           | < URA <sub>NEDO</sub> | ≤           | 0.08                                          |               |
|            | -11                                                                   | 0.04     | <                                     | $URA_ocb$ $\leq$              | 0.06                                   |         | -11                              | 0.04           | < URA <sub>NED0</sub> | ≤           | 0.06                                          |               |
|            | -12                                                                   | 0.03     | <                                     | $URA_ocb$ $\leq$              | 0.04                                   |         | -12                              | 0.03           | < URA <sub>NED0</sub> | ≤           | 0.04                                          |               |
|            | -13                                                                   | 0.02     | <                                     | $URA_ocb$ $\leq$              | 0.03                                   |         | -13                              | 0.02           | < URA <sub>NED0</sub> | ≤           | 0.03                                          |               |
|            | -14                                                                   | 0.01     | <                                     | $URA_{ocb} \leq$              | 0.02                                   |         | -14                              | 0.01           | < URA <sub>NED0</sub> | ≤           | 0.02                                          |               |
|            | -15                                                                   |          |                                       | $URA_ocb \leq$                | 0.01                                   |         | -15                              |                |                       | ≤           | 0.01                                          |               |
|            | -16                                                                   |          |                                       | No accuracy p                 | prediction available-use at own risk   |         | -16                              | No accura      | icy predictior        | n available | -use at own risk                              |               |
| 30.3.3.2.4 | The user may use the                                                  | upper bo | ound va                               | llue in the URA <sub>oc</sub> | , range corresponding to the broadcast |         | For each URA <sub>NEDO</sub> ind | lex (N), users | may compute           | e a nomina  | al URA <sub>NEDO</sub> value (X) as given by: | Rationale #3- |

| Section<br>Number | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces                                       | Proposed<br>Heading | URA Definition Proposed Text                                                                                          | Rationale       |
|-------------------|-------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------|
| Number            |                                                                                                             | neauing             |                                                                                                                       |                 |
|                   | index, thereby calculating the maximum $URA_{oc}$ that is equal to or greater than the CS                   |                     | • If the value of N is 6 or less, but more than -16, $X = 2^{(1 + N/2)}$ ,                                            | There is a typo |
|                   | predicted URA <sub>oc</sub> , or the user may use the lower bound value in the range which will provide     |                     | • If the value of N is 6 or more, but loss than 15, $X = 2^{(N-2)}$                                                   | that needs be   |
|                   | the minimum URA <sub>oc</sub> that is equal to or less than the CS predicted URA <sub>oc</sub> .            |                     | • If the value of N is 6 of more, but less than 15, $x = 2^{n}$ ,                                                     | corrected in    |
|                   |                                                                                                             |                     | • N = -16 or N = 15 shall indicate the absence of an accuracy prediction and shall advise the                         | computing       |
|                   | Integrity properties of the URA are specified with respect to the upper bound values of the                 |                     | standard positioning service user to use that SV at his own risk.                                                     | URA, or all     |
|                   | URA index (see 20.3.3.1). The transmitted URA <sub>oc1</sub> Index is an integer value in the range 0 to 7. |                     | For N = 1.3 and 5.X should be rounded to 2.8.5.7 and 11.3 meters respectively.                                        | user URA        |
|                   | URA <sub>oc1</sub> Index has the following relationship to the URA <sub>oc1</sub> :                         |                     |                                                                                                                       | far too large   |
|                   | 1                                                                                                           |                     | The nominal URA <sub>NEDO</sub> value (X) shall be suitable for use as a conservative prediction of the RMS           | Using the       |
|                   | $URA_{oc1} = 2^{N}$ (meters/second)                                                                         |                     | NED range errors for accuracy-related purposes in the pseudorange domain (e.g., measurement                           | erroneous       |
|                   |                                                                                                             |                     | de-weighting RAIM, FOM computations). Integrity properties of the IAURA <sub>NED</sub> are specified with             | value will      |
|                   | where                                                                                                       |                     | respect to the scaled (multiplied by either 4.42 or 5.73 as appropriate) upper bound values of the                    | result in a     |
|                   | N = 4 + URA <sub>oc1</sub> Index.                                                                           |                     | URA <sub>NED0</sub> index, URA <sub>NED1</sub> index, and URA <sub>NED2</sub> index (see 30.3.3.1.1).                 | minimum         |
|                   |                                                                                                             |                     | URA <sub>NEDO</sub> accounts for zeroth order SIS-contributions to user range error which include, but are not        | value of        |
|                   | The transmitted $URA_{oc2}$ index is an integer value in the range 0 to 7. $URA_{oc2}$ index has the        |                     | limited to, the following: LSB representation/truncation error; the net effect of clock correction                    | URAoc1 that     |
|                   | following relationship to the URA <sub>oc2</sub> :                                                          |                     | polynomial error and code phase error in the transmitted signal for single-frequency L1C/A or                         | will prevent    |
|                   | $\frac{1}{2^{N}}$ (                                                                                         |                     | single-frequency L2C users who correct the code phase as described in Section 30.3.3.3.1.1.1; the                     | the Space and   |
|                   | $URA_{oc2} = 2$ (meters/second <sup>2</sup> )                                                               |                     | net effect of clock parameter, code phase, and inter-signal correction error for dual-frequency                       | Control         |
|                   | where                                                                                                       |                     | L1/L2 and L1/L5 users who correct for group delay and ionospheric effects as described in Section                     | segments from   |
|                   | $N = 25 + URA_{oc2}$ Index.                                                                                 |                     | 30.3.3.3.1.1.2; radial ephemeris error; anisotropic antenna errors; and signal deformation error.                     | meeting their   |
|                   |                                                                                                             |                     | URA <sub>NED</sub> does not account for user range contributions due to the inaccuracy of the broadcast               | performance     |
|                   |                                                                                                             |                     | ionospheric data parameters used in the single-frequency ionospheric model or for other                               | requirements.   |
|                   |                                                                                                             |                     | atmospheric effects.                                                                                                  | requirementoi   |
|                   |                                                                                                             |                     | The transmitted $URA_{NED1}$ index is an integer value in the range 0 to 7. The $URA_{NED1}$ index has the            |                 |
|                   |                                                                                                             |                     | following relationship to the URA <sub>NED1</sub> value:                                                              | Rationale #5    |
|                   |                                                                                                             |                     | 1                                                                                                                     |                 |
|                   |                                                                                                             |                     | $\frac{1}{2^{N}}$                                                                                                     |                 |
|                   |                                                                                                             |                     | $URA_{NED1} = 2$ (meters/second)                                                                                      |                 |
|                   |                                                                                                             |                     | where                                                                                                                 |                 |
|                   |                                                                                                             |                     | N = 14 + URA <sub>NED1</sub> Index                                                                                    |                 |
|                   |                                                                                                             |                     | The transmitted URA <sub>NED2</sub> index is an integer value in the range $0$ to 7 URA <sub>NED2</sub> index has the |                 |
|                   |                                                                                                             |                     | following relationship to the URA <sub>NED2</sub> :                                                                   |                 |
|                   |                                                                                                             |                     |                                                                                                                       |                 |
|                   |                                                                                                             |                     | $\frac{1}{N}$                                                                                                         |                 |
|                   |                                                                                                             |                     | $URA_{NED2} = 2^{N}$ (meters/second2)                                                                                 |                 |
|                   |                                                                                                             |                     |                                                                                                                       |                 |

| Section  | IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces | Proposed           | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rationale                                                                                                                                                                                                                                                                                                    |
|----------|-----------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number   |                                                                       | Heading            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |
|          |                                                                       |                    | where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                              |
|          |                                                                       |                    | N = 28 + URA <sub>NED2</sub> Index.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |
| 30.3.4.4 | 30.3.4.4                                                              | Data Sets          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |
| 30.3.4.4 |                                                                       |                    | The t <sub>oe</sub> shall be equal to the t <sub>oc</sub> of the same CNAV data set. The following rules govern the transmission of t <sub>oe</sub> and t <sub>oc</sub> values in different data sets: (1) The transmitted t <sub>oc</sub> will be different from any value transmitted by the SV during the preceding seven days; (2) The transmitted t <sub>oe</sub> will be different from any value transmitted by the SV during the preceding six hours. Cutovers to new data sets will occur only on hourly boundaries except for the first data set of a new upload. The first data set may be cut-in (reference paragraph 30.3.4.1) at any time during the hour and therefore may be transmitted by the SV for less than one hour. The start of the transmission interval for each data set corresponds to the beginning of the curve fit interval for the data set. Each data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval. A data set is rendered invalid before the end of its curve fit interval when it is superseded by the SV cutting over to the first data set of a new upload. <u>Normal Operations</u> . The message type 10, 11, and 30-37 data sets are transmitted by the SV for periods of two hours. | Rationale #2-<br>URA<br>components<br>(URA <sub>ED</sub> and<br>URA <sub>NED</sub> ) from<br>different<br>upload or fit<br>intervals will<br>not give a valid<br>indication of<br>signal accuracy<br>or integrity.<br>These changes<br>provide<br>clarification of<br>how URA is<br>computed by<br>the user. |
| 30.3.4.5 | 30.3.4.5                                                              | Reference<br>Times |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |
| 30.3.4.5 |                                                                       |                    | The LNAV reference time information in paragraph 20.3.4.5 also applies to the CNAV reference times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rationale #5                                                                                                                                                                                                                                                                                                 |

End of WAS/IS for IS-GPS-200E

#### Start of WAS/IS for IS-GPS-705A Changes

| Section<br>Number           | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rationale                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section<br>Number<br>20.3.3 | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces<br>Each message starts with an 8-bit preamble - 10001011, followed by a 6-bit PRN number of the<br>transmitting SV, a 6-bit message type ID, with a range of 0 (000000) to 63 (111111), and the 17-bit<br>message Time of Week (TOW) count. When the value of the message TOW count is multiplied by 6, it<br>represents SV time in seconds at the start of the next 6-second message. An "alert" flag, when raised<br>(bit 38 = "1"), indicates to the user that the SV User Range Accuracy (URA) and/or the SV User<br>Differential Range Accuracy (UDRA) may be worse than indicated in the respective message types.<br>For each default message (Message Type 0), bits 39 through 276 shall be alternating ones and zeros<br>and the message shall contain a proper CRC parity block. | Proposed<br>Heading | URA Definition Proposed Text<br>Each message starts with an 8-bit preamble - 10001011, followed by a 6-bit PRN number of<br>the transmitting SV, a 6-bit message type ID with a range of 0 (000000) to 63 (111111), and<br>the 17-bit message time of week (TOW) count. When the value of the message TOW count is<br>multiplied by 6, it represents SV time in seconds at the start of the next 6-second message.<br>An "alert" flag, when raised (bit 38 = "1"), indicates to the user that the signal-URA<br>components may be worse than indicated in the associated-message types and that he shall<br>use at his own risk. For each default message (Message Type 0), bits 39 through 276 shall be<br>alternating ones and zeros and the message shall contain a proper CRC parity block. | Rationale<br>Rationale #5-<br>There are<br>numerous<br>inconsistenci<br>es between<br>ICDs and<br>clarifications<br>and<br>additions<br>that are<br>needed for<br>the users to<br>compute<br>URA. These<br>changes<br>resolve the<br>inconsistenci<br>es between<br>the ICDs so<br>that users<br>may<br>properly<br>compute |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | compute<br>URA.                                                                                                                                                                                                                                                                                                             |

| Section | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proposed | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heading  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20.3.3  | Image: State of the state |          | DIRECTION OF DATA FLOW FROM SV<br>100 BITS 2 SECONDS<br>1 9 15 21 18 BITS 10 11 BITS 10 10 BITS 12 SECONDS 10 BITS 12 SECONDS 10 BITS 2 SECONDS 10 10 10 BITS 2 SECONDS 10 10 BITS 2 SECONDS 10 10 BITS 2 SECONDS 10 BITS 2 SECONDS 10 10 BITS 2 SECONDS 10 BITS 2 SECONDS 10 10 BITS 2 SECONDS 10 BITS 2 SECONDS 10 10 BITS 2 SECONDS 10 BITS 2 SECONDS 10 10 BITS 2 SECONDS 10 BITS 2 SECONDS 10 10 BITS 2 SECONDS 10 BITS 10 |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                     | Rationale                |
|---------------------|--------------------------|
|                     |                          |
| MSB FIRST           | Rationale #1-            |
| >                   | URA <sub>oc</sub> and    |
| 66 71 82            | URA <sub>ce</sub> are    |
| - <sup>toe</sup> ΔA | redefined                |
| BITS 19 MSBs        | into an                  |
|                     | elevation-               |
|                     | dependent                |
|                     | component                |
| MSB FIRST           | (URA <sub>ED</sub> ) and |
| 170                 | a non-                   |
|                     | elevation-               |
| 28 MSBs             | dependent                |
| 2011/020            | component                |
|                     | (URA <sub>NFD</sub> ).   |
|                     | This will                |
|                     | enable users             |
| 272<br>277          | to de-weight             |
| CRC CRC             | the                      |
| 24 BITS             | elevation-               |
|                     | angle-                   |
|                     | dependent                |
|                     | component                |
| T 6 SECOND MESSAGE  | with the                 |
| •                   | elevation                |
|                     | angle of the             |
|                     | SV, resulting            |
| emeris 1            | in a smaller             |
|                     | composite                |
|                     | URA, in                  |
|                     | many cases.              |
|                     | A smaller                |
|                     | composite                |
|                     | URA means                |
|                     | higher                   |
|                     | availability             |
|                     | for                      |
|                     | applications             |
|                     | that have                |

| Section | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces | Proposed | URA Definition Proposed Text |
|---------|--------------------------------------------------------|----------|------------------------------|
| Number  |                                                        | Heading  |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |
|         |                                                        |          |                              |

| Rationale     |
|---------------|
| requirement   |
| s for a       |
| minimum       |
| level of      |
| accuracy      |
| and/or        |
| integrity. In |
| order to      |
| achieve a     |
| technical     |
| consensus     |
| on how to     |
| proceed       |
| forward with  |
| GPS IIIA      |
| deriving URA  |
| from the      |
| uploaded      |
| covariance,   |
| then the      |
| following     |
| changes       |
| were needed   |
| to the user   |
| ICDs.         |

| Section<br>Number | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                                                     | Proposed URA Definition Proposed Text<br>Heading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rationale    |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Number<br>20.3.3  | DIRECTION OF DATA FLOW FROM SVMSB FIRST                                                                                                                                                                                                                    | DIRECTION OF DATA FLOW FROM SV MSB FIRST<br>100 BITS 2 SECONDS<br>100 BITS 2 SECONDS<br>1 9 15 21 38<br>39 50 55 58 61 72 98<br>1 9 15 21 00 COUNT*<br>8 BITS BITS 17 BITS 11 BITS 26 BITS<br>11 BITS BITS 17 BITS 11 BITS 26 BITS<br>MESSAGE TYPE ID<br>PREAMBLE "ALERT" FLAG - 1 BIT<br>URANED INDEX attan-3 MSBs<br>100 BITS 2 SECONDS<br>100 BITS 2 SECONDS<br>11 BITS 2 C BITS<br>11 BITS 2 C BITS<br>15 C C COUNT*<br>16 C COUNT*<br>17 DIRECTION OF DATA FLOW FROM SV MSB FIRST<br>100 BITS 2 SECONDS<br>100 BITS 2 SECONDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rationale #1 |
|                   | aft-n         aft2n         TGD         ISCL1CA         ISCL2C         ISCL555         ISCL505         α0           17 LSBs         10 BITS         13 BITS         13 BITS         13 BITS         13 BITS         13 BITS         13 BITS         8 BITS | 101         118         120         141         154         167         180         193           a <sub>f1-n</sub> a <sub>f2-n</sub> T <sub>GD</sub> ISC <sub>L1C/A</sub> ISC <sub>L2C</sub> ISC <sub>L505</sub> ISC <sub>L505</sub> α <sub>0</sub> 17 LSBs         10 BITS         13 BITS |              |
|                   | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|                   | Figure 20-3. Message type 30 - Clock, IONO & Group Delay                                                                                                                                                                                                   | Figure 20-3. Message type 30 - Clock, IONO & Group Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |

| Section | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                             | Proposed URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number  |                                                                                    | Heading                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20.3.3  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                             | DIRECTION OF DATA FLOW FROM<br>100 BITS 2 SECONDS<br>1 9 15 21 39 50 55 58<br>1 9 15 21 39 50 55 58<br>1 9 15 21 39 50 55 58<br>1 9 RESSAGE TYPE ID<br>PREAMBLE "ALERT" FLAG - 1 BIT URANED INDEX<br>MESSAGE TYPE ID URANED INDEX<br>100 BITS 2 SECONDS<br>100 BITS 2 SECONDS<br>101 118 128 141 149<br>101 118 128 141 149<br>101 118 128 141 149<br>101 118 128 13 BITS 8 BITS 31<br>17 LSBs 10 BITS 13 BITS 8 BITS 31 |
|         | DIRECTION OF DATA FLOW FROM SV — MSB FIRST<br>100 BITS 2 SECONDS                   | DIRECTION OF DATA FLOW FROM<br>DIRECTION OF DATA FLOW FROM<br>100 BITS 2 SECONDS<br>201 211 242<br>Reduced Almanac Reduced Almana<br>Packet 3 Packet 4                                                                                                                                                                                                                                                                   |
|         | 201 211 242 273 277                                                                | 10 LSBs 31 BITS 31 BITS                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | Packet 3 Packet 4 4 4                                                              | Reduced Almanac Packet 2                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NE<br>Figure 20-4. Message type 31 - Clock                                                                                                                                                                                                                                                                                                                  |
|         | Figure 20-4. Message type 31 - Clock & Reduced Almanac                             |                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Section | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                | Proposed URA Definition Proposed Text                                                   | Rationale    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|
| Number  |                                                                                                                                                                                                                       | Heading                                                                                 |              |
| 20.3.3  | DIRECTION OF DATA FLOW FROM SVMSB FIRST<br>100 BITS2 SECONDSMSB FIRST<br>100 BITS2 SECONDS<br>1 9 15 21 39 50 55 58 61 72 98<br>1 9 15 21 39 50 55 58 61 72 98<br>1 00 COUNT* top | DIRECTION OF DATA FLOW FROM SVMSB FIRST                                                 | Rationale #1 |
|         | DIRECTION OF DATA FLOW FROM SV MSB FIRST      100 BITS 2 SECONDS                                                                                                                                                      |                                                                                         |              |
|         |                                                                                                                                                                                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                  |              |
|         | $a_{f_{1-n}}$ $a_{f_{2-n}}$ $t_{EOP}$ PM-X PM-X PM-Y                                                                                                                                                                  | 17 LSBs         10 BITS         16 BITS         21 BITS         15 BITS         21 BITS |              |
|         | 17 LSBs 10 BITS 16 BITS 21 BITS 15 BITS 21 BITS                                                                                                                                                                       |                                                                                         |              |
|         | ◄ DIRECTION OF DATA FLOW FROM SV MSB FIRST                                                                                                                                                                            | DIRECTION OF DATA FLOW FROM SV MSB FIRST<br>MSB FIRST<br>100 BITS 2 SECONDS             |              |
|         |                                                                                                                                                                                                                       | PM-Y AUT1 AUT1 RESERVED CRC                                                             |              |
|         | 201 216 247 266 277                                                                                                                                                                                                   | 15 BITS         31 BITS         19 BITS         11 BITS         24 BITS                 |              |
|         | PM-Y $\Delta UT1$ RESERVED     CRC       15 BITS     31 BITS     19 BITS     11 BITS     24 BITS                                                                                                                      | * MESSAGE TOW COLINT = 17 MSB OF ACTUAL TOW COLINT AT START OF NEXT 6-SECOND MESSAGE    |              |
|         | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE                                                                                                                                    | Figure 20-5. Message type 32 - Clock & EOP                                              |              |
|         | Figure 20-5. Message type 32 - Clock & EOP                                                                                                                                                                            |                                                                                         |              |

| Section<br>Number | IS-GPS-705 Rev                                    | A L5 SS and                                      | Nav User Segm                         | ent Interface                                                                                                                                                                                                                                                        | Proposed<br>Heading        | URA Definition Proposed Text |                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |                 |               |       |
|-------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|----------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------|---------------|-------|
|                   |                                                   |                                                  |                                       |                                                                                                                                                                                                                                                                      |                            |                              |                            | 1                                 | incoding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                 |               |       |
| 20.3.3            | <b>←</b>                                          |                                                  | DIRECTI<br>                           | ON OF DATA FLC<br>BITS — 2 S                                                                                                                                                                                                                                         |                            | <b>←</b>                     |                            | DIRECT                            | ION OF DATA F<br>BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOWIT        |              |                 |               |       |
|                   | 1 9<br>PRN 6<br>8 BITS BITS<br>MES<br>PREAMBLE "/ | 15 21<br>6 BITS<br>AGE TYPE ID<br>LERT" FLAG - 1 | AESSAGE<br>W COUNT*<br>17 BITS<br>BIT | 38       39       50       55       58       61       72         top       top       top       top       top       aton         11 BITS       BITS       11 BITS       26 BITS         URAoc INDEX       URAoc INDEX - 3 BITS       URAoc INDEX       atton - 3 MSBs |                            |                              |                            | 98<br>a <sub>t0-n</sub><br>6 BITS | 1     9     15     21     38     50     5       HFRN     MESSAGE     TOWCOUNT*     t <sub>cr</sub> 5       8 BITS     BITS     BITS     17 BITS     11 BITS     BITS       MESSAGE TYPE ID     Image: state s |              |              |                 |               |       |
|                   | <b>▲</b>                                          |                                                  | DIRECTI<br>100 B                      | ON OF DATA FLC                                                                                                                                                                                                                                                       |                            |                              |                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |                 |               |       |
|                   | 101                                               | 118 128 144                                      |                                       |                                                                                                                                                                                                                                                                      | 157 164 172 188            |                              |                            | 188                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              | URECT           | BITS <u>2</u> | SECON |
|                   | a <sub>f1-n</sub><br>17 LSE                       | a <sub>f2-n</sub><br>As 10 BITS                  | A <sub>0-n</sub><br>16 BITS           | А <sub>1-n</sub><br>13ВПS                                                                                                                                                                                                                                            | A <sub>2-n</sub><br>7 BITS | Δt <sub>LS</sub><br>8 BITS   | t <sub>ot</sub><br>16 BITS | WN <sub>α</sub>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101          | 118          | 128             | 144           | 157   |
|                   |                                                   |                                                  |                                       |                                                                                                                                                                                                                                                                      |                            |                              |                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 LSBs      | an<br>10 BTS | 70-1<br>16 BITS | 13BTS         | 78    |
|                   | <b>↓</b>                                          |                                                  | ——— DIRECTI                           | ON OF DATA FLC                                                                                                                                                                                                                                                       | T                          |                              |                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |                 |               |       |
|                   | 201                                               | 214 218                                          | 226                                   |                                                                                                                                                                                                                                                                      |                            |                              | 277                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>    ←</b> |              | DIRECT          | 10N OF DATA F | LOWFF |
|                   | WN <sub>LSF</sub>                                 | DN <u>At</u> LSF                                 |                                       | RESERVED                                                                                                                                                                                                                                                             |                            |                              |                            | CRC                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b> </b> €   |              | 100             | BIS 2         | SECC1 |
|                   | 13 BITS                                           | BITS 8 BITS                                      |                                       | 51 BITS                                                                                                                                                                                                                                                              |                            |                              |                            | 24 BITS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201 2        | 14 218 1     | 226             |               |       |
|                   | * MESSAGE TOW                                     | COUNT = 17 MSI                                   | B OF ACTUAL TOW                       |                                                                                                                                                                                                                                                                      | 13 BITS B                  | 4<br>ITS 8BITS               |                            | 51 BITS                           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |              |                 |               |       |
|                   | Figure 20-6. M                                    | essage type 3                                    | 33 - Clock & UT(                      | C                                                                                                                                                                                                                                                                    |                            | * MESSAGE TOWOO              | CUNT=17MSE                 | BOFACTUALTO/                      | VCCUNT AT ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4rtof        |              |                 |               |       |
|                   |                                                   |                                                  |                                       |                                                                                                                                                                                                                                                                      |                            |                              |                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | F            | igure 20-6. I   | Message ty    | pe 33 |

|                         |                       |         |                          |         |   | Rationale    |
|-------------------------|-----------------------|---------|--------------------------|---------|---|--------------|
|                         |                       |         |                          |         |   | nationale    |
|                         |                       |         |                          |         | 1 |              |
| RON                     | 1SV —                 | — M     | 38 FIRST —               |         |   | Rationale #1 |
|                         |                       |         |                          |         |   |              |
| 58                      | 61                    | 72      |                          | 98      |   |              |
|                         | $t_{\infty}$          |         | <b>a</b> <sub>10-r</sub> |         |   |              |
|                         | 11 BITS               |         | 26 BIT                   | S       |   |              |
| Ł                       | - URANED              | 2 INDEX | -3BITS                   | t       |   |              |
| – U                     | Ra <sub>nedi</sub> IN | DEX-31  | BITS                     | 21/60-  |   |              |
|                         |                       |         | <b>đ</b> 1-n-            |         |   |              |
|                         | 19/                   | M       | BARST-                   |         | I |              |
| NDS                     |                       |         |                          |         |   |              |
| 7                       | 164                   | 172     |                          | 188     |   |              |
| <b>4</b> <sub>2-n</sub> | Atis                  |         | ta                       | WNL     |   |              |
|                         | 8BITS                 | 14      |                          | 12 DITC |   |              |
|                         | OBIIC                 | K       |                          | 130113  | , |              |
|                         |                       |         |                          |         |   |              |
|                         |                       |         |                          |         |   |              |
| RO1                     | 1SV —                 | — ME    | BARST —                  |         |   |              |
| NDS                     |                       |         |                          | >       |   |              |
|                         |                       |         | 277                      |         |   |              |
|                         |                       |         |                          | OFIC    |   |              |
|                         |                       |         | 2                        | 4BITS   |   |              |
|                         |                       |         | <u> </u>                 |         |   |              |
|                         |                       |         |                          |         |   |              |
|                         |                       |         |                          |         |   |              |
| -NE                     | XT6-SEO               | ONDME   | SSAGE                    |         |   |              |
|                         |                       |         |                          |         |   |              |
|                         |                       |         |                          |         |   |              |
| 3 - (                   | Clock 8               | utc     |                          |         |   |              |
|                         |                       |         |                          |         |   |              |

| Section | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                            | Proposed | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number  |                                                                                   | Heading  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20.3.3  | DIRECTION OF DATA FLOW FROMSV MSBFIRST     100 BITS 2 SECONDS     2 SECONDS     1 |          | DIFECTION OF DATA FLOW FROM<br>100 BITS 2 SECONDS<br>1 9 15 21 10 BITS 2 SECONDS<br>1 9 15 21 10 BITS 2 SECONDS<br>1 9 15 21 10 BITS 1 7 BITS 1 11 BITS 1 BITS 1 11 BITS 1 BITS 1 11 BITS 1 11 BITS 2 SECONDS<br>1 00 BITS 2 SECONDS<br>1 01 1118 128 139 151<br>1 00 BITS 2 SECONDS<br>1 01 1118 128 139 151<br>1 01 1118 128 139 151<br>1 0 BITS 1 11 BITS 1 11 BITS 2 SECONDS<br>1 01 1118 128 139 151<br>1 0 BITS 2 SECONDS<br>1 01 1118 128 139 151<br>1 0 BITS 2 SECONDS<br>1 01 118 128 139 151<br>1 0 BITS 2 SECONDS<br>1 01 118 128 139 151<br>1 0 BITS 2 SECONDS<br>1 01 118 128 139 151<br>1 0 BITS 2 SECONDS<br>2 SECONDS<br>1 01 118 128 139 151<br>1 0 BITS 2 SECONDS<br>2 SECONDS<br>2 01 EDC<br>7 6 LSBs<br>* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF N<br>CDC = Clock Differential Correction<br>EDC = Ephemeris Differential Correction<br>Figure 20-7. Message type 34 - Clock |
|         |                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                           |             |            |   | Rationale    |
|---------------------------|-------------|------------|---|--------------|
| //sv                      | MSB FIRST   |            |   | Rationale #1 |
| )                         |             |            | 1 |              |
| 61<br>+                   | 72          | 98         |   |              |
| ∞<br>11 BITS              | 261         |            |   |              |
|                           | EX - 3 BITS | ]          |   |              |
| IRA <sub>NED1</sub> INDEX | - 3BITS     |            |   |              |
|                           | di          |            |   |              |
| //sv                      | MSB FIRST   |            |   |              |
|                           |             |            |   |              |
| CDC                       |             | 185<br>EDC |   |              |
| 34 BITS                   |             | 16 MSBs    |   |              |
|                           |             | TO MICES   | J |              |
|                           |             |            |   |              |
| //sv                      | MSB FIRST   |            | 4 |              |
| ;                         |             |            |   |              |
|                           | 277         |            |   |              |
|                           |             | CRC        |   |              |
|                           |             | 24 BITS    |   |              |
|                           |             |            |   |              |
| JEXT 6-SECON              | D MESSAGE   | :          |   |              |
|                           |             |            |   |              |
|                           |             |            |   |              |
|                           |             |            |   |              |
| & Difforo                 | ntial Cor   | rection    |   |              |
| & Differe                 |             | Tection    |   |              |
|                           |             |            |   |              |
|                           |             |            |   |              |
|                           |             |            |   |              |
|                           |             |            |   |              |

| Section | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proposed URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rationale                                                                     |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Number  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |
| 20.3.3  | DIRECTION OF DATA FLOW FROM SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DIRECTION OF DATA FLOW FROM SV — MSB F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rationale #1                                                                  |
|         | 1       9       15       21       38       39       50       55       58       61       72       98         PRN       MESSAGE<br>TOW COUNT*       top       top       top       top       atom         8 BITS       BITS       BITS       17 BITS       11 BITS       BITS       11 BITS       26 BITS         MESSAGE TYPE ID       Image: NDEX       Image: NDEX - 3 BITS       Image: NDEX - 3 BITS       Image: NDEX - 3 BITS         PREAMBLE       "ALERT" FLAG-1 BIT       UPAge: NDEX       Image: NDEX       Image: NDEX       Image: NDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         9         15         21         38         39         50         55         58         61         72           PRN         MESSAGE<br>TOW COUNT*         top         toc         toc         11         BITS         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< th=""><th>98<br/>a<sub>10-n</sub><br/>26 BITS<br/>BITS<br/>S<br/>a<sub>11-n</sub> - 3 MSBs</th></td<>                                                                                       | 98<br>a <sub>10-n</sub><br>26 BITS<br>BITS<br>S<br>a <sub>11-n</sub> - 3 MSBs |
|         | DIRECTION OF DATA FLOW FROM SV MSB FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Image: Distribution of data flow from sv         MSB F           Image: Distribution of data flow from sv         MSB F           Image: Distribution of data flow from sv         MSB F           Image: Distribution of data flow from sv         MSB F           Image: Distribution of data flow from sv         MSB F           Image: Distribution of data flow from sv         MSB F           Image: Distribution of data flow from sv         MSB F           Image: Distribution of data flow from sv         Image: Distribution of data flow from sv           Image: Distribution of data flow from sv         Image: Distribution of data flow from sv           Image: Distribution of data flow from sv         Image: Distribution of data flow from sv           Image: Distribution of data flow from sv         Image: Distribution of data flow from sv           Image: Distribution of data flow from sv         Image: Distribution of data flow from sv           Image: Distribution of data flow from sv         Image: Distribution of data flow from sv           Image: Distribution of data flow from sv         Image: Distribution of data flow flow from sv           Image: Distribution of data flow from sv         Image: Distribution of data flow flow flow flow flow flow flow flow | -IRST                                                                         |
|         | 101         118         128         144         157         159         176         189         196           art-n         are-n         t_GGTC         WNgGTO         AogGTC         Aregto         AegGTC         Aregto         Aregdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | att-n     att-n     t <sub>GGTO</sub> WN <sub>GGTO</sub> AoggTO     A       17 LSBs     10 BITS     16 BITS     13 BITS     16 BITS     13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arggto Aggto<br>3 BITS 7 BITS 5 BITS<br>RESERVED                              |
|         | GNSSID-3 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GINSS ID – 3 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIRST                                                                         |
|         | DIRECTION OF DATA FLOW FROMSV — MSB FIRST — 100 PUTS — 0 CE CONIDO — MSB FIRST — 100 PUTS — 10 | 201 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RESERVED 76 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRC 24 BITS                                                                   |
|         | RESERVED     CRC       76 BITS     24 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AGE                                                                           |
|         | * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figure 20-8. Message type 35 - Clock & GGTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                             |
|         | Figure 20-8. Message type 35 - Clock & GGTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |

| Section          | IS-GPS-705 Rev A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L5 SS and | l Nav User S | egment Inte | erfaces |  |  |  |         | Proposed                                   | URA Defin                                                                             | ition Prop                                                          | bosed                  | Text                               |                                                                                                                         |                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-------------|---------|--|--|--|---------|--------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Number           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |              |             |         |  |  |  |         | Heading                                    |                                                                                       |                                                                     |                        |                                    |                                                                                                                         |                                               |
| Number<br>20.3.3 | DIFECTION OF DATA FLOW FROM SV       MSB FIRST         100 BITS       2 SECONDS         100 BITS       11 BITS       11 BITS       2 SECONDS         N ESSAGE TYPE ID       URA <sub>vc</sub> INDEX - 3 BITS         MESSAGE TYPE ID       URA <sub>vc</sub> INDEX - 3 BITS         MERAMBLE       "ALERT" FLAG-1 BIT       URA <sub>vc</sub> INDEX - 3 BITS         DIFECTION OF DATA FLOW FROM SV       MSB FIRST         100 BITS       2 SECONDS         101       118       128         100 BITS       2 SECONDS         101       118       TEXT MESSAGE (18 & BIT CHAR)         101       118       TEXT MESSAGE (18 & BIT CHAR)         101       118       128         101 |           |              |             |         |  |  |  | Heading | 1 9<br>8 BITS 1<br>9 PREAMBLE<br>101<br>17 | 15<br>PRN 6 6<br>BITS BITS<br>VESSAGE TYF<br>"ALERT" FL<br>118<br>atim 118<br>128Bs 1 | 21<br>TOW<br>17<br>PE ID<br>AG - 1 BT<br>a <sub>l2n</sub><br>0 BITS |                        | ECTION OF D<br>00 BITS             | ATA FLOW FRC<br>2 SECOND<br>50 55 58<br>5 BITS<br>BITS<br>RA <sub>NED</sub> INDEX<br>ATA FLOW FRC<br>73<br>ATA FLOW FRC |                                               |
|                  | DIFECTION OF DATA FLOW FROM SV MSB FIRST<br>100 BITS 2 SECONDS<br>276<br>277<br>TEXT MESSAGE (18 & BIT CHAR)<br>71 LSBs<br>TEXT PAGE RESERVED - 1 BIT<br>* MESSAGE TOW COUNT = 17 MSBs OF ACTUAL TOW COUNT AT START OF NEXT 6 SECOND MESSAGE<br>Eigure 20-9 Message type 36 - Clock & Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |              |             |         |  |  |  |         |                                            | ▲ 201 * MESSAGE 1                                                                     | °CW COUNT =                                                         | TEXT<br>17 MSBs<br>Fig | MESSAGE (<br>71 LSB:<br>COF ACTUAL | 00 BITS<br>188-BIT CHA<br>3<br>TOW COUN<br>9. Messa                                                                     | 2 SECOND<br>R)<br>TAT START OF<br>age type 36 |
|                  | Figure 20-9. Mess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | age type  | 30 - CIOCK & | lext        |         |  |  |  |         |                                            |                                                                                       |                                                                     |                        |                                    |                                                                                                                         |                                               |



| Section    | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                | Proposed                                                             | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                | Heading                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20.3.3     | DIRECTION OF DATA FLOW FROM SV<br>100 BITS 2 SECONDS<br>J38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - MSB FIRST                                                                                                                                                                                                    |                                                                      | DIRECTION OF DATA FLOW<br>DIRECTION OF DATA FLOW<br>100 BITS 2 SEC<br>138                                                                                                                                                                                                                                                                                                                                                |
|            | 1         9         15         21         39         50         55         58         61           PRN         MESSAGE<br>TOW COUNT*         top         top         top         top         11         BITS         11 <td>72     98       ato-n     26 BITS       26 BITS     3 BITS       3 BITS     att-n - 3 MSBs</td> <td></td> <td>1     9     15     21     39     50     5       PRN     MESSAGE<br/>TOW COUNT*     top     5     5       8 BITS     BITS     BITS     17 BITS     11 BITS     BITS       MESSAGE TYPE ID     MESSAGE TYPE ID     URANED IND</td> | 72     98       ato-n     26 BITS       26 BITS     3 BITS       3 BITS     att-n - 3 MSBs                                                                                                                     |                                                                      | 1     9     15     21     39     50     5       PRN     MESSAGE<br>TOW COUNT*     top     5     5       8 BITS     BITS     BITS     17 BITS     11 BITS     BITS       MESSAGE TYPE ID     MESSAGE TYPE ID     URANED IND                                                                                                                                                                                               |
|            | DIRECTION OF DATA FLOW FROM SV     DIRECTION OF DATA FLOW FROM SV     DIRECTION OF DATA FLOW FROM SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                | DIRECTION OF DATA FLOW     DIRECTION OF DATA FLOW     100 BITS 2 SEC |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 101         118         128         141         149         155         158         169           ar1-n         ar2-n         WNa-n         toa         PRNa         e         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111<                                                                                                                                                                                                                                                                                                                                                    | 180         191           δ         Ω         √A           BITS         11 BITS         10 MSBs                                                                                                                |                                                                      | 101     118     128     141     149     153       aff-n     ar2-n     WNa-n     toa     PRNa       17 LSBs     10 BITS     13 BITS     8 BITS     6 BITS                                                                                                                                                                                                                                                                 |
|            | L1 HEALTH – 1 BIT –<br>L2 HEALTH – 1 BIT –<br>L5 HEALTH – 1 BIT –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                | L2 HEALTH – 1 BIT<br>L5 HEALTH – 1 BIT<br>DIRECTION OF DATA FLOW     |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | DIRECTION OF DATA FLOW FROM SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - MSB FIRST                                                                                                                                                                                                    |                                                                      | <u>201 208 224 240</u>                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                      | Ω <sub>0</sub> ω         M <sub>0</sub> 7 LSBs         16 BITS         16 BITS         16 BITS                                                                                                                                                                                                                                                                                                                           |
|            | * MESSAGE TOW COUNT = 17 MSBs OF ACTUAL TOW COUNT AT START OF NEXT 6-SECON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ID MESSAGE                                                                                                                                                                                                     |                                                                      | * MESSAGE TOW COUNT = 17 MSBs OF ACTUAL TOW COUNT AT STAR<br>Figure 20-10. Message Type 37 - Cloc                                                                                                                                                                                                                                                                                                                        |
|            | Figure 20-10. Message Type 37 - Clock & Midi Almanac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20.3.3.1.1 | The ephemeris parameters in the message type 10 and type 11 describe<br>SV during the curve fit intervals of three hours. The nominal transmission<br>shall coincide with the first two hours of the curve fit interval. The period<br>ephemeris data coincides with the entire three-hour curve fit interval. Ta<br>of the orbital parameters using terminology typical of Keplerian orbital p<br>however, that the transmitted parameter values are expressed such that<br>trajectory fit in Earth-Centered, Earth-Fixed (ECEF) coordinates for each s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the orbit of the transmitting<br>in interval is two hours, and<br>of applicability for<br>able 20-I gives the definition<br>arameters; it is noted,<br>they provide the best<br>pecific fit interval. The user |                                                                      | The ephemeris parameters in the message type 10 and<br>transmitting SV during the curve fit interval of three h<br>is two hours, and shall coincide with the first two hour<br>predicted period of applicability for ephemeris data co<br>curve fit interval. Table 30-I gives the definition of the<br>typical of Keplerian orbital parameters; it is noted, ho<br>values are expressed such that they provide the best |
|            | shall not interpret intermediate coordinate values as pertaining to any co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nventional coordinate                                                                                                                                                                                          |                                                                      | Fixed (ECEF) coordinates for each specific fit interval                                                                                                                                                                                                                                                                                                                                                                  |

|                                                             |                                                        |                                                                   |                                                            |                                                                                                    |                                                              |    | Rationale    |
|-------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----|--------------|
| V FRO                                                       | MSV -                                                  |                                                                   | - MSB                                                      | FIRST                                                                                              |                                                              |    | Rationale #1 |
| CONDS                                                       | S —                                                    |                                                                   |                                                            |                                                                                                    |                                                              |    |              |
| 5 58                                                        | 61                                                     |                                                                   | 72                                                         |                                                                                                    | 98                                                           |    |              |
|                                                             | 1                                                      | t <sub>oc</sub>                                                   |                                                            | a <sub>f0-n</sub>                                                                                  |                                                              |    |              |
|                                                             | 11                                                     | BITS                                                              |                                                            | 26 BITS                                                                                            |                                                              |    |              |
| Ĩ.                                                          | — UR/                                                  |                                                                   | DEX - :                                                    | 3 BITS                                                                                             | 1                                                            |    |              |
| EX                                                          | JRANED                                                 |                                                                   | - 3 BI                                                     | a <sub>f1-n</sub> – 3 M                                                                            | 1SBs                                                         |    |              |
|                                                             |                                                        |                                                                   |                                                            |                                                                                                    |                                                              |    |              |
|                                                             | MSV -                                                  |                                                                   |                                                            |                                                                                                    |                                                              |    |              |
| 150                                                         |                                                        | 100                                                               |                                                            |                                                                                                    | ا                                                            |    |              |
| 100                                                         | <u> </u>                                               | 109                                                               |                                                            | 180                                                                                                | 191                                                          |    |              |
| 11 F                                                        | STR                                                    | 11 F                                                              | RITS                                                       | 11 BITS                                                                                            | 10 MSRc                                                      |    |              |
|                                                             |                                                        |                                                                   |                                                            |                                                                                                    | 10 10 0005                                                   |    |              |
| V FROI                                                      | MSV -<br>6                                             |                                                                   |                                                            |                                                                                                    |                                                              |    |              |
| 256                                                         |                                                        | 267                                                               | 2                                                          | 77                                                                                                 |                                                              |    |              |
| â                                                           | a <sub>f0</sub>                                        | a <sub>fi</sub>                                                   |                                                            | CRC                                                                                                | ;                                                            |    |              |
| 11 E                                                        | BITS                                                   | 10 BIT                                                            | S                                                          | 24 Bl                                                                                              | rs                                                           |    |              |
| TOFN                                                        | JEXT 6-                                                | SECON                                                             | D MES                                                      | SSAGE                                                                                              |                                                              |    |              |
| .K Q                                                        | iviiui                                                 |                                                                   |                                                            |                                                                                                    |                                                              |    |              |
|                                                             |                                                        |                                                                   |                                                            |                                                                                                    |                                                              |    |              |
| id tyj                                                      | pe 11                                                  | desc                                                              | ribe                                                       | the orbit o                                                                                        | of the                                                       |    | Rationale #1 |
| id typ<br>iours                                             | pe 11<br>5. The                                        | desci<br>e nom                                                    | ribe<br>iinal<br>fit ir                                    | the orbit of<br>transmiss                                                                          | of the<br>ion interv                                         | al | Rationale #1 |
| id typ<br>iours<br>rs of                                    | pe 11<br>5. The<br>the                                 | descu<br>e nom<br>curve                                           | ribe<br>iinal<br>fit ir                                    | the orbit of<br>transmiss<br>nterval. The                                                          | of the<br>ion intervine<br>he                                | al | Rationale #1 |
| id typ<br>iours<br>rs of<br>oinci                           | pe 11<br>5. The<br>the<br>des v                        | descu<br>e nom<br>curve<br>vith th                                | ribe<br>iinal<br>fit ir<br>ne er<br>eter                   | the orbit of<br>transmiss<br>nterval. Th<br>ntire three<br>s using ter                             | of the<br>ion intervie<br>ne<br>e-hour                       | al | Rationale #1 |
| id typ<br>iours<br>irs of<br>oinci<br>e orb<br>weve         | pe 11<br>5. The<br>the<br>des v<br>pital p<br>er, th   | descu<br>e nom<br>curve<br>vith th<br>param<br>at the             | ribe<br>iinal<br>fit ir<br>ne er<br>eter                   | the orbit of<br>transmiss<br>nterval. Th<br>ntire three<br>s using ter<br>nsmitted of              | of the<br>ion interv<br>e<br>e-hour<br>minology<br>parameter | al | Rationale #1 |
| id typ<br>iours<br>rs of<br>oinci<br>e ork<br>weve<br>traje | pe 11<br>5. The<br>des v<br>bital p<br>er, th<br>ctorv | descu<br>e nom<br>curve<br>vith th<br>param<br>at the<br>v fit in | ribe<br>iinal<br>fit ir<br>ne er<br>eter<br>e trai<br>Eart | the orbit of<br>transmiss<br>nterval. Th<br>ntire three<br>s using ter<br>nsmitted p<br>ch-Centere | of the<br>ion interv<br>e-hour<br>minology<br>parameter      | al | Rationale #1 |

| Section<br>Number | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                         | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rationale                                                                                                                                                                                                                                                                                                             |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | intermediate coordinate values as pertaining to any conventional coordinate system.<br>The $t_{oe}$ term shall provide the user with a convenient means for detecting any change in the ephemeris representation parameters. The $t_{oe}$ is provided in both message type 10 and 11 for the purpose of comparison with the $t_{oc}$ term in message type 30 - 37. Whenever these three terms do not match, a data set cutover has occurred and new data must be collected. The timing of the $t_{oe}$ and constraints on the $t_{oc}$ and $t_{oe}$ are defined in paragraph 20.3.4.4.                                                                |                                                                                                                                                                                                                                                                                                                       |
| 20.3.3.1.1        | Any change in the message type 10 and 11 ephemeris data will be accomplished with a simultaneous change in the $t_{oe}$ value ( $t_{oe}$ =Ephemeris data reference time of week). The CS (Block IIF) or SV (Block IIIA) will ensure that the $t_{oe}$ value, for at least the first data set transmitted by an SV after an upload, is different from that transmitted prior to the cutover. See Section 20.3.4.5 of IS-GPS-200 for additional information regarding $t_{oe}$ . |                     | Any change in the message type 10 and 11 ephemeris data will be accomplished with a simultaneous change in the $t_{oe}$ value. The CS will assure the $t_{oe}$ value for Block IIR-M/IIF and SS will assure the $t_{oe}$ value for Block III, for at least the first data set transmitted by an SV after an upload, is different from that transmitted prior to the cutover. See Section 20.3.4.5 for additional information regarding $t_{oe}$ .                                                                                                                                                                                                     | Rationale #2-<br>URA<br>components<br>(URA <sub>ED</sub> and<br>URA <sub>NED</sub> ) from<br>different<br>upload or fit<br>intervals will<br>not give a<br>valid<br>indication of<br>signal<br>accuracy or<br>integrity.<br>These<br>changes<br>provide<br>clarification<br>of how URA<br>is computed<br>by the user. |
| 20.3.3.1.1        | The CNAV message will contain information that allows users to operate when integrity is assured.<br>This is accomplished using an integrity assured URA value in conjunction with an integrity status flag.<br>The URA value is the RSS of URAoe and URAoc; URA is integrity assured to the enhanced level only<br>when the integrity status flag is "1".                                                                                                                     |                     | The CNAV messages contain information that allows users to take advantage of situations when integrity is assured to the enhanced level. This is accomplished using a composite integrity assured URA value in conjunction with an integrity status flag. The composite integrity assured URA (IAURA) value is the RSS of an elevation-dependent function of the upper bound value of the URA <sub>ED</sub> component and the upper bound value of the URA <sub>NED</sub> component. The composite IAURA value is assured to the enhanced level only when the integrity status flag is "1"; otherwise the IAURA value is assured to the legacy level. | Rationale #1                                                                                                                                                                                                                                                                                                          |
| 20.3.3.1.1        | Bit 272 of Message Type 10 is the Integrity Status Flag (ISF). A "0" in bit position 272 indicates that the conveying signal is provided with the legacy level of integrity assurance. That is, the probability that                                                                                                                                                                                                                                                           |                     | Bit 272 of Message Type 10 is the Integrity Status Flag (ISF). A "0" in bit position 272 indicates that the conveying signal is provided with the legacy level of integrity assurance. That is, the                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rationale #1                                                                                                                                                                                                                                                                                                          |

| Section          | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proposed                                    | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rationale    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Number           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heading                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                  | the instantaneous URE of the conveying signal exceeds 4.42 times the upper bound value of the current broadcast URA index, for more than 5.2 seconds, without an accompanying alert, is less than 1 x 10 <sup>-5</sup> per hour.                                                                                                                                                                                                                                                                                                                                                                                        |                                             | probability that the instantaneous URE of the conveying signal exceeds 4.42 times the current broadcast IAURA value, for more than 5.2 seconds, without an accompanying alert, is less than 1E-5 per hour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| 20.3.3.1.1       | A "1" in bit-position 272 indicates that the conveying signal is provided with an enhanced level of integrity assurance. That is, the probability that the instantaneous URE of the conveying signal exceeds 5.73 times the upper bound value of the current broadcast URA index, for more than 5.2 seconds, without an accompanying alert, is less than 1 x 10 <sup>-8</sup> per hour. The probabilities associated with the nominal and lower bound values of the current broadcast URA index are not defined.                                                                                                        |                                             | A "1" in bit-position 272 indicates that the conveying signal is provided with an enhanced level of integrity assurance. That is, the probability that the instantaneous URE of the conveying signal exceeds 5.73 times the current broadcast IAURA value, for more than 5.2 seconds, without an accompanying alert, is less than 1E-8 per hour. The probabilities associated with the nominal and lower bound values of the current broadcast URA <sub>ED</sub> index, URA <sub>NED</sub> indexes, and related URA values are not defined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rationale #1 |
| 20.3.3.1.1       | In this context, an "alert" is defined as any indication or characteristic in the conveying signal, as specified elsewhere in this document, which signifies that the conveying signal may be invalid and should not be used, such as, not Operational-Healthy, Non-Standard Code, parity error, etc. In this context, the term URA refers to the composite URA, calculated as the root-sum-squared of the individual URA components in the conveying signal.                                                                                                                                                           |                                             | In this context, an "alert" is defined as any indication or characteristic of the conveying signal, as specified elsewhere in this document, which signifies to users that the conveying signal may be invalid or should not be used, such as the health bits not indicating operational-healthy, broadcasting non-standard code-parity error, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rationale #2 |
| 20.3.3.1.1<br>.4 | 20.3.3.1.1.4 <u>SV Accuracy</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Elevation-<br>Dependent<br>(ED)<br>Accuracy |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| 20.3.3.1.1<br>.4 | Bits 66 through 70 of message type 10 shall contain the ephemeris User Range Accuracy (URA <sub>oe</sub> ) index<br>of the SV for the unauthorized (non-Precise Positioning Service) user. The URA <sub>oe</sub> index shall provide<br>the ephemeris-related user range accuracy index of the SV as a function of the current ephemeris<br>message curve fit interval. While the ephemeris-related URA may vary over the ephemeris message<br>curve fit interval, the URA <sub>oe</sub> index (N) in message type 10 shall correspond to the maximum URA <sub>oe</sub><br>expected over the entire curve fit interval. |                                             | Bits 66 through 70 of message type 10 shall contain the elevation-dependent (ED) component<br>User Range Accuracy (URA <sub>ED</sub> ) index for the standard positioning service user. The URA <sub>ED</sub><br>index shall provide the ED-related URA index for the current ephemeris curve fit interval.<br>While the ED-related URA may vary over the ephemeris curve fit interval and over the<br>satellite footprint, the URA <sub>ED</sub> index (N) in message type 10 shall correspond to the maximum<br>URA <sub>ED</sub> expected over the entire ephemeris curve fit interval for the worst-case location within<br>the SV footprint (i.e., two points at the edge of the SV footprint). At the best-case location<br>within the SV footprint (i.e., directly below the SV along the SV nadir vector), the<br>corresponding URA <sub>ED</sub> . is zero.<br>The URA <sub>ED</sub> index is a signed, two's complement integer in the range of +15 to -16 and has the<br>following relationship to the ED URA: | Rationale #1 |
| 20.3.3.1.1<br>.4 | The URA <sub>oe</sub> index is a signed, two's complement integer in the range of +15 to -16 and has the following relationship to the ephemeris URA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | The UR <sub>ED</sub> index is a signed, two's complement integer in the range of +15 to -16 and has the following relationship to the ED URA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rationale #1 |

| IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces |                                     |                                                                                                  |                | Proposed      | URA Definition Proposed Text     |              |                                 |                                                    |  |
|--------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|----------------|---------------|----------------------------------|--------------|---------------------------------|----------------------------------------------------|--|
|                                                        |                                     |                                                                                                  |                | Heading       |                                  |              |                                 |                                                    |  |
|                                                        | URA <sub>ce</sub> Index             | URA <sub>oe</sub> (meters)                                                                       |                |               | URA <sub>ED</sub> Index          |              | URA <sub>ED</sub> (meters)      |                                                    |  |
|                                                        |                                     |                                                                                                  |                |               | 15                               | 6144.00      | < URA <sub>ED</sub>             | (or no accuracy prediction is available)           |  |
|                                                        | 15                                  | $6144.00 < URA_{oe}$                                                                             |                |               | 14                               | 3072.00      | < URA <sub>ED</sub> =           | 6144.00                                            |  |
|                                                        | 14                                  | $3072.00 < \text{URA}_{\text{oe}} \leq$                                                          | 6144.00        |               | 13                               | 1536.00      | < URA <sub>ED</sub> =           | 3072.00                                            |  |
|                                                        | 13                                  | $1536.00 < URA_{oe} \leq$                                                                        | 3072.00        |               | 12                               | 768.00       | < URA <sub>ED</sub> =           | 1536.00                                            |  |
|                                                        | 12                                  | $768.00 < \text{URA}_{\text{oe}} \leq$                                                           | 1536.00        |               | 11                               | 384.00       |                                 | 768.00                                             |  |
|                                                        | 11                                  | $384.00 < \text{URA}_{\text{oe}} \leq$                                                           | 768.00         |               | 10                               | 102.00       | $\langle URA_{ED} \rangle =$    | 284.00                                             |  |
|                                                        | 10                                  | $192.00 < \text{URA}_{\text{oe}} \leq$                                                           | 384.00         |               | 10                               | 192.00       | $< URA_{ED} =$                  | 384.00                                             |  |
|                                                        | 9                                   | $96.00 < \text{URA}_{\text{oe}} \leq$                                                            | 192.00         |               | 9                                | 96.00        | < URA <sub>ED</sub> =           | 192.00                                             |  |
|                                                        | 8                                   | $48.00 < \text{URA}_{\text{oe}} \leq$                                                            | 96.00          |               | 8                                | 48.00        | < URA <sub>ED</sub> =           | 96.00                                              |  |
|                                                        | 7                                   | $24.00 < \text{URA}_{\text{oe}} \leq$                                                            | 48.00          |               | 7                                | 24.00        | < URA <sub>ED</sub> =           | 48.00                                              |  |
|                                                        | 6                                   | $13.65 < \text{URA}_{\text{oe}} \leq$                                                            | 24.00          |               | 6                                | 13.65        | < URA <sub>ED</sub> =           | 24.00                                              |  |
|                                                        | 5                                   | $9.65 < URA_{oe} \leq$                                                                           | 13.65          |               | 5                                | 9.65         | < URA <sub>ED</sub> =           | 13.65                                              |  |
|                                                        | 4                                   | $0.85 < URA_{oe} \leq$                                                                           | 9.00           |               | 4                                | 6.85         | < URA <sub>ED</sub> =           | 9.65                                               |  |
|                                                        | 2<br>2                              | $4.85 < \text{URA}_{\text{oe}} \leq 2.40 < \text{URA}_{\text{oe}} \leq 100 \text{A}_{\text{oe}}$ | 0.83           |               | 3                                | 4.85         | < URA <sub>ED</sub> =           | 6.85                                               |  |
|                                                        | 2                                   | $3.40 < \text{URA}_{\text{oe}} \leq 2.40 < \text{URA}_{\text{oe}} \leq 10.63$                    | 4.03           |               | 2                                | 3 40         | $\leq \text{URA}_{\text{ED}} =$ | 4.85                                               |  |
|                                                        | 0                                   | $1.70 < \text{URA}_{\text{oe}} \leq$                                                             | 2.40           |               | 1                                | 2.40         | $\langle UPA \rangle =$         | 3.40                                               |  |
|                                                        | -1                                  | $1.70 < URA_{oe} \leq$<br>1.20 < URA <                                                           | 2.40           |               | 1                                | 2.40         | $\langle URA_{ED} \rangle =$    | 2.40                                               |  |
|                                                        | _2                                  | $0.85 < URA \leq$                                                                                | 1.70           |               | 0                                | 1.70         | $< URA_{ED} =$                  | 2.40                                               |  |
|                                                        | -2                                  | $0.60 < \text{URA}_{00} \leq$                                                                    | 0.85           |               | -1                               | 1.20         | <ura<sub>ED =</ura<sub>         | 1.70                                               |  |
|                                                        | -4                                  | $0.43 < \text{URA}_{} \leq$                                                                      | 0.60           |               | -2                               | 0.85         | < URA <sub>ED</sub> =           | 1.20                                               |  |
|                                                        | -5                                  | $0.30 < \text{URA}_{\text{oe}} \leq$                                                             | 0.43           |               | -3                               | 0.60         | < URA <sub>ED</sub> =           | 0.85                                               |  |
|                                                        | -6                                  | $0.21 < \text{URA}_{co} \leq$                                                                    | 0.30           |               | -4                               | 0.43         | < URA <sub>ED</sub> =           | 0.60                                               |  |
|                                                        | -7                                  | $0.15 < \text{URA}_{\text{oe}} \leq$                                                             | 0.21           |               | -5                               | 0.30         | < URA <sub>ED</sub> =           | 0.43                                               |  |
|                                                        | -8                                  | $0.11 < \text{URA}_{\text{oe}} \leq$                                                             | 0.15           |               | -6                               | 0.21         | < URA <sub>ED</sub> =           | 0.30                                               |  |
|                                                        | -9                                  | $0.08 < \text{URA}_{\text{oe}} \leq$                                                             | 0.11           |               | -7                               | 0.15         | < URA <sub>ED</sub> =           | 0.21                                               |  |
|                                                        | -10                                 | $0.06 < \text{URA}_{\text{oe}} \leq$                                                             | 0.08           |               | -8                               | 0.11         |                                 | 0.15                                               |  |
|                                                        | -11                                 | $0.04 < \text{URA}_{\text{oe}} \leq$                                                             | 0.06           |               | -0                               | 0.11         |                                 | 0.11                                               |  |
|                                                        | -12                                 | 0.03 < URA <sub>oe</sub> ≤                                                                       | 0.04           |               | -9                               | 0.06         | $\langle URA_{ED} \rangle =$    | 0.00                                               |  |
|                                                        | -13                                 | $0.02$ < URA <sub>oe</sub> $\leq$                                                                | 0.03           |               | -10                              | 0.06         | $< URA_{ED} =$                  | 0.08                                               |  |
|                                                        | -14                                 | $0.01$ < URA <sub>oe</sub> $\leq$                                                                | 0.02           |               | -11                              | 0.04         | < URA <sub>ED</sub> =           | 0.06                                               |  |
|                                                        | -15                                 | $URA_{oe} \leq$                                                                                  | 0.01           |               | -12                              | 0.03         | < URA <sub>ED</sub> =           | 0.04                                               |  |
|                                                        | -16                                 | No accuracy prediction avai                                                                      | lable—use a    | own risk      | -13                              | 0.02         | < URA <sub>ED</sub> =           | 0.03                                               |  |
|                                                        |                                     |                                                                                                  |                |               | -14                              | 0.01         | < URA <sub>ED</sub> =           | 0.02                                               |  |
|                                                        |                                     |                                                                                                  |                |               | -15                              |              | $URA_{ED} =$                    | 0.01                                               |  |
|                                                        |                                     |                                                                                                  |                |               | -16                              | No accur     | acy prediction ava              | ilable—use at own risk                             |  |
|                                                        | Integrity properties of the LIBA ar | a specified with respect to the upper bour                                                       | nd values of t | ne LIRA index |                                  |              | • •                             |                                                    |  |
|                                                        |                                     | e specified with respect to the upper bour                                                       |                |               | -                                | ()           |                                 |                                                    |  |
|                                                        | (see 20.3.3.1.1)                    |                                                                                                  |                |               | For each URA <sub>ED</sub> index | x (N), users | may compute a                   | a nominal URA <sub>ED</sub> value (X) as given by: |  |

| Section | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces | Proposed                                                                                            | URA Definition Proposed Text                                                                                               | Rationale |  |
|---------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Number  |                                                        | Heading                                                                                             |                                                                                                                            |           |  |
|         |                                                        |                                                                                                     |                                                                                                                            |           |  |
|         |                                                        |                                                                                                     | • If the value of N is 6 or less, but more than $-16$ , X = 2(1 + N/2),                                                    |           |  |
|         |                                                        |                                                                                                     | • If the value of N is 6 or more, but less than 15, $X = 2(N - 2)$ ,                                                       |           |  |
|         |                                                        |                                                                                                     | • N = -16 or N = 15 shall indicate the absence of an accuracy prediction and shall advise                                  |           |  |
|         |                                                        |                                                                                                     | the standard positioning service user to use that SV at his own risk.                                                      |           |  |
|         |                                                        |                                                                                                     | For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters, respectively.                                       |           |  |
|         |                                                        |                                                                                                     | The nominal URA <sub>ED</sub> value (X) is suitable for use as a conservative prediction of the RMS ED                     |           |  |
|         |                                                        |                                                                                                     | range errors for accuracy-related purposes in the pseudorange domain (e.g., measurement                                    |           |  |
|         |                                                        | deweighting, RAIM, FOM computations). Integrity properties of the IAURA <sub>ED</sub> are specified |                                                                                                                            |           |  |
|         |                                                        |                                                                                                     | with respect to the scaled (multiplied by either 4.42 or 5.73 as appropriate) upper bound                                  |           |  |
|         |                                                        |                                                                                                     | values of the broadcast URA <sub>ED</sub> index (see 230.3.3.1.1).                                                         |           |  |
|         |                                                        |                                                                                                     | For the nominal URA <sub>ED</sub> value and the IAURA <sub>ED</sub> value, users may compute an adjusted URA <sub>ED</sub> |           |  |
|         |                                                        |                                                                                                     | value as a function of SV elevation angle (E) as follows:                                                                  |           |  |
|         |                                                        |                                                                                                     | Adjusted Nominal URA <sub>ED</sub> = Nominal URA <sub>ED</sub> (sin(E+90 degrees))                                         |           |  |
|         |                                                        |                                                                                                     | Adjusted IAURA <sub>ED</sub> = IAURA <sub>ED</sub> (sin(E+90 degrees))                                                     |           |  |
|         |                                                        |                                                                                                     | URA <sub>ED</sub> and IAURA <sub>ED</sub> account for SIS contributions to user range error which include, but are         |           |  |
|         |                                                        |                                                                                                     | not limited to, the following: LSB representation/truncation error, alongtrack ephemeris                                   |           |  |
|         |                                                        |                                                                                                     | errors, and crosstrack ephemeris errors. URA <sub>ED</sub> and IAURA <sub>ED</sub> do not account for user range           |           |  |
|         |                                                        |                                                                                                     | error contributions due to the inaccuracy of the broadcast ionospheric data parameters used                                |           |  |
|         |                                                        |                                                                                                     | in the single-frequency ionospheric model or for other atmospheric effects.                                                |           |  |
|         |                                                        |                                                                                                     |                                                                                                                            |           |  |

| Section<br>Number | IS-GPS-705 Rev A                     | L5 SS and Nav User Segmen                                                                                        | t Interfaces                                      |                                          |                                |                                    | Proposed<br>Heading | URA Definition I                                        | RA Definition Proposed Text                                                                                                                                                                 |                  |                          |                       |                               |  |  |  |
|-------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------|--------------------------------|------------------------------------|---------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|-----------------------|-------------------------------|--|--|--|
| 20.3.3.1.3        |                                      | Table 20-I. Message Ty                                                                                           | pes 10 and 11                                     | Parameters                               | (1 of 2)                       |                                    |                     | Table 20-I. Message Types 10 and 11 Parameters (1 of 2) |                                                                                                                                                                                             |                  |                          |                       |                               |  |  |  |
|                   | Parameter<br>Symbol                  | Parameter Description                                                                                            | No. of<br>Bits**                                  | Scale<br>Factor<br>([SB)                 | Effective<br>Range***          | Units                              |                     | Parameter<br>Symbol                                     | Parameter Description                                                                                                                                                                       | No. of<br>Bits** | Scale<br>Factor<br>(LSB) | Effective<br>Range*** | Units                         |  |  |  |
|                   | WN                                   | Week No.                                                                                                         | 13                                                | 1                                        | Trange                         | weeks                              |                     | WN                                                      | Week No.                                                                                                                                                                                    | 13               | 1                        |                       | weeks                         |  |  |  |
|                   | URA <sub>ce</sub> INDEX              | SV accuracy                                                                                                      | 5*                                                |                                          |                                | (sæ text)                          |                     | URA <sub>ED</sub> INDEX                                 | ED accuracy                                                                                                                                                                                 | 5*               |                          |                       | (sæ text)                     |  |  |  |
|                   | Signal health $(1.1/1.2/1.5)$        |                                                                                                                  | 3                                                 | 1                                        |                                | (see text)                         |                     | Signal health (L1/L2/L5)                                |                                                                                                                                                                                             | 3                | 1                        |                       | (sæ text)                     |  |  |  |
|                   | t <sub>op</sub>                      | Data predict time of week                                                                                        | 11                                                | 300                                      | 604,500                        | seconds                            |                     | t <sub>op</sub>                                         | Data predict time of week                                                                                                                                                                   | 11               | 300                      | 604,500               | seconds                       |  |  |  |
|                   | ?A ****                              | Semi-major axis difference at                                                                                    | 26*                                               | 2-9                                      |                                | meters                             |                     | ?A****                                                  | Semi-major axis difference at reference time                                                                                                                                                | 26*              | 2-9                      |                       | meters                        |  |  |  |
|                   |                                      | Change rate in semi-maior                                                                                        | 25*                                               | 2 <sup>-21</sup>                         |                                | meters/sec                         |                     | Å                                                       | Change rate in semi-major axis                                                                                                                                                              | 25*              | 2-21                     |                       | meters/sec                    |  |  |  |
|                   | A                                    | axis                                                                                                             |                                                   |                                          |                                |                                    |                     | ?n <sub>0</sub>                                         | Mean Motion difference from computed value at reference                                                                                                                                     | 17*              | 2 <sup>-44</sup>         |                       | semi-circles/sec              |  |  |  |
|                   | ? n <sub>0</sub>                     | Mean Motion difference from<br>computed value at reference<br>time                                               | 17*                                               | 2 <sup>-44</sup>                         |                                | semi-circles/sec                   |                     | ?n <sub>0</sub>                                         | time<br>Rate of mean motion                                                                                                                                                                 | 23*              | 2 <sup>-57</sup>         |                       | semi-circles/sec <sup>2</sup> |  |  |  |
|                   | ? <b>n</b> <sub>0</sub>              | Rate of mean motion difference from computed                                                                     | 23*                                               | 2 <sup>-57</sup>                         |                                | semi-circles/sec <sup>2</sup>      |                     |                                                         | value                                                                                                                                                                                       | 22.1             | <b>-</b> <sup>32</sup>   |                       |                               |  |  |  |
|                   |                                      | value                                                                                                            | 20*                                               | <b>c</b> -32                             |                                |                                    |                     | M <sub>0-n</sub>                                        | Mean anomaly at reference time                                                                                                                                                              | 33*              | 252                      |                       | semi-circles                  |  |  |  |
|                   | M <sub>0-n</sub>                     | Mean anomaly at reference time                                                                                   | 33*                                               | 252                                      |                                | semi-circles                       |                     | e <sub>n</sub>                                          | Eccentricity                                                                                                                                                                                | 33               | 2-34                     | 0.03                  | dimensionless                 |  |  |  |
|                   | en                                   | Eccentricity                                                                                                     | 33                                                | 2 <sup>-34</sup>                         | 0.03                           | dimensionless                      |                     | ω <sub>h</sub>                                          | Argument of perigee                                                                                                                                                                         | 33*              | 2-32                     |                       | semi-circles                  |  |  |  |
|                   | ω <sub>n</sub>                       | Argument of perigee                                                                                              | 33*                                               | 2 <sup>-32</sup>                         |                                | semi-circles                       |                     | * Paramet                                               | <ul> <li>Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB;</li> <li>** See Figure 20.1 for complete bit allocation in message type 10;</li> </ul> |                  |                          |                       |                               |  |  |  |
|                   | * Parame<br>** See Fig<br>*** Unless | ters so indicated are two's complem<br>ure 20-1 for complete bit allocation<br>otherwise indicated in this colum | nent, with the<br>1 in message t<br>11, effective | sign bit (+ c<br>ype 10;<br>range is the | or -) occupying<br>e maximum r | g the MSB;<br>ange attainable with |                     | *** Unless<br>indicate<br>**** Relative                 | otherwise indicated in this colured bit allocation and scale factor.<br>to $A_{REF} = 26,559,710$ meters.                                                                                   | nn, effective    | range is the             | e maximum r           | ange attainable with          |  |  |  |
|                   | indicate<br>**** Relative            | ad bit allocation and scale factor.<br>e to $A_{REF} = 26,559,710$ meters.                                       |                                                   |                                          |                                |                                    |                     |                                                         |                                                                                                                                                                                             |                  |                          |                       |                               |  |  |  |
|                   |                                      |                                                                                                                  |                                                   |                                          |                                |                                    |                     |                                                         |                                                                                                                                                                                             |                  |                          |                       |                               |  |  |  |

| IS-GPS-705 Rev                                                                                                                                                                                                                                                                                        | A L5 SS and Nav User Segment Interf                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proposed<br>Heading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | URA Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rationale                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                       | Table 20-III. Clock Correction a                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and Accura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cy Paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rationale #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |
| Parameter         Symbol $t_{oc}$ URA <sub>oc</sub> Index         URA <sub>ocl</sub> Index         URA <sub>ocl</sub> Index         URA <sub>ocl</sub> Index         URA <sub>ocl</sub> Index         af1-n $a_{f0-n}$ **       See Final         ***       Summary See Final         ***       Unles | Parameter Description<br>Clock Data Reference Time of Week<br>SV Clock Accuracy Index<br>SV Clock Accuracy Change Index<br>SV Clock Accuracy Change Rate Index<br>SV Clock Drift Rate Correction Coefficient<br>SV Clock Drift Correction Coefficient<br>SV Clock Bias Correction Coefficient<br>SV Clock Bias Correction Coefficient<br>eters so indicated are two's complement, with<br>igures 20-3 through 20-10 for complete bit alk<br>s otherwise indicated in this column, effect | No. of<br>Bits**<br>11<br>5*<br>3<br>3<br>10*<br>20*<br>26*<br>the sign b<br>boation in p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Scale<br>Factor<br>(LSB)<br>300<br>$2^{-60}$<br>$2^{-48}$<br>$2^{-35}$<br>it (+ or -) oc<br>message type<br>e is the mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Effective<br>Range***<br>604,500<br>coupying the MS<br>es 30 to 37;<br>ximum range a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units<br>seconds<br>(see text)<br>(see text)<br>(see text)<br>sec/sec <sup>2</sup><br>sec/sec<br>seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parameter<br>Symbol<br>t <sub>cc</sub><br>URA <sub>NED</sub> Index<br>URA <sub>NED1</sub> Index<br>URA <sub>NED2</sub> Index<br>a <sub>f2-n</sub><br>a <sub>f1-n</sub><br>a <sub>f0-n</sub><br>* Paramet<br>** See Fig<br>*** Unless<br>indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parameter Description<br>Clock Data Reference Time of Week<br>NED Accuracy Index<br>NED Accuracy Change Index<br>NED Accuracy Change Rate Index<br>SV Clock Drift Rate Correction<br>Coefficient<br>SV Clock Drift Correction Coefficient<br>SV Clock Bias Correction Coefficient<br>ers so indicated are two's complement, with<br>res 20-3 through 20-10 for complete bit allo<br>otherwise indicated in this column, effect<br>d bit allocation and scale factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. of<br>Bits**<br>11<br>5*<br>3<br>3<br>10*<br>20*<br>26*<br>26*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale<br>Factor<br>(LSB)<br>300<br>$2^{60}$<br>$2^{48}$<br>$2^{35}$<br>bit (+ or -) oo<br>message type<br>e is the ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Effective<br>Range****<br>604,500<br>coupying the MS<br>es 30 to 37;<br>ximum range a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units<br>seconds<br>(see text)<br>(see text)<br>(see text)<br>sec/sec <sup>2</sup><br>sec/sec<br>seconds<br>SB;<br>attainable with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| Bits 50 through<br>contain the UR<br>6.2.1) for the un<br>give the clock-r<br>used to genera                                                                                                                                                                                                          | Slock Accuracy Estimates.<br>Slock Accuracy Estimates.<br>A <sub>oc</sub> Index, URA <sub>oc1</sub> Index, and URA <sub>oc2</sub> Ind<br>nauthorized user. The URA <sub>oc</sub> Index tog<br>elated user range accuracy of the SV a<br>te the uploaded clock correction polyn                                                                                                                                                                                                           | h 60 of n<br>lex, respe<br>gether wi<br>s a funct<br>iomial te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nessage ty<br>ectively, of<br>th URA <sub>oc1</sub><br>ion of time<br>rms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pes 30 throug<br>f the SV (refer<br>Index and UR<br>e since the pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gh 37 shall<br>rence paragraph<br>A <sub>oc2</sub> Index shall<br>ediction (top)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Non-<br>Elevation-<br>Dependent<br>(NED)<br>Accuracy<br>Estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bits 50 through<br>shall contain the<br>and URA <sub>NED2</sub> Ind<br>user. The follow<br>URA <sub>NED2</sub> Index si<br>clock/ephemeri<br>footbrint the IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54, and 55 through 57, and 58 through 57, and 58 through 57, and 58 through 57, and 58 through encoded and the set of the SV (referent ving equations together with the benall give the clock-related user ranges fit interval. While the actual NEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ough 60<br>compon<br>nce para<br>proadcas<br>nge accur<br>D-relatec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of messa<br>ent URA <sub>NI</sub><br>graph 6.2<br>t URA <sub>NEDO</sub><br>racy of-IAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ge types 30 t<br><sub>ED0</sub> Index,UR,<br>.1) for the ur<br>Index, URA <sub>N</sub><br>JRA <sub>NED</sub> over<br>y vary over t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | through 37<br>A <sub>NED1</sub> Index,<br>nauthorized<br><sub>IED1</sub> Index, and<br>the current<br>he satellite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rationale #5                                                                                                   |
|                                                                                                                                                                                                                                                                                                       | IS-GPS-705 Rev<br>Parameter<br>Symbol<br>t <sub>oc</sub><br>URA <sub>oc</sub> Index<br>URA <sub>oc1</sub> Index<br>URA <sub>oc2</sub> Index<br>a <sub>f2-n</sub><br>a <sub>f1-n</sub><br>a <sub>f0-n</sub><br>* Param<br>** See F<br>*** Unles<br>indica                                                                                                                                                                                                                                 | IS-GPS-705 Rev A L5 SS and Nav User Segment Interf         Table 20-III. Clock Correction a         Table 20-III. Clock Correction a         Parameter       Symbol         Parameter Description       took         took       Clock Data Reference Time of Week         URAcc Index       SV Clock Accuracy Index         URAcc1 Index       SV Clock Accuracy Change Index         URAcc2 Index       SV Clock Accuracy Change Rate Index         af2:n       SV Clock Drift Rate Correction Coefficient         af0:n       SV Clock Drift Correction Coefficient         af0:n       SV Clock Bias Correction Coefficient         *       Parameters so indicated are two's complement, with         **       See Figures 20-3 through 20-10 for complete bit allow         ***       Unless otherwise indicated in this column, effect         indicated bit allocation and scale factor.       20.3.3.2.4 SV Clock Accuracy Estimates.         Bits 50 through 54, and 55 through 57, and 58 throug         contain the URAcc Index, URAcc1 Index, and URAcc2 Ind       6.2.1) for the unauthorized user. The URAcc Index tog         give the clock-related user range accuracy of the SV a       used to generate the uploaded clock correction polyn | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces         Table 20-III. Clock Correction and Accurate Table 20-III. Clock Correction and Accurate Symbol         Parameter       Symbol         Parameter       Symbol         Parameter       Clock Data Reference Time of Week       11         URA <sub>cc1</sub> Index       SV Clock Accuracy Index       5*         URA <sub>cc1</sub> Index       SV Clock Accuracy Change Index       3         URA <sub>cc1</sub> Index       SV Clock Accuracy Change Rate Index       3         a <sub>10-n</sub> SV Clock Drift Rate Correction Coefficient       10*         a <sub>10-n</sub> SV Clock Drift Correction Coefficient       20*         a <sub>00-n</sub> SV Clock Bias Correction Coefficient       20*         **       See Figures 20-3 through 20-10 for complete bit allocation in in ***       Unless otherwise indicated in this column, effective range indicated bit allocation and scale factor.         20.3.3.2.4 SV Clock Accuracy Estimates.         Bits 50 through 54, and 55 through 57, and 58 through 60 of n contain the URA <sub>oc</sub> Index, URA <sub>oc1</sub> Index, and URA <sub>oc2</sub> Index, respins 6.2.1) for the unauthorized user. The URA <sub>oc</sub> Index together wigive the clock-related user range accuracy of the SV as a funct used to generate the uploaded clock correction polynomial te | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces         Table 20-III. Clock Correction and Accuracy Parameter         Scale         Parameter       No. of       Factor         Symbol       Parameter Description       Bits**       (LSB)         tvc       Clock Data Reference Time of Week       11       300         URAxc Index       SV Clock Accuracy Index       5*       1         URAxc1 Index       SV Clock Accuracy Change Index       3       3         URAxc2 Index       SV Clock Accuracy Change Rate Index       3       3         ag.n       SV Clock Drift Correction Coefficient       10*       2 <sup>60</sup> ag.n       SV Clock Drift Correction Coefficient       20*       2 <sup>48</sup> ag.n       SV Clock Drift Correction Coefficient       26*       2 <sup>35</sup> *       Parameters to indicated are two's complement, with the sign bit (+ or -) or       ***         See Figures 20-3 through 20-10 for complete bit allocation in message typ       ***         ***       See Figures 20-3 through 20-10 for complete bit allocation in message typ         ***       See Figures 20-3 through 57, and 58 through 60 of message typ         ****       See Figures 20-3 through 57, and 58 through 60 of message typ         ****       Sto | IS-GP5-705 Rev A L5 SS and Nav User Segment Interfaces         Table 20-III. Clock Correction and Accuracy Parameters         Parameter       No. of       Scale<br>Factor       Effective<br>Range***         Symbol       Parameter Description       Bits**       (LSB)       Effective<br>Range***         tc       Clock Data Reference Time of Week       11       300       604,500         URAxe Index       SV Clock Accuracy Index       5*       0       0         URAxel Index       SV Clock Accuracy Change Rate Index       3       0       0         uRAxel Index       SV Clock Drift Rate Correction Coefficient       0*       2 <sup>48</sup> 0         ag.n       SV Clock Drift Correction Coefficient       20*       2 <sup>48</sup> 0         ag.n       SV Clock Bias Correction Coefficient       20*       2 <sup>48</sup> 0         **       See Figures 20-3 through 20-10 for complete bit allocation in message types 30 to 37;       ***         ***       See Figures 20-3 through 20-10 for complete bit allocation in message types 30 to 37;         ****       Unless otherwise indicated in this column, effective range is the maximum range a indicated bit allocation and scale factor.         20.3.3.2.4 SV Clock Accuracy Estimates.       20.3.3.2.4 SV Clock Accuracy Estimates.       20.3.1 for the unauthorized user. The URA <sub>xel</sub> Index to | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces         Table 20-III. Clock Correction and Accuracy Parameters         Table 20-III. Clock Correction and Accuracy Parameters         Parameter       Parameter Description       Scale       Effective       Effective         Ve       Clock Data Reference Time of Week       11       300       604.500       seconds         URA <sub>we</sub> Index       SV Clock Accuracy Index       5*       (sec text)       (sec text)         URA <sub>we</sub> Index       SV Clock Accuracy Change Index       3       (sec text)         uRA <sub>we</sub> Index       SV Clock Accuracy Change Rate Index       3       (sec text)         uRA <sub>we</sub> Index       SV Clock Drift Rate Correction Coefficient       20*       2*8       sec/sec <sup>2</sup> a <sub>0-a</sub> SV Clock Drift Correction Coefficient       20*       2*8       sec/sec         a <sub>0-a</sub> SV Clock Drift Correction Coefficient       20*       2*8       sec/sec         a <sub>0-a</sub> SV Clock Drift Correction Coefficient       26*       2*3       sec/sec         a <sub>0-a</sub> SV Clock Bias Correction Coefficient       26*       2*3       sec/sec         **       Parameters so indicated are two's complete bit allocation in message types 30 to 37;       ****         *** | IS-GPS-705 Rev A LS SS and Nav User Segment Interfaces       Proposed Heading         Table 20-III. Clock Correction and Accuracy Parameters       Image: Scale Parameter Description Rev 4: 11       Scale Parameter Description Rev 4: 11       Scale Parameter Description Rev 4: 11       Effective Rerge****       Units: Rerge****         Ve       Clock Data Reference Time of Weck       11       300       604.500       seconds         URA <sub>xc</sub> Index       SV Clock Accuracy Dange Index       3       (see text)       (see text)         URA <sub>xc</sub> Index       SV Clock Accuracy Change Rate Index       3       (see text)       (see text)         uBoa       SV Clock Datif Rate Correction Coefficient       20 <sup>a</sup> 2 <sup>ad</sup> sec/sec       3         uBoa       SV Clock Datif Rate Correction Coefficient       20 <sup>a</sup> 2 <sup>ad</sup> sec/sec       3         uBoa       SV Clock Datif Rate Correction Coefficient       20 <sup>a</sup> 2 <sup>ad</sup> sec/sec       3         **       See Figures 20.3 through 20-10 for complete bit allocation in message types 30 to 37:       seconds       Seconds         **       See Figures 20.3 through 57, and 58 through 60 of message types 30 through 37 shall       Contain the URA <sub>sc</sub> Index, URA <sub>sc1</sub> Index, and URA <sub>sc2</sub> Index, respectively, of the SV (reference paragraph 6.2.1) for the unauthorized user. The URA <sub>sc1</sub> Index, nege accuracy of the Sv as a function of time since the prediction (top)< | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces       Proposed Heading       URA Definition         Table 20-III. Clock Correction and Accuracy Parameters       Image: Clock Data Reference Description       Bits: State       Effective Linis       Image: Clock Data Reference Description       Reference Description       Bits: State       Effective Linis       Image: Clock Data Reference Description       Reference Description       Bits: State       Effective Linis       Image: Clock Data Reference Description       Reference Descreference Description       Reference Descref | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces     Proposed<br>Heading     URA Definition Proposed Text       Image: Table 21-III. Check Connection and Accuracy Parameters     Image: Table 21-III. Check Connection and Accuracy Parameters     Image: Table 21-III. Check Connection and Accuracy Parameters       Parameter     Parameter Description     No. of Fack r<br>Bits-M     Effective<br>(Still)     Effective<br>Table 21-III. Check Connection       Value Accuracy Table 21-III. Check Connection and Accuracy Parameters     Image: Table 21-III. Check Connection     Parameter Description       Value Check Data Reference Time of Week     II     300     604.200     securacity       Value Check Data Reference Time of Week     II     300     (sected)     (sected)       Value Check Data Reference Time of Week     3     (sected)     (sected)       Value SC Check Data Reac Connectificer     3     (sected)     (sected)       Value SC Check Data Reac Connectificer     3     (sected)     (sected)       Value SC Check Data Reac Connectificer     3     (sected)     (sected)       Value SC Check Data Reac Connectificer     3     (sected)     (sected)       Value Sc Check Data Reac Connectificer     3     (sected)     (sected)       Value Sc Check Data Reac Connectificer     3     (sected)     (sected)       Value Sc Check Data Reac Connectificer     3     (sected) | BS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces     Proposed<br>Heading     URA Definition Proposed Text       Image: Table 20-III. Clock Concession and Accuracy Parameters     Table 20-III. Clock Concession and Accuracy Parameters     Table 20-III. Clock Concession and Accuracy<br>Parameter Description     No. of<br>Bitter <sup>®</sup> (17,87)     Feature<br>(17,87)     Feature<br>(17,87)     Feature<br>(17,87)     Feature<br>Parameter Description     No. of<br>Bitter <sup>®</sup> (17,87)       URA_c Index<br>a_c     SV Clock Accuracy Index<br>a_c     5°     South<br>(19)     Get ext)<br>(sectex)     (sectex)       URA_c Index<br>a_c     SV Clock Accuracy Change Rate Index<br>a_c     3     3°     (sectex)       **     SV Clock Accuracy Change Rate Index<br>a_c     3°     2°     sectors <sup>1</sup> **     Parameter so indicated are two's complement, with the sign Nit + (or -) cocapying the MNR;<br>**     SV Clock Bit Rate Correction Coefficient<br>accuracy Index are two's complement, with the sign Nit + (or -) cocapying the MNR;<br>**     SV Clock Bit Rate Correction Coefficient<br>accuracy Index are two's complement, with the sign Nit + (or -) cocapying the MNR;<br>**     SV Clock Bit Rate Correction Coefficient<br>accuracy Index are two's complement, with the sign Nit + (or -) cocapying the MNR;<br>**       **     Parameters to indicated are two's complement, with the sign Nit + (or -) cocapying the MNR;<br>**     SV Clock Accuracy Estimates.       **     See Figures 0.3 draved, 32 through 50 for complete bit aboution in message types 30 to 37;<br>**     See Figures 0.3 draved, 32 through 50, and 58 through 50 of message types 30 through 37 shall<br>contain | BS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces     Proposed<br>Heading     URA Definition Proposed Text       Image: State S | B-GPS-705 Rev A L5 SS and Nav User Segment Interfaces     Proposed<br>Heading     URA Definition Proposed Text <ul> <li>Table 30-III. Clock Constition and Assuresy Parameters:</li> <li>Dependent<br/>Synobid</li> <li>Clock Data (Senser: Thus of Week</li> <li>1000</li> <li>Clock Data (Senser: Thus of Week</li> <li>1000</li> <li>Clock Data (Senser: Thus of Week</li> <li>11</li> <li>300</li> <li>Clock Data (Senser: Thus of Week</li> <li>12</li> <li>Clock Data (Constant Collider:</li> <li>32<sup>10</sup></li> <li>2<sup>10</sup></li> <li>2<sup>10</sup></li> <li>2<sup>10</sup></li> <li>2<sup>10</sup></li> <li>2<sup>11</sup></li> <li>2<sup>10</sup></li> <li>2<sup>11</sup></li> <li>2<sup>10</sup></li> <li>2<sup>11</sup></li> <li>2<sup>10</sup></li> <li>2<sup>11</sup></li> <li>2<sup>11</sup></li></ul> | Be-GPS-705 Rev ALS 55 and Nav User Segment Interfaces     Proposed<br>Reading     URA Definition Proposed Text |

| Section<br>Number | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                              | Rationale    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | for the worst-case location within the satellite footprint at that instant.                                                                                                                                                                                                               |              |
| 20.3.3.2.4        | The user shall calculate the clock-related URA with the equation (in meters);<br>$URA_{oc} = URA_{ocb} + URA_{oc1} (t-t_{op}) \qquad for t-t_{op} \le 93,600 \text{ seconds}$ $URA_{oc} = URA_{ocb} + URA_{oc1} (t - t_{op}) + URA_{oc2} (t - t_{op} - 93,600)^2 \qquad for t - t_{op} > 93,600 \text{ seconds}$ where<br>$t = GPS \text{ time (must account for beginning or end of week crossovers),}$ $t_{op} = \text{ time of week of the state estimate utilized for the prediction of satellite clock correction}$ parameters. |                     | The user shall calculate the NED-related URA with the following equations (in meters);IAURA_NED= URA_NED0 + URA_NED1 (t - t_{op})for t-t_{op} < 93,600 seconds                                                                                                                            | Rationale #1 |
| 20.3.3.2.4        | The CS shall derive URA <sub>ocb</sub> at time $t_{op}$ which, when used together with URA <sub>oc1</sub> and URA <sub>oc2</sub> in the above equations, results in the minimum URA <sub>oc</sub> that is greater than the predicted URA <sub>oc</sub> during the entire duration up to 14 days after $t_{op}$ .                                                                                                                                                                                                                     |                     | The CS shall derive URA <sub>NED0</sub> , URA <sub>NED1</sub> , and URA <sub>NED2</sub> indexes which, when used together in the above equations, results in the minimum IAURA <sub>NED</sub> that is greater than the predicted IAURA <sub>NED</sub> during the /ephemeris fit interval. | Rationale #1 |
| 20.3.3.2.4        | The user shall use the broadcast URA <sub>oc</sub> Index to derive URA <sub>ocb.</sub> The index is a signed, two's complement integer in the range of +15 to -16 and has the following relationship to the clock-related user derived URA <sub>ocb</sub> :                                                                                                                                                                                                                                                                          |                     | The user shall use the broadcast $URA_{NEDO}$ index to derive the $URA_{NEDO}$ value. The $URA_{NEDO}$ index is a signed, two's complement integer in the range of +15 to -16 and has the following relationship to the $URA_{NEDO}$ value:                                               | Rationale #1 |

| ection    | IS-GPS-705 Rev A L5 SS and Na | av User Segment Interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | Proposed | URA Definition Propo            | sed Text  |                                  |                                                | Rationale    |
|-----------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|---------------------------------|-----------|----------------------------------|------------------------------------------------|--------------|
| lumber    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | Heading  |                                 |           |                                  |                                                |              |
|           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          |                                 |           |                                  |                                                |              |
| 0.3.3.2.4 | URA <sub>oc</sub> Index       | URA <sub>ocb</sub> (meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |          | <u>URA<sub>NED0</sub> Index</u> |           | <u>URA<sub>NED0</sub> (meter</u> | <u>(s)</u>                                     | Rationale #1 |
|           | 15                            | $6144.00 < \text{URA}_{\text{och}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |          | 15                              | 6144.00   | < URA <sub>NED0</sub>            | (or no accuracy prediction is available)       |              |
|           | 14                            | $3072.00 < \text{URA}_{\text{ach}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6144.00                |          | 14                              | 3072.00   | $< URA_{NED0}$                   | = 6144.00                                      |              |
|           | 13                            | $1536.00 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3072.00                |          | 13                              | 1536.00   | $< URA_{NED0}$                   | = 3072.00                                      |              |
|           | 12                            | $768.00 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1536.00                |          | 12                              | 768.00    | $< \text{URA}_{\text{NED0}}$     | = 1536.00                                      |              |
|           | 11                            | $384.00 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 768.00                 |          | 11                              | 384.00    | $< URA_{NED0}$                   | = 768.00                                       |              |
|           | 10                            | $192.00 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 384.00                 |          | 10                              | 192.00    | $< URA_{NED0}$                   | = 384.00                                       |              |
|           | 9                             | $96.00 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 192.00                 |          | 9                               | 96.00     | $< URA_{NED0}$                   | = 192.00                                       |              |
|           | 8                             | 48.00 < URA <sub>ocb</sub> ≤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.00                  |          | 8                               | 48.00     | < URA <sub>NED0</sub>            | = 96.00                                        |              |
|           | 7                             | $24.00 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48.00                  |          | 7                               | 24.00     | < URANEDO                        | = 48.00                                        |              |
|           | 6                             | $13.65 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.00                  |          | 6                               | 13.65     |                                  | - 24.00                                        |              |
|           | 5                             | $9.65 < \text{URA}_{\text{ocb}} \le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.65                  |          | 5                               | 0.65      | < URA <sub>NED0</sub>            | 12.65                                          |              |
|           | 4                             | $6.85 < \text{URA}_{\text{ocb}} \le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.65                   |          | 5                               | 9.65      | < URA <sub>NED0</sub>            | = 13.05                                        |              |
|           | 3                             | $4.85 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.85                   |          | 4                               | 6.85      | $< URA_{NED0}$                   | = 9.65                                         |              |
|           | 2                             | $3.40 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.85                   |          | 3                               | 4.85      | $< URA_{NED0}$                   | = 6.85                                         |              |
|           | 1                             | $2.40 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.40                   |          | 2                               | 3.40      | $< \text{URA}_{\text{NED0}}$     | = 4.85                                         |              |
|           | 0                             | $1.70 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.40                   |          | 1                               | 2.40      | $< \text{URA}_{\text{NED0}}$     | = 3.40                                         |              |
|           | -1                            | $1.20 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.70                   |          | 0                               | 1.70      | < URA <sub>NED0</sub>            | = 2.40                                         |              |
|           | -2                            | $0.85 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20                   |          | -1                              | 1.20      | $< URA_{NED0}$                   | = 1.70                                         |              |
|           | -3                            | $0.60 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.85                   |          | -2                              | 0.85      | < URA <sub>NED0</sub>            | = 1.20                                         |              |
|           | -4                            | $0.43 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.60                   |          | -3                              | 0.60      |                                  | - 0.85                                         |              |
|           | -5                            | $0.30 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.43                   |          | -5                              | 0.00      | < URA <sub>NED0</sub>            | - 0.05                                         |              |
|           | -6                            | $0.21 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.30                   |          | -4                              | 0.43      | < UKA <sub>NED0</sub>            | = 0.60                                         |              |
|           | - /                           | $0.15 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.21                   |          | -5                              | 0.30      | $< URA_{NED0}$                   | = 0.43                                         |              |
|           | -8                            | $0.11 < \text{URA}_{\text{ocb}} \leq 0.09 < \text{URA}_{\text{ocb}} \leq 100 \text{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15                   |          | -6                              | 0.21      | $< \text{URA}_{\text{NED0}}$     | = 0.30                                         |              |
|           | -9                            | $0.08 < \text{URA}_{\text{ocb}} \leq 0.06 < \text{URA}_{\text{ocb}} \leq 0.06 < \text{URA}_{\text{ocb}} \leq 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.11                   |          | -7                              | 0.15      | $< \text{URA}_{\text{NED0}}$     | = 0.21                                         |              |
|           | -10                           | $0.00 < \text{URA}_{\text{ocb}} \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                   |          | -8                              | 0.11      | $< URA_{NED0}$                   | = 0.15                                         |              |
|           | -11                           | $0.04 < \text{URA}_{\text{ocb}} \leq 0.02 < \text{URA}_{\text{ocb}} \approx 0.02 < \text{URA}_{oc$ | 0.06                   |          | -9                              | 0.08      | < URA <sub>NED0</sub>            | = 0.11                                         |              |
|           | -12                           | $0.03 < \text{URA}_{\text{ocb}} \leq 0.02 < \text{URA}_{\text{ocb}} \approx 0.02 < \text{URA}_{oc$ | 0.04                   |          | -10                             | 0.06      | $< URA_{NED0}$                   | = 0.08                                         |              |
|           | -13                           | $0.02 < \text{URA}_{\text{ocb}} \leq 0.01 < \text{URA} \leq 0.01 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                   |          | -11                             | 0.04      | < UR ANEDO                       | = 0.06                                         |              |
|           | -14                           | $0.01 < 0.00 \leq 0.001 \leq 0.000 \leq 0.000 \leq 0.000 \leq 0.0000 \leq 0.0000 \leq 0.0000 \leq 0.00000 \leq 0.00000 \leq 0.00000 \leq 0.00000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                   |          | 12                              | 0.01      |                                  | - 0.04                                         |              |
|           | -16                           | No accuracy prediction available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -use at own risk       |          | -12                             | 0.03      | < URA <sub>NED0</sub>            | = 0.04                                         |              |
|           | 10                            | no accuracy prediction available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | use at own fisk        |          | -13                             | 0.02      | < URA <sub>NED0</sub>            | = 0.03                                         |              |
|           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          | -14                             | 0.01      | $< URA_{NED0}$                   | = 0.02                                         |              |
|           | Integrity properties of the U | RA are specified with respect to the upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bound values of the UR |          | -15                             |           | URA <sub>NED0</sub>              | = 0.01                                         |              |
|           | 20 3 3 1 1)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          | -16                             | No accur  | acy prediction ava               | ilable—use at own risk                         |              |
|           | 20.3.3.1.1).                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          |                                 |           |                                  |                                                |              |
|           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          | Integrity properties of         | the URA a | are specified wi                 | th respect to the upper bound values of the UR | A            |
|           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          | 20.3.3.1.1).                    |           | -                                |                                                |              |
|           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          |                                 |           |                                  |                                                |              |
|           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          |                                 |           |                                  |                                                |              |
|           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          |                                 |           |                                  |                                                |              |

| Section    | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces                                                                         | Proposed | URA Definition Proposed Text                                                                                                    | Rationale               |
|------------|--------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Number     |                                                                                                                                | Heading  |                                                                                                                                 |                         |
| 20 2 2 2 4 | The user may use the upper bound value in the LIPA - range corresponding to the breadcast index                                |          | For each LIPA index (N) users may compute a period LIPA value (X) as given by:                                                  | Pationalo #2            |
| 20.3.3.2.4 | thereby calculating the maximum LIPA that is equal to or greater than the CS predicted LIPA or the                             |          | For each OKA <sub>NED0</sub> index (N), users may compute a norminal OKA <sub>NED0</sub> value (X) as given by:                 | Thoro is a              |
|            | thereby calculating the maximum OKA <sub>oc</sub> that is equal to of greater than the CS predicted OKA <sub>oc</sub> , of the |          | • If the value of N is 6 or less, but more than -16, $X = 2^{(1 + N/2)}$ ,                                                      | tupe that               |
|            | to or loss then the CC predicted UDA                                                                                           |          |                                                                                                                                 |                         |
|            | to or less than the CS predicted URA <sub>oc.</sub>                                                                            |          | • If the value of N is 6 or more, but less than 15, $X = 2^{(N-2)}$ ,                                                           | needs be                |
|            |                                                                                                                                |          | AN 10 or N 15 shall indicate the changes of an accuracy prediction and shall advice                                             | corrected in            |
|            | The transmitted URA <sub>cc1</sub> Index is an integer value in the range 0 to 7. URA <sub>cc1</sub> Index has the following   |          | • N = -16 or N = 15 shall indicate the absence of an accuracy prediction and shall advise                                       | computing               |
|            | relationship to the URA <sub>sc1</sub> :                                                                                       |          | the standard positioning service user to use that SV at his own risk.                                                           | URA, or all             |
|            |                                                                                                                                |          | For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters, respectively.                                            | user URA                |
|            |                                                                                                                                |          |                                                                                                                                 | values will             |
|            | 1                                                                                                                              |          | The nominal URA <sub>NEDO</sub> value (X) shall be suitable for use as a conservative prediction of the                         | be far too              |
|            | $IIRA_{ref} = \overline{2^N}$ (meters/second)                                                                                  |          | RMS NED range errors for accuracy-related purposes in the pseudorange domain (e.g.,                                             | large. Using            |
|            |                                                                                                                                |          | measurement de-weighting RAIM, FOM computations). Integrity properties of the IAURA <sub>NED</sub>                              | the                     |
|            |                                                                                                                                |          | are specified with respect to the scaled (multiplied by either 4.42 or 5.73 as appropriate)                                     | erroneous               |
|            | where                                                                                                                          |          | upper bound values of the URA <sub>NED0</sub> index, URA <sub>NED1</sub> index, and URA <sub>NED2</sub> index (see 20.3.3.1.1). | value will              |
|            | N = 4 + URA <sub>oc1</sub> Index                                                                                               |          |                                                                                                                                 | result in a             |
|            | The transmitted URA <sub>oc2</sub> Index is an integer value in the range 0 to 7. URA <sub>oc2</sub> Index has the following   |          | URA <sub>NEDO</sub> accounts for zeroth order SIS-contributions to user range error which include, but are                      | minimum                 |
|            | relationship to the $URA_{oc2}$ .                                                                                              |          | not limited to, the following: LSB representation/truncation error; the net effect of clock                                     | value of                |
|            |                                                                                                                                |          | correction polynomial error and code phase error in the transmitted signal for single-                                          | URA <sub>oc1</sub> that |
|            |                                                                                                                                |          | frequency L1C/A or single-frequency L2C users who correct the code phase as described in                                        | will prevent            |
|            |                                                                                                                                |          | Section 20.3.3.3.1.1.1; the net effect of clock parameter, code phase, and inter-signal                                         | the Space               |
|            | $URA_{oc2} = 2^{N}$ (meters/second/second)                                                                                     |          | correction error for dual-frequency L1/L2 and L1/L5 users who correct for group delay and                                       | and Control             |
|            |                                                                                                                                |          | ionospheric effects as described in Section 20.3.3.3.1.1.2; radial ephemeris error; anisotropic                                 | segments                |
|            | , where                                                                                                                        |          | antenna errors; and signal deformation error. URA <sub>NED</sub> does not account for user range                                | from                    |
|            | where                                                                                                                          |          | contributions due to the inaccuracy of the broadcast ionospheric data parameters used in the                                    | meeting                 |
|            |                                                                                                                                |          | single-frequency ionospheric model or for other atmospheric effects.                                                            | their                   |
|            | $N = 25 + URA_{ac2}$ Index                                                                                                     |          | The transmitted LIPA index is an integer value in the range 0 to 7. The LIPA index has                                          | specified               |
|            |                                                                                                                                |          | the following relationship to the LIPA value:                                                                                   | performance             |
|            |                                                                                                                                |          | the following relationship to the OKA <sub>NED1</sub> value.                                                                    | requirement             |
|            |                                                                                                                                |          | 1                                                                                                                               | s.                      |
|            |                                                                                                                                |          | $IIPA = -\overline{2^{N}} (meters (second))$                                                                                    |                         |
|            |                                                                                                                                |          | $ORA_{NED1} = -$ (meters/second)                                                                                                |                         |
|            |                                                                                                                                |          | where                                                                                                                           |                         |
|            |                                                                                                                                |          |                                                                                                                                 |                         |
|            |                                                                                                                                |          | $N = 14 + URA_{NED1} Index.$                                                                                                    |                         |
|            |                                                                                                                                |          | The transmitted URA <sub>NED2</sub> index is an integer value in the range 0 to 7. URA <sub>NED2</sub> index has the            |                         |
|            |                                                                                                                                |          | following relationship to the URANED2:                                                                                          |                         |
|            |                                                                                                                                |          |                                                                                                                                 |                         |
|            |                                                                                                                                |          |                                                                                                                                 |                         |
|            |                                                                                                                                |          |                                                                                                                                 |                         |

| Section  | IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces | Proposed  | URA Definition Proposed Text                                                                                        | Rationale    |
|----------|--------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------|--------------|
| Number   |                                                        | Heading   |                                                                                                                     |              |
|          |                                                        |           |                                                                                                                     |              |
|          |                                                        |           | $\frac{1}{2N}$                                                                                                      |              |
|          |                                                        |           | $URA_{NED2} = 2^{27}$ (meters/second <sup>2</sup> )                                                                 |              |
|          |                                                        |           | where                                                                                                               |              |
|          |                                                        |           | Where                                                                                                               |              |
|          |                                                        |           | $N = 28 + URA_{NED2} Index.$                                                                                        |              |
| 20.3.4.4 |                                                        | Data Sets |                                                                                                                     |              |
| 20.0111  | 20.3.4.4                                               | Data Seto |                                                                                                                     |              |
| 20.3.4.4 |                                                        |           | The $t_{oe}$ shall be equal to the $t_{oc}$ of the same CNAV data set. The following rules govern the               | Rationale #2 |
|          |                                                        |           | transmission of $t_{oe}$ and $t_{oc}$ values in different data sets: (1) The transmitted $t_{oc}$ will be different |              |
|          |                                                        |           | from any value transmitted by the SV during the preceding seven days; (2) The transmitted                           |              |
|          |                                                        |           | toe will be different from any value transmitted by the SV during the preceding six hours.                          |              |
|          |                                                        |           | Cutovers to new data sets will occur only on hour boundaries except for the first data set of a                     |              |
|          |                                                        |           | new upload. The first data set may be cut-in (reference paragraph 30.3.4.1) at any time                             |              |
|          |                                                        |           | during the hour and therefore may be transmitted by the SV for less than one hour.                                  |              |
|          |                                                        |           | The start of the transmission interval for each data set corresponds to the beginning of the                        |              |
|          |                                                        |           | curve fit interval for the data set. Each data set remains valid for the duration of its                            |              |
|          |                                                        |           | transmission interval, and nominally also remains valid for the duration of its curve fit                           |              |
|          |                                                        |           | interval. A data set is rendered invalid before the end of its curve fit interval when it is                        |              |
|          |                                                        |           | superseded by the SV cutting over to the first data set of a new upload.                                            |              |
|          |                                                        |           |                                                                                                                     |              |
|          |                                                        |           | Normal Operations. The message type 10, 11, and 30-37 data sets are transmitted by the SV                           |              |
|          |                                                        |           | for periods of two hours. The corresponding curve fit interval is three hours.                                      |              |
| 20.3.4.5 |                                                        | Reference |                                                                                                                     |              |
| _        | 20.3.4.5                                               | Times     |                                                                                                                     |              |
|          |                                                        |           |                                                                                                                     |              |
| 20.3.4.5 |                                                        |           | The LNAV reference time information in paragraph 20.3.4.5 in IS-GPS-200 also applies to the                         | Rationale #1 |
|          |                                                        |           | CNAV reference times.                                                                                               |              |
|          |                                                        |           |                                                                                                                     |              |

End of WAS/IS for IS-GPS-705A

#### Start of WAS/IS for IS-GPS-800A Changes

| ion<br>nber | IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2           | DIRECTION OF DATA FLOW FROM SV MSB FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | direction of data flow from s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Image: 100 BITS     100 BITS       1     14       12     34       39     50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 13 BITS 8 BITS 11 BITS 5 11 BITS 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | L1C HEALTH – 1 BIT UHA® INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | L1C HEALTH - 1 BIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | Image: 100 BITS     Image: 100 BITS       101     118       141     174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 100 BITS 100 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | ΔΠ c         ΔΠ c         ΔΠ c         θ n           17 BITS         23 BITS         33 BITS         27 MSBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Δn₀         Δn₀         M₀₀           17 BITS         23 BITS         33 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | DIRECTION OF DATA FLOW FROM SV MSB FIRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | direction of data flow from sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | ↓         100 BITS           ↓         201 ↓ 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | <b>♦</b> 100 BITS <b>100 BITS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | θn         ωn         Ωυ·n           6         22 BITS         22 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 301       306       323       338       354       370       394         i₀.n       ΔΩ       i₀.n       C₀.n       C₀.n       C₀.n       C₀.n       C₀.n         5       LSBs       17 BITS       15 BITS       16 BITS       16 BITS       24 BITS       7 MSBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 301     306     323     338     354       i₀.n     ΔΩ     i₀.n     C <sub>is.n</sub> 5       LSBs     17 BITS     15 BITS     16 BITS     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | ↓     100 BITS       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓       ↓     ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓     ↓ </td                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 401         416         439         460         403         471         467           Crean         Crean |                     | Cre-n         Cre-n <th< td=""></th<> |
|             | URA∞1 INDEX - 3 BITS URA∞1 INDEX - 3 BITS URA∞1 INDEX - 3 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | UF<br>DIRECTION OF DATA FLOW FROM S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | ▲ 100 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | ↓ 100 BITS ↓ 501 ↓ 517 ↓ 527 ↓ 540 ↓ 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | atima         a <sub>2.n</sub> T <sub>GD</sub> ISC <sub>L1CP</sub> ISC <sub>L1CD</sub> RESERVED         CRC           16 LSBs         10 BITS         13 BITS         13 BITS         13 BITS         13 BITS         10 BITS         24 BITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | att-n         atz-n         T GD         ISC LtcP         ISC           16 LSBs         10 BITS         13 BITS         13 BITS         13 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | Integrity Status Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Integrity S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Figure 3.5-1. Subframe 2 - Clock, Eph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                                                      | Rationale                   |
|------------------------------------------------------|-----------------------------|
|                                                      |                             |
|                                                      | Rationale #1-               |
|                                                      | URA <sub>oc</sub> and       |
| 76                                                   | URA <sub>oe</sub> are       |
| BITS 25 BITS                                         | redefined into              |
|                                                      | an elevation-               |
|                                                      | dependent                   |
|                                                      | component                   |
| 174                                                  | (URA <sub>ED</sub> ) and a  |
| en la            | non-elevation-              |
| 27 MSBs                                              | dependent                   |
|                                                      | component                   |
| MSB FIRST                                            | (URA <sub>NED</sub> ). This |
| 273                                                  | will enable                 |
| is-n                                                 | users to de-                |
| 28 MSBs                                              | weight the                  |
|                                                      | elevation-                  |
| MSB FIRST                                            | angle-                      |
| 370 394                                              | dependent                   |
| C <sub>k-n</sub> C <sub>rs-n</sub> C <sub>rc-n</sub> | component                   |
| 6 BITS 24 BITS 7 MSBs                                | with the                    |
|                                                      | elevation                   |
|                                                      | angle of the                |
|                                                      | SV, resulting               |
| 60 465 471 497                                       | in a smaller                |
| 5 ano a tri-n<br>4                                   | composite                   |
| BITS     26 BITS     MSBs       1     1     1     1  | URA, in many                |
| RA <sub>NED</sub> INDEX – 3 BITS                     | cases. A                    |
| MSB FIRST                                            | smaller                     |
| <u>567</u> 577                                       | composite                   |
| RESERVED CRC                                         | URA means                   |
| BITS 10 BITS 24 BITS                                 | higher                      |
|                                                      | availability for            |
|                                                      | applications                |
|                                                      | that have                   |
|                                                      | requirements                |
| meris, ITOW                                          | for a                       |
|                                                      | minimum                     |

| Section | IS-GPS-800 Re | v A Navstar GPS Space Segment/User Segment L1C Interface | Proposed<br>Heading | URA Definition Proposed Text |
|---------|---------------|----------------------------------------------------------|---------------------|------------------------------|
| Number  |               |                                                          | Including           |                              |
|         | Figure 3.5-1. | Subframe 2 - Clock, Ephemeris, ITOW                      |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |
|         |               |                                                          |                     |                              |

| Rationale     |
|---------------|
|               |
| level of      |
| accuracy      |
| and/or        |
| integrity. In |
| order to      |
| achieve a     |
| technical     |
| consensus on  |
| how to        |
| proceed       |
| forward with  |
| GPS IIIA      |
| deriving URA  |
| from the      |
| uploaded      |
| covariance,   |
| then the      |
| following     |
| changes were  |
| needed to the |
| user ICDs.    |
|               |
|               |
|               |

| Section<br>Number | IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface |                                                                                                                           |                                    |                       |               |                               |  | URA Definition P                                                  |                                                                                                                                                                                                 | Rationale                                           |                              |               |                                |  |  |
|-------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|---------------|-------------------------------|--|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|---------------|--------------------------------|--|--|
| 3.5.3             |                                                                       | Table 3.5-1. Sub                                                                                                          | frame 2 Parame                     | eters (1 of 3         | 3)            |                               |  |                                                                   | Table 3.5-1.     Subframe 2 Parameters (1 of 3)                                                                                                                                                 |                                                     |                              |               |                                |  |  |
|                   |                                                                       | No. of<br>Bits**                                                                                                          | Scale<br>Factor<br>(LSB)           | Effective<br>Range*** | Units         |                               |  | Parameter                                                         | No. of<br>Bits**                                                                                                                                                                                | Scale<br>Factor<br>(LSB)                            | Effective<br>Range***        | Units         |                                |  |  |
|                   | WN                                                                    | Week No.                                                                                                                  | 13                                 | 1                     |               | weeks                         |  | WN                                                                | Week No.                                                                                                                                                                                        | 13                                                  | 1                            | Tunge         | weeks                          |  |  |
|                   | ITOW                                                                  | Interval time of week                                                                                                     | 8                                  |                       | 83            | (see text)                    |  | ITOW                                                              | Interval time of week                                                                                                                                                                           | 0                                                   |                              | 82            | (see text)                     |  |  |
|                   | t <sub>op</sub>                                                       | Data predict time of week                                                                                                 | 11                                 | 300                   | 604,500       | seconds                       |  | 110 w                                                             | The var time of week                                                                                                                                                                            | 0                                                   |                              | 0.5           | (see lext)                     |  |  |
|                   | L1C health                                                            |                                                                                                                           | 1                                  |                       |               | (see text)                    |  | t <sub>op</sub>                                                   | Data predict time of week                                                                                                                                                                       | 11                                                  | 300                          | 604,500       | seconds                        |  |  |
|                   | URA <sub>oe</sub> Index                                               | SV ephemeris accuracy index                                                                                               | 5*                                 |                       |               | (see text)                    |  | L1C health                                                        |                                                                                                                                                                                                 | 1                                                   |                              |               | (see text)                     |  |  |
|                   | t <sub>oe</sub>                                                       | Ephemeris/clock data<br>reference time of week                                                                            | 11                                 | 300                   | 604,500       | seconds                       |  | URA <sub>ED</sub> Index                                           | ED accuracy index                                                                                                                                                                               | 5*                                                  |                              |               | (see text)                     |  |  |
|                   | ?A ****                                                               | Semi-major axis difference at reference time                                                                              | 26*                                | 2-9                   |               | meters                        |  | t <sub>oe</sub>                                                   | Ephemeris/clock data<br>reference time of week                                                                                                                                                  | 11                                                  | 300                          | 604,500       | seconds                        |  |  |
|                   | Å                                                                     | Change rate in semi-major axis                                                                                            | 25*                                | 2-21                  |               | meters/sec                    |  | ?A****                                                            | Semi-major axis difference at reference time                                                                                                                                                    | 26*                                                 | 2-9                          |               | meters                         |  |  |
|                   | ? n <sub>0</sub>                                                      | Mean Motion difference from<br>computed value at reference<br>time                                                        | 17*                                | 2 <sup>-44</sup>      |               | semi-circles/sec              |  | Å                                                                 | Change rate in semi-major<br>axis                                                                                                                                                               | 25*                                                 | 2 <sup>-21</sup>             |               | meters/sec                     |  |  |
|                   | ? <b>n</b> <sub>0</sub>                                               | Rate of mean motion<br>difference from computed<br>value                                                                  | 23*                                | 2 <sup>-57</sup>      |               | semi-circles/sec <sup>2</sup> |  | ? n <sub>0</sub>                                                  | Mean Motion difference from<br>computed value at reference<br>time                                                                                                                              | 17*                                                 | 2 <sup>-44</sup>             |               | semi-circle s/sec              |  |  |
|                   | M <sub>0-n</sub>                                                      | Mean anomaly at reference time                                                                                            | 33*                                | 2-32                  |               | semi-circles                  |  | ? <b>n</b> <sub>0</sub>                                           | Rate of mean motion<br>difference from computed                                                                                                                                                 | 23*                                                 | 2 <sup>-57</sup>             |               | semi-circle s/sec <sup>2</sup> |  |  |
|                   | en                                                                    | Eccentricity                                                                                                              | 33                                 | 2 <sup>-34</sup>      |               | dimensionless                 |  |                                                                   | value                                                                                                                                                                                           |                                                     |                              |               |                                |  |  |
|                   | ω <sub>n</sub>                                                        | Argument of perigee                                                                                                       | 33*                                | 2 <sup>-32</sup>      |               | semi-circles                  |  | M <sub>0-n</sub>                                                  | Mean anomaly at reference time                                                                                                                                                                  | 33*                                                 | 2 <sup>-32</sup>             |               | semi-circle s                  |  |  |
|                   | * Param<br>** See Fi                                                  | eters so indicated are in two's comp<br>gure 3.5-1 for complete bit allocation<br>or the rules indicated in this solution | olement notation<br>on in Subframe | on;<br>2;             |               | ottoinghle with               |  | e <sub>n</sub>                                                    | Eccentricity                                                                                                                                                                                    | 33                                                  | 2 <sup>-34</sup>             |               | dimensionless                  |  |  |
|                   | ind icat<br>**** Relativ                                              | ed bit allocation and scale factor.<br>ve to $A_{REF} = 26,559,710$ meters.                                               | , encenve rang                     |                       | tinu in range |                               |  | ω <sub>n</sub>                                                    | Argument of perigee                                                                                                                                                                             | 33*                                                 | 2 <sup>-32</sup>             |               | semi-circles                   |  |  |
|                   |                                                                       |                                                                                                                           |                                    |                       |               |                               |  | * Parame<br>** See Fig<br>*** Unless<br>indicate<br>**** Relative | ters so indicated are in two's comp<br>ure 3.5-1 for complete bit allocatic<br>otherwise indicated in this column<br>ed bit allocation and scale factor.<br>e to $A_{REF} = 26,559,710$ meters. | lement notatio<br>n in Subframe<br>, effective rang | on;<br>e 2;<br>ge is the max | timum range a | attainable with                |  |  |

| Section<br>Number | IS-GPS-800 Re                                                                                                                                                                             | v A Navstar GPS Space Segment/Us                                                                   | er Segm                | ent L1C Iı                   | nterface                         |                                 | Proposed     URA Definition Proposed Text     R       Heading     R     R |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                        |                                 |                      |              |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|------------------------------|----------------------------------|---------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------|---------------------------------|----------------------|--------------|--|--|
| 3.5.3             | Table 3.5-1.     Subframe 2 Parameters (3 of 3)                                                                                                                                           |                                                                                                    |                        |                              |                                  |                                 |                                                                           | Table 3.5-1.   Subframe 2 Parameters (3 of 3)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                        |                                 |                      |              |  |  |
|                   |                                                                                                                                                                                           | Parameter                                                                                          |                        |                              | ScaleNo. ofBits**(LSB)Range***   |                                 |                                                                           |                                                           | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. of<br>Bits**                   | Scale<br>Factor                        | Effective<br>Range***           | Unite                |              |  |  |
|                   | URA <sub>oc</sub> Index                                                                                                                                                                   | SV Clock Accuracy Index                                                                            | 5*                     |                              |                                  | (see text)                      |                                                                           | URA <sub>NED0</sub> Index                                 | NED Accuracy Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5*                                 | (LSD)                                  | Range                           | (see text)           |              |  |  |
|                   | URA <sub>ocl</sub> Index                                                                                                                                                                  | SV Clock Accuracy Change Index                                                                     | 3                      |                              |                                  | (see text)                      |                                                                           | URA <sub>NED1</sub> Index                                 | NED Accuracy Change Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                  |                                        |                                 | (see text)           |              |  |  |
|                   | URA <sub>oc2</sub> Index                                                                                                                                                                  | SV Clock Accuracy Change Rate Index                                                                | 3                      |                              |                                  | (see text)                      |                                                                           | URANGO Index                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                  |                                        |                                 | (and test)           |              |  |  |
|                   | a <sub>f2-n</sub>                                                                                                                                                                         | SV Clock Drift Rate Correction Coefficient                                                         | 10*                    | 2-60                         |                                  | sec/sec <sup>2</sup>            |                                                                           |                                                           | NED Accuracy change Rate fildex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                  |                                        |                                 | (see text)           |              |  |  |
|                   | a <sub>fl-n</sub>                                                                                                                                                                         | SV Clock Drift Correction Coefficient                                                              | 20*                    | 2 <sup>-48</sup>             |                                  | sec/sec                         |                                                                           | a <sub>f2-n</sub>                                         | SV Clock Drift Rate Correction<br>Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10*                                | 2-60                                   |                                 | sec/sec <sup>2</sup> |              |  |  |
|                   | a <sub>f0-n</sub>                                                                                                                                                                         | SV Clock Bias Correction Coefficient                                                               | 26*                    | 2-35                         |                                  | seconds                         |                                                                           | a <sub>f1-n</sub>                                         | SV Clock Drift Correction Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20*                                | 2 <sup>-48</sup>                       |                                 | sec/sec              |              |  |  |
|                   | T <sub>GD</sub> ****                                                                                                                                                                      | Inter-Signal Correction for L1 or L2 P(Y)                                                          | 13*                    | 2 <sup>-35</sup>             |                                  | seconds                         |                                                                           | a <sub>f0-n</sub>                                         | SV Clock Pies Correction Coofficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26*                                | 2 <sup>-35</sup>                       |                                 | seconds              |              |  |  |
|                   | ISC <sub>L1CP</sub> ****                                                                                                                                                                  | Inter-Signal Correction for L1C <sub>P</sub>                                                       | 13*                    | 2-35                         |                                  | seconds                         |                                                                           | T <sub>GD</sub> ****                                      | SV Clock Blas Collection Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13*                                | 2-35                                   |                                 | seconds              |              |  |  |
|                   | ISC <sub>LICD</sub> ****                                                                                                                                                                  | Inter-Signal Correction for L1C <sub>D</sub>                                                       | 13*                    | 13* 2 <sup>-35</sup> seconds |                                  | ISC <sub>L1CP</sub> ****        | Inter-Signal Correction for L1 or L2<br>P(Y)                              | 13*                                                       | 2 <sup>-35</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | seconds                                |                                 |                      |              |  |  |
|                   | * Paran<br>** See F                                                                                                                                                                       | heters so indicated are in two's complement no<br>igure 3.5-1 for complete bit allocation in Subfr | tation;<br>rame 2;     |                              |                                  |                                 | -                                                                         | ISC <sub>L1CD</sub> ****                                  | Inter-Signal Correction for L1C <sub>P</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13*                                | 2 <sup>-35</sup>                       |                                 | seconds              |              |  |  |
|                   | **** Unles<br>indica                                                                                                                                                                      | ted bit allocation and scale factor.                                                               | t the group            | e maximum<br>delay value     | is not available                 | e with                          |                                                                           |                                                           | Inter-Signal Correction for $L1C_D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                                        |                                 |                      |              |  |  |
|                   |                                                                                                                                                                                           |                                                                                                    |                        |                              |                                  |                                 |                                                                           | * Parameter<br>** See Figur<br>*** Unless of<br>indicated | rs so indicated are in two's complement no<br>e 3.5-1 for complete bit allocation in Subfr<br>herwise indicated in this column, effective<br>bit allocation and scale factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otation;<br>rame 2;<br>range is th | e maximum                              | range attainable                | e with               |              |  |  |
|                   |                                                                                                                                                                                           |                                                                                                    |                        |                              |                                  |                                 |                                                                           | **** The bit st                                           | ring of "1000000000000" will indicate tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t the group                        | delay value                            | e is not available              |                      |              |  |  |
| 3.5.3.5           | Bits 34 through 38 of subframe 2 shall contain the ephemeris User Range Accuracy (URA index of the SV. URA <sub>oe</sub> index shall provide the ephemeris-related user range accuracy in |                                                                                                    |                        |                              |                                  |                                 |                                                                           | Bits 34 through 38 c<br>Accuracy (URA <sub>ED</sub> ) in  | of subframe 2 shall contain the elevati<br>dex for the unauthorized user. The UI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on-depen<br>RA <sub>ED</sub> index | dent (ED) o<br>shall prov              | component Us<br>vide the ED-rel | er Range<br>ated URA | Rationale #1 |  |  |
|                   | of the SV as a ephemeris-rel                                                                                                                                                              | function of the current ephemeris materian ated URA may vary over the epheme                       | iessage o<br>eris mess | urve fit ir<br>age curve     | nterval. Whil<br>e fit interval, | le the<br>the URA <sub>oe</sub> |                                                                           | index for the currer ephemeris curve fit                  | t ephemeris curve fit interval. While the interval and over the satellite footprine the satellite foot | the ED-re<br>nt, the UR            | lated URA i<br>A <sub>ED</sub> index ( | may vary over<br>N) in subframe | the<br>e 2 shall     |              |  |  |

| Section<br>Number | IS-GPS-800 Rev A Nav                                          | star GPS Space                       | Segment/l                  | Jser Se              | gment L1               | C Interface                      | Proposed<br>Heading | URA Definition Propo                                                                                                                           | osed Text                                                       |                                        |                                         |                                                                                                                                                                   | Rationale |  |
|-------------------|---------------------------------------------------------------|--------------------------------------|----------------------------|----------------------|------------------------|----------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|                   | index (N) in subframe<br>curve fit interval.                  | 2 shall correspo                     | nd to the r                | naximu               | m URA <sub>oe</sub>    | expected over the entire         |                     | correspond to the ma<br>case location within t<br>location within the SN<br>URA <sub>ED</sub> . is zero.                                       | aximum URA <sub>EE</sub><br>the SV footprir<br>V footprint (i.e | expecte<br>nt (i.e., tv<br>e., directl | ed over the<br>wo points<br>ly below th | e entire ephemeris curve fit interval for the worst-<br>at the edge of the SV footprint). At the best-case<br>he SV along the SV nadir vector), the corresponding |           |  |
|                   | The URA <sub>oe</sub> index is a tw<br>+15 to -16 and has the | wo's complemer<br>e following relati | nt represer<br>onship to t | ntation o<br>the eph | of a signe<br>emeris U | d integer in the range of<br>RA: |                     | The URA <sub>ED</sub> index is a signed, two's complement integer in the range of +15 to -16 and has the following relationship to the ED URA: |                                                                 |                                        |                                         |                                                                                                                                                                   |           |  |
|                   | <u>URA<sub>oe</sub> Index</u>                                 | <u>URA<sub>oe</sub> (meter</u>       | <u>'s)</u>                 |                      |                        |                                  |                     | <u>URA<sub>ED</sub> Index</u>                                                                                                                  | <u>UI</u>                                                       | RA <sub>ED</sub> (me                   | <u>eters)</u>                           |                                                                                                                                                                   |           |  |
|                   | 15                                                            | 6144.00                              | <                          | URA <sub>oe</sub>    |                        |                                  |                     | 15                                                                                                                                             | 6144.00                                                         | <                                      |                                         | (or no accuracy prediction is available)                                                                                                                          |           |  |
|                   | 14                                                            | 3072.00                              | <                          | URA <sub>oe</sub>    | ≤                      | 6144.00                          |                     | 14                                                                                                                                             | 3072.00                                                         | <                                      | URA <sub>ED</sub> ≤                     | 6144.00                                                                                                                                                           |           |  |
|                   | 13                                                            | 1536.00                              | <                          | URA <sub>oe</sub>    | ≤                      | 3072.00                          |                     | 13                                                                                                                                             | 1536.00                                                         | <                                      | URA <sub>ED</sub> ≤                     | 3072.00                                                                                                                                                           |           |  |
|                   | 12                                                            | 768.00 <                             | URA <sub>oe</sub>          | ≤                    | 1536.00                |                                  |                     | 12                                                                                                                                             | 768.00 <                                                        | < URA <sub>ED</sub>                    | ≤ 1536                                  | 5.00                                                                                                                                                              |           |  |
|                   | 11                                                            | 384.00 <                             | URA <sub>oe</sub>          | ≤                    | 768.00                 |                                  |                     | 11                                                                                                                                             | 384.00 <                                                        | CURA <sub>ED</sub>                     | ≤ 768                                   | 3.00                                                                                                                                                              |           |  |
|                   | 10                                                            | 192.00 <                             | URA <sub>oe</sub>          | ≤                    | 384.00                 |                                  |                     | 10                                                                                                                                             | 192.00 <                                                        | CURA <sub>ED</sub>                     | ≤ 384                                   | 1.00                                                                                                                                                              |           |  |
|                   | 9                                                             | 96.00 <                              | URA <sub>oe</sub>          | ≤                    | 192.00                 |                                  |                     | 9                                                                                                                                              | 96.00 <                                                         |                                        | ≤ 192                                   | 2.00                                                                                                                                                              |           |  |
|                   | 8                                                             | 48.00 <                              | URA <sub>oe</sub>          | ≤                    | 96.00                  |                                  |                     | 8                                                                                                                                              | 48.00 <                                                         |                                        | ≤ 96                                    | .00                                                                                                                                                               |           |  |
|                   | 7                                                             | 24.00 <                              | URA <sub>oe</sub>          | ≤                    | 48.00                  |                                  |                     | 7                                                                                                                                              | 24.00 <                                                         | URA <sub>ED</sub>                      | ≤ 48                                    | 3.00                                                                                                                                                              |           |  |
|                   | 6                                                             | 13.65 <                              | URA <sub>oe</sub>          | ≤                    | 24.00                  |                                  |                     | 6                                                                                                                                              | 13.65 <                                                         |                                        | ≤ 24                                    | .00                                                                                                                                                               |           |  |
|                   | 5                                                             | 9.65 <                               | URA <sub>oe</sub>          | ≤                    | 13.65                  |                                  |                     | 5                                                                                                                                              | 9.65 <                                                          |                                        | ≤ 13                                    | .65                                                                                                                                                               |           |  |
|                   | 4                                                             | 6.85 <                               | URA <sub>oe</sub>          | ≤                    | 9.65                   |                                  |                     | 4                                                                                                                                              | 6.85 <                                                          |                                        | ≤ 9                                     | .65                                                                                                                                                               |           |  |
|                   | 3                                                             | 4.85 <                               | URA <sub>oe</sub>          | ≤                    | 6.85                   |                                  |                     | 3                                                                                                                                              | 4.85 <                                                          |                                        | ≤ 6                                     | .85                                                                                                                                                               |           |  |
|                   | 2                                                             | 3.40 <                               | URA <sub>oe</sub>          | ≤                    | 4.85                   |                                  |                     | 2                                                                                                                                              | 3.40 <                                                          |                                        | ≤ 4                                     | .85                                                                                                                                                               |           |  |
|                   | 1                                                             | 2.40 <                               | URA <sub>oe</sub>          | ≤                    | 3.40                   |                                  |                     | 1                                                                                                                                              | 2.40 <                                                          |                                        | ≤ 3                                     | .40                                                                                                                                                               |           |  |
|                   | 0                                                             | 1.70 <                               | URA <sub>oe</sub>          | ≤                    | 2.40                   |                                  |                     | 0                                                                                                                                              | 1.70 <                                                          | URA <sub>ED</sub>                      | ≤ 2                                     | .40                                                                                                                                                               |           |  |
|                   | -1                                                            | 1.20 <                               | URA <sub>oe</sub>          | ≤                    | 1.70                   |                                  |                     | -1                                                                                                                                             | 1.20 <                                                          |                                        | ≤ 1                                     | .70                                                                                                                                                               |           |  |
|                   |                                                               |                                      |                            |                      |                        |                                  |                     | -2                                                                                                                                             | 0.85 <                                                          | URA <sub>ED</sub>                      | ≤ 1                                     | .20                                                                                                                                                               |           |  |

#### **URA Definition Proposed Text** Section IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface Proposed Number Heading -3 $0.60 < URA_{ED} \leq$ -2 0.85 $\mathsf{URA}_{\mathsf{oe}} \leq$ 1.20 0.85 < $0.43 < URA_{ED} \leq$ 0.60 -3 0.60 < $URA_{oe} \leq$ 0.85 -4 $0.30 < URA_{ED} \leq$ -5 0.43 -4 0.43 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.60 -6 $0.21 < URA_{ED} \leq$ 0.30 -5 0.30 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.43 $0.15 < URA_{ED} \leq$ -7 0.21 -6 $\mathsf{URA}_{\mathsf{oe}} \ \leq \$ 0.30 0.21 < -8 $0.11 < URA_{ED} \leq$ 0.15 -7 0.15 < $URA_{oe} \leq$ 0.21 -9 $0.08 < URA_{ED} \leq$ 0.11 -8 0.11 < $URA_{oe} \leq$ 0.15 -10 $0.06 < URA_{ED} \leq$ 0.08 0.08 < $\mathsf{URA}_{\mathsf{oe}} \leq$ -9 0.11 -11 $0.04 < URA_{ED} \leq$ 0.06 0.06 < $URA_{oe} \leq$ 0.08 -10 -12 $0.03 < URA_{ED} \leq$ 0.04 0.04 < $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.06 -11 -13 $0.02 < URA_{ED} \leq$ 0.03 $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.04 -12 0.03 < -14 $0.01 < URA_{ED} \leq$ 0.02 $\mathsf{URA}_{\mathsf{oe}} \ \leq \$ -13 0.02 < 0.03 URA<sub>ED</sub> ≤ -15 0.01 $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.02 -14 0.01 < -16 No accuracy prediction available-use at ov -15 $\mathsf{URA}_{\mathsf{oe}} \leq$ 0.01 For each URA<sub>ED</sub> index (N), users may compute a nominal URA<sub>ED</sub> va -16 No accuracy prediction available-use at own risk • If the value of N is 6 or less, but more than -16, $X = 2^{(1 + N/2)}$ , • If the value of N is 6 or more, but less than 15, $X = 2^{(N-2)}$ , • N = -16 or N = 15 shall indicate the absence of an accuracy pr positioning service user to use that SV at his own risk. For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters The nominal URA<sub>ED</sub> value (X) is suitable for use as a conservative p for accuracy-related purposes in the pseudorange domain (e.g., m computations). Integrity properties of the IAURA<sub>FD</sub> are specified v by either 4.42 or 5.73 as appropriate) upper bound values of the b For the nominal URA<sub>ED</sub> value and the IAURA<sub>ED</sub> value, users may con

|                                                                                                                                                                              | Rationale |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
| wn risk                                                                                                                                                                      |           |
| lue (X) as given by:                                                                                                                                                         |           |
|                                                                                                                                                                              |           |
|                                                                                                                                                                              |           |
| rediction and shall advise the standard                                                                                                                                      |           |
| ers, respectively.                                                                                                                                                           |           |
| prediction of the RMS ED range errors<br>neasurement deweighting, RAIM, FOM<br>with respect to the scaled (multiplied<br>proadcast URA <sub>ED</sub> index (see 30.3.3.1.1). |           |
| mpute an adjusted URA <sub>ED</sub> value as a                                                                                                                               |           |

| Section<br>Number | IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proposed<br>Heading                                              | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rationale    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  | function of SV elevation angle (E) as follows:         Adjusted Nominal URA <sub>ED</sub> = Nominal URA <sub>ED</sub> (sin(E+90 degrees))         Adjusted IAURA <sub>ED</sub> = IAURA <sub>ED</sub> (sin(E+90 degrees))         URA <sub>ED</sub> and IAURA <sub>ED</sub> account for SIS-contributions to user range error which include, but are not limited to, the following: LSB representation/truncation error, alongtrack ephemeris errors, and crosstrack ephemeris errors. URA <sub>ED</sub> and IAURA <sub>ED</sub> do not account for user range error contributions due to the inaccuracy of the broadcast ionospheric data parameters used in the single-frequency ionospheric model or for other atmospheric effects.                                                                                                |              |
| 3.5.3.8           | 3.5.3.8 SV Clock Accuracy Estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Non-<br>Elevation<br>Dependent<br>(NED)<br>Accuracy<br>Estimates |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| 3.5.3.8           | Bits 460 through 470 of subframe 2 shall contain the URA <sub>oc</sub> Index, URA <sub>oc1</sub> Index, and URA <sub>oc2</sub> Index of the SV (reference paragraph 6.2.1) for the user. The URA <sub>oc</sub> Index together with URA <sub>oc1</sub> Index and URA <sub>oc2</sub> Index shall give the clock-related user range accuracy of the SV as a function of time since the prediction $(t_{op})$ used to generate the uploaded clock correction polynomial terms.                                                                    |                                                                  | <ul> <li>Bits 460 through 470 of subframe 2 shall contain the URA<sub>oc</sub> Index, URA<sub>NED1</sub> Index, and URA<sub>NED2</sub> Index of the SV (reference paragraph 6.2.1) for the user.</li> <li>The following equations together with the broadcast URA<sub>NED0</sub> Index, URA<sub>NED1</sub> Index, and URA<sub>NED2</sub> Index shall give the clock-related user range accuracy of IAURA<sub>NED</sub> over the current clock/ephemeris fit interval. While the actual NED-related URA may vary over the satellite footprint, the IAURA<sub>NED</sub> calculated using the parameters in message type 10 at each instant during the current clock/ephemeris fit interval shall bound the maximum IAURA<sub>NED</sub> expected for the worst-case location within the satellite footprint at that instant.</li> </ul> | Rationale #1 |
| 3.5.3.8           | The user shall calculate the clock-related URA with the equation (in meters):<br>$URA_{oc} = URA_{ocb} + URA_{oc1} (t - t_{op}) \text{ for } t - t_{op} \leq 93,600 \text{ seconds}$ $URA_{oc} = URA_{ocb} + URA_{oc1} (t - t_{op}) + URA_{oc2} (t - t_{op} - 93,600)^2 \text{ for } t - t_{op} > 93,600 \text{ seconds}$ where<br>$t = GPS \text{ time (must account for beginning or end of week crossovers),}$ $t_{op} = \text{ time of week of the state estimate utilized for the prediction of satellite clock correction parameters.}$ |                                                                  | The user shall calculate the NED-related URA with the equation (in meters);<br>IAURA <sub>NED</sub> = URA <sub>NED0</sub> + URA <sub>NED1</sub> (t - t <sub>op</sub> ) for t-t <sub>op</sub> < 93,600 seconds<br>IAURA <sub>NED</sub> = URA <sub>NED0</sub> + URA <sub>NED1</sub> (t - t <sub>op</sub> ) + URA <sub>NED2</sub> (t - t <sub>op</sub> - 93,600) <sup>2</sup> for t-t <sub>op</sub> > 93,600 seconds<br>where<br>t = GPS time (must account for beginning or end of week crossovers),<br>t <sub>op</sub> = time of week of the state estimate utilized for the prediction of satellite clock<br>/ephemeris parameters.                                                                                                                                                                                                  | Rationale #1 |

| Section<br>Number | IS-GPS-800 Rev A Nav                                                                                                                                                                                                                                                                                                                    | star GPS Space                 | e Segment/User Segment L1C Interface  | Proposed<br>Heading                                                                                              | URA Definition Propo                                                          | sed Text                                                                                                  |                                                                                                                  |                                                                                                  | Rationale    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------|
| 3.5.3.8           | The CS shall derive URA <sub>ocb</sub> at time t <sub>op</sub> which, when used together with URA <sub>oc1</sub> and URA <sub>oc2</sub> in<br>the above equations, results in the minimum URA <sub>oc</sub> that is greater than the predicted URA <sub>oc</sub><br>during the entire duration up to 14 days<br>after t <sub>op</sub> . |                                |                                       |                                                                                                                  | The CS shall derive UR<br>equations, results in th<br>clock/ephemeris fit int | A <sub>-NEDO</sub> , URA <sub>P</sub><br>he minimun<br>terval.                                            | <sub>NED1</sub> , and URA <sub>NED2</sub> indexes<br>n IAURA <sub>NED</sub> that is greate                       | s which, when used together in the above<br>r than the predicted IAURA <sub>NED</sub> during the | Rationale #1 |
| 3.5.3.8           | .8 The user shall use the broadcast URA <sub>oc</sub> Index to derive URA <sub>ocb</sub> . The index is a two's complement representation of a signed integer in the range of +15 to -16 and has the following relationship to the clock-related user derived URA <sub>ocb</sub> :                                                      |                                |                                       | The user shall use the<br>signed, two's complem<br>URA <sub>NED0</sub> value:<br><u>URA<sub>NED0</sub> Index</u> | broadcast L<br>nent intege<br><u>L</u>                                        | URA <sub>NEDO</sub> index to derive t<br>r in the range of +15 to -<br><u>URA<sub>NEDO</sub> (meters)</u> | he URA <sub>NEDO</sub> value. The URA <sub>NEDO</sub> index is a<br>16 and has the following relationship to the | Rationale #1                                                                                     |              |
|                   | <u>URA<sub>oc</sub> Index</u>                                                                                                                                                                                                                                                                                                           | <u>URA<sub>ocb</sub> (mete</u> | <u>ers)</u>                           |                                                                                                                  | 15<br>14                                                                      | 6144.00<br>3072.00                                                                                        | < URA <sub>NED0</sub><br>< URA <sub>NED0</sub> ≤                                                                 | (or no accuracy prediction is available)<br>6144.00                                              |              |
|                   | 15                                                                                                                                                                                                                                                                                                                                      | 6144.00                        | < URA <sub>ocb</sub>                  |                                                                                                                  | 13                                                                            | 1536.00                                                                                                   | < URA <sub>NED0</sub> ≤                                                                                          | 3072.00                                                                                          |              |
|                   | 14                                                                                                                                                                                                                                                                                                                                      | 3072.00                        | $<$ URA <sub>ocb</sub> $\leq$ 6144.00 |                                                                                                                  | 12                                                                            | 768.00                                                                                                    | < URA <sub>NED0</sub> ≤ 1                                                                                        | 536.00                                                                                           |              |
|                   | 13                                                                                                                                                                                                                                                                                                                                      | 1536.00                        | $<$ URA <sub>ocb</sub> $\leq$ 3072.00 |                                                                                                                  | 11                                                                            | 384.00                                                                                                    | $<$ URA <sub>NED0</sub> $\leq$                                                                                   | 768.00                                                                                           |              |
|                   | 12                                                                                                                                                                                                                                                                                                                                      | 768.00 <                       | $URA_{ocb} \leq 1536.00$              |                                                                                                                  | 10                                                                            | 192.00                                                                                                    | $<$ URA <sub>NED0</sub> $\leq$                                                                                   | 384.00                                                                                           |              |
|                   | 11                                                                                                                                                                                                                                                                                                                                      | 384.00 <                       | $URA_{ocb} \leq 768.00$               |                                                                                                                  | 9                                                                             | 96.00                                                                                                     | < URA <sub>NED0</sub> ≤                                                                                          | 192.00                                                                                           |              |
|                   | 10                                                                                                                                                                                                                                                                                                                                      | 192.00 <                       | $URA_{ocb} \leq 384.00$               |                                                                                                                  | 8                                                                             | 48.00                                                                                                     | $<$ URA <sub>NED0</sub> $\leq$                                                                                   | 96.00                                                                                            |              |
|                   | 9                                                                                                                                                                                                                                                                                                                                       | 96.00 <                        | $URA_{ocb} \leq 192.00$               |                                                                                                                  | 7                                                                             | 24.00                                                                                                     | < URA <sub>NED0</sub> ≤                                                                                          | 48.00                                                                                            |              |
|                   | 8                                                                                                                                                                                                                                                                                                                                       | 48.00 <                        | $URA_{ocb} \leq 96.00$                |                                                                                                                  | 6                                                                             | 13.65                                                                                                     | < URA <sub>NED0</sub> ≤                                                                                          | 24.00                                                                                            |              |
|                   | 7                                                                                                                                                                                                                                                                                                                                       | 24.00 <                        | $URA_{ocb} \leq 48.00$                |                                                                                                                  | 5                                                                             | 9.65                                                                                                      | < URA <sub>NED0</sub> ≤                                                                                          | 13.65                                                                                            |              |
|                   | 6                                                                                                                                                                                                                                                                                                                                       | 13.65 <                        | $URA_{ocb} \leq 24.00$                |                                                                                                                  | 4                                                                             | 6.85                                                                                                      | < URA <sub>NED0</sub> ≤                                                                                          | 9.65                                                                                             |              |
|                   | 5                                                                                                                                                                                                                                                                                                                                       | 9.65 <                         | $URA_{ocb} \leq 13.65$                |                                                                                                                  | 3                                                                             | 4.85                                                                                                      | < URA <sub>NED0</sub> ≤                                                                                          | 6.85                                                                                             |              |
|                   | 4                                                                                                                                                                                                                                                                                                                                       | 6.85 <                         | $URA_{ocb} \leq 9.65$                 |                                                                                                                  | 2                                                                             | 3.40                                                                                                      | $<$ URA <sub>NED0</sub> $\leq$                                                                                   | 4.85                                                                                             |              |
|                   | 3                                                                                                                                                                                                                                                                                                                                       | 4.85 <                         | $URA_{ocb} \leq 6.85$                 |                                                                                                                  | 1                                                                             | 2.40                                                                                                      | < URA <sub>NED0</sub> ≤                                                                                          | 3.40                                                                                             |              |
|                   | 2                                                                                                                                                                                                                                                                                                                                       | 3.40 <                         | $URA_{ocb} \leq 4.85$                 |                                                                                                                  | 0                                                                             | 1.70                                                                                                      | < URA <sub>NED0</sub> ≤                                                                                          | 2.40                                                                                             |              |
|                   | 1                                                                                                                                                                                                                                                                                                                                       | 2.40 <                         | $URA_{ocb} \leq 3.40$                 |                                                                                                                  | -1                                                                            | 1.20                                                                                                      | < URA <sub>NED0</sub> ≤                                                                                          | 1.70                                                                                             |              |

#### Section IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface Proposed **URA Definition Proposed Text** Number Heading 0 1.70 $\mathsf{URA}_{\mathsf{ocb}} \leq$ 2.40 -2 0.85 < URA<sub>NED0</sub> ≤ 1.20 < $< URA_{NED0} \leq$ -3 0.85 -1 1.20 < $\mathsf{URA}_{\mathsf{ocb}} \leq$ 1.70 0.60 -4 0.43 $< URA_{NED0} \leq$ 0.60 -2 0.85 < $\mathsf{URA}_{\mathsf{ocb}} \leq$ 1.20 -5 $0.30 < URA_{NED0} \leq$ 0.43 -3 0.60 < $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.85 $< URA_{NED0} \leq$ -6 0.21 0.30 $\mathsf{URA}_{\mathsf{ocb}} \; \leq \;$ 0.60 -4 0.43 < -7 < URA<sub>NED0</sub> ≤ 0.15 0.21 0.30 < $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.43 -5 -8 $< URA_{NED0} \leq$ 0.15 0.11 0.21 < $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.30 -6 -9 0.08 < URA<sub>NED0</sub> ≤ 0.11 -7 0.15 < $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.21 -10 0.06 < URA<sub>NED0</sub> ≤ 0.08 $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.15 -8 0.11 < -11 0.04 $< URA_{NED0} \leq$ 0.06 -9 0.08 $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.11 < $< URA_{NED0} \leq$ -12 0.03 0.04 $\mathsf{URA}_{\mathsf{ocb}} \leq$ -10 0.06 < 0.08 -13 0.02 $< URA_{NED0} \leq$ 0.03 $\mathsf{URA}_{\mathsf{ocb}} \; \leq \;$ 0.06 -11 0.04 < 0.01 $< URA_{NED0} \leq$ 0.02 -14 $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.04 -12 0.03 < -15 URA<sub>NED0</sub> ≤ 0.01 $\mathsf{URA}_{\mathsf{ocb}} \; \leq \;$ 0.02 < 0.03 -13 -16 No accuracy prediction available-use at ov 0.01 < $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.02 -14 For each URA<sub>NED0</sub> index (N), users may compute a nominal URA<sub>NED0</sub> -15 $\mathsf{URA}_{\mathsf{ocb}} \leq$ 0.01 • If the value of N is 6 or less, but more than -16, $X = 2^{(1 + N/2)}$ , -16 No accuracy prediction available-use at own risk • If the value of N is 6 or more, but less than 15, $X = 2^{(N-2)}$ , • N = -16 or N = 15 shall indicate the absence of an accuracy pr positioning service user to use that SV at his own risk. 3.5.3.8 The user may use the upper bound value in the URA<sub>ocb</sub> range corresponding to the For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters broadcast index, thereby calculating the maximum URA<sub>oc</sub> that is equal to or greater than The nominal URA<sub>NEDO</sub> value (X) shall be suitable for use as a conser the CS predicted URA<sub>oc</sub>, or the user may use the lower bound value in the range which will range errors for accuracy-related purposes in the pseudorange do provide the minimum URA<sub>oc</sub> that is equal to or less than the CS predicted URA<sub>oc</sub>. weighting RAIM, FOM computations). Integrity properties of the

|                                                    | Rationale    |
|----------------------------------------------------|--------------|
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
|                                                    |              |
| wo rick                                            |              |
| WIT FISK                                           |              |
| $_{0}$ value (X) as given by:                      |              |
|                                                    |              |
|                                                    |              |
| rediction and shall advise the standard            |              |
|                                                    |              |
|                                                    |              |
| ers, respectively.                                 | Rationale #1 |
| rvative prediction of the RMS NED                  |              |
| IAURA <sub>NED</sub> are specified with respect to |              |

| Section<br>Number | IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface                                                                            | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rationale                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                   |                                                                                                                                                  |                     | the scaled (multiplied by either 4.42 or 5.73 as appropriate) upper bound values of the URA <sub>NED0</sub> index, URA <sub>NED2</sub> index, and URA <sub>NED2</sub> index (see 3.5.3.10.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|                   |                                                                                                                                                  |                     | URA <sub>NED0</sub> accounts for zeroth order SIS-contributions to user range error which include, but are not<br>limited to, the following: LSB representation/truncation error; the net effect of clock correction<br>polynomial error and code phase error in the transmitted signal for single-frequency L1C/A or single-<br>frequency L2C users who correct the code phase as described in Section 3.5.3.9; the net effect of clock<br>parameter, code phase, and inter-signal correction error for dual-frequency L1/L2 and L1/L5 users who<br>correct for group delay and ionospheric effects as described in Section 3.5.3.9; radial ephemeris error;<br>anisotropic antenna errors; and signal deformation error. URA <sub>NED</sub> does not account for user range<br>contributions due to the inaccuracy of the broadcast ionospheric data parameters used in the single-<br>frequency ionospheric model or for other atmospheric effects. |                                  |
| 3.5.3.8           | The transmitted $URA_{oc1}$ Index is an integer value in the range 0 to 7. $URA_{oc1}$ Index has the following relationship to the $URA_{oc1}$ : |                     | The transmitted $URA_{NED1}$ index is an integer value in the range 0 to 7. The $URA_{NED1}$ index has the following relationship to the $URA_{NED1}$ value:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rationale #3-<br>There is a typo |
|                   | 1                                                                                                                                                |                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | that needs be                    |
|                   | $\frac{1}{2^{N}}$                                                                                                                                |                     | $\frac{1}{2^N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | corrected in                     |
|                   | $URA_{oc1} = 2$ (meters/second)                                                                                                                  |                     | $URA_{NED1} = 2$ (meters/second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | computing                        |
|                   | where                                                                                                                                            |                     | where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | URA, or all                      |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | user URA                         |
|                   | $N = 4 + URA_{oc1}$ Index.                                                                                                                       |                     | $N = 14 + URA_{NED1}$ Index.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | values will be                   |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | far too large.                   |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Using the                        |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | erroneous                        |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | value will                       |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | result in a                      |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | minimum                          |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | value of                         |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | URA <sub>oc1</sub> that          |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | will prevent                     |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the Space and                    |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control                          |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | segments                         |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | from meeting                     |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | their specified                  |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | performance                      |
|                   |                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | requirements.                    |
| 3.5.3.8           | The transmitted $URA_{oc2}$ Index is an integer value in the range 0 to 7. $URA_{oc2}$ Index has the                                             |                     | The transmitted $URA_{NED2}$ index is an integer value in the range 0 to 7. $URA_{NED2}$ index has the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rationale #3                     |

| Section | IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface | Proposed  | URA Definition Proposed Text                                                                                          | Rationale              |
|---------|-----------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------|------------------------|
| Number  |                                                                       | Heading   |                                                                                                                       |                        |
|         | following relationship to the URA <sub>oc2</sub> :                    |           | relationship to the URA <sub>NED2</sub> :                                                                             |                        |
|         | 1                                                                     |           | 1                                                                                                                     |                        |
|         | $URA_{nc2} = \overline{2^{N}}$ (meters/second <sup>2</sup> )          |           | $URA_{NED2} = \overline{2^N}$ (meters/second <sup>2</sup> )                                                           |                        |
|         |                                                                       |           |                                                                                                                       |                        |
|         | where                                                                 |           | where                                                                                                                 |                        |
|         | $N = 25 + URA_{oc2}$ Index.                                           |           | $N = 28 + URA_{NED2}$ Index.                                                                                          |                        |
| 3.5.5.2 | 3.5.5.2                                                               | Data Sets |                                                                                                                       |                        |
| 3.5.5.2 |                                                                       |           | The $t_{oe}$ shall be equal to the $t_{oc}$ of the same CNAV data set. The following rules govern the transmission    | Rationale #2-          |
|         |                                                                       |           | of $t_{oe}$ and $t_{oc}$ values in different data sets: (1) The transmitted $t_{oc}$ will be different from any value | URA                    |
|         |                                                                       |           | transmitted by the SV during the preceding seven days; (2) The transmitted t <sub>oe</sub> will be different from any | components             |
|         |                                                                       |           | value transmitted by the SV during the preceding six hours.                                                           | (URA <sub>ED</sub> and |
|         |                                                                       |           | Cutovers to new data sets will occur only on hour boundaries except for the first data set of a new                   | different              |
|         |                                                                       |           | upload. The first data set may be cut-in (reference paragraph 3.5.5.1) at any time during the hour and                | unload or fit          |
|         |                                                                       |           | therefore may be transmitted by the SV for less than one hour.                                                        | intervals will         |
|         |                                                                       |           | The start of the transmission interval for each data set corresponds to the beginning of the curve fit                | not give a             |
|         |                                                                       |           | interval for the data set. Each data set remains valid for the duration of its transmission interval, and             | valid                  |
|         |                                                                       |           | nominally also remains valid for the duration of its curve fit interval. A data set is rendered invalid               | indication of          |
|         |                                                                       |           | before the end of its curve fit interval when it is superseded by the SV cutting over to the first data set           | signal                 |
|         |                                                                       |           | of a new upload.                                                                                                      | integrity              |
|         |                                                                       |           | Normal Operations. The subframe 2 data sets are transmitted by the SV for periods of two hours. The                   | These changes          |
|         |                                                                       |           | corresponding curve fit interval is three hours.                                                                      | provide                |
|         |                                                                       |           |                                                                                                                       | clarification of       |
|         |                                                                       |           |                                                                                                                       | how URA is             |
|         |                                                                       |           |                                                                                                                       | computed by            |
|         |                                                                       |           |                                                                                                                       | the user.              |
|         |                                                                       |           |                                                                                                                       |                        |
| 2552    |                                                                       | D. f      |                                                                                                                       |                        |
| 3.5.5.3 | 3.5.5.3                                                               | Keterence |                                                                                                                       |                        |
|         |                                                                       | Times     |                                                                                                                       |                        |
| 3.5.5.3 |                                                                       |           | The LNAV reference time information in paragraph 20.3.4.5 in IS-GPS-200 also applies to the CNAV                      |                        |
|         |                                                                       |           | reference times.                                                                                                      |                        |
|         |                                                                       |           |                                                                                                                       |                        |

| Section<br>Number | IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface                                                                                                                                                                                                                                                                                                                                                             | Proposed<br>Heading | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rationale                                                                                                                                                                                                                                                                                                  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2.1             | User Range Accuracy (URA) is a statistical indicator of the GPS ranging accuracy obtainable<br>with a specific signal and SV. Whether the integrity status flag is 'off' or 'on', 4.42 times<br>URA bounds instantaneous URE under all conditions with 1 -1e-5 per hour probability.<br>When the integrity status flag is 'on', 5.73 times URA bounds instantaneous URE under all<br>conditions with 1-1e-8 per hour probability. |                     | User Range Accuracy (URA) is a statistical indicator of the GPS ranging accuracy obtainable with a specific signal and SV. URA provides a conservative RMS estimate of the user range error (URE) in the associated navigation data for the transmitting SV. It includes all errors for which the Space and Control Segments are responsible. Whether the integrity status flag is 'off' or 'on', 4.42 times URA bounds the instantaneous URE under all conditions with 1-1e-5 per hour probability ('legacy' level of integrity assurance). When the integrity status flag is 'on', 5.73 times URA bounds the instantaneous URE under all conditions with 1-1e-8 per hour probability ('enlanced' level of integrity assurance). Integrity properties of the URA are specified with respect to the scaled (multiplied by either 4.42 or 5.73 as appropriate) upper bound value of the URA index or to the scaled composite of the upper bound values of all component URA indexes.                                   | Rationale #5-<br>There are<br>numerous<br>inconsistencie<br>s between<br>ICDs and<br>clarifications<br>and additions<br>that are<br>needed for<br>the users to<br>compute URA.<br>These changes<br>resolve the<br>inconsistencie<br>s between the<br>ICDs so that<br>users may<br>properly<br>compute URA. |
| 6.2.1             | Note #1: URA applies over the curve fit interval that is applicable to the NAV data from which the URA is read, for the worst-case location within the intersection of the satellite signal and the terrestrial service volume.                                                                                                                                                                                                   |                     | Note #1: URA applies over the transmission interval that is applicable to the NAV data from which the URA is read, for the worst-case location within the satellite footprint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rationale #5                                                                                                                                                                                                                                                                                               |
| 6.2.1             | Note #2: The URA for a particular signal may be represented by a single parameter in the NAV data or by more than one parameter representing components of the total URA. Specific URA parameters and formulae for calculating the total URA for a signal are defined in the applicable Space Segment to Navigation User Segment ICD's.                                                                                           |                     | Note #2: The URA for a particular signal may be represented by a single index in the NAV data or by a composite of more than one index-representing components of the total URA. Specific URA indexes and formulae for calculating the total URA for L1C are defined in Section 3 for the CNAV message.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rationale #5                                                                                                                                                                                                                                                                                               |
| 6.2.1             |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | Note #3: The above integrity assured probability values do not apply if: (a) an alert is issued to the users before the instantaneous URE exceeds either of the scaled URA bounds, or (b) an alert is issued to the users no more than 5.2 seconds after the instantaneous URE exceeds the 4.42 times URA bound, and (c) if the integrity status flag is 'on' and an alert is issued to the users no more than 5.2 seconds after the instantaneous URE exceeds the 4.42 times URA bound, and (c) if the integrity status flag is 'on' and an alert is issued to the users no more than 5.2 seconds after the instantaneous URE exceeds the 5.73 times URA bound. In this context, an "alert" is defined as any indication or characteristic of the conveying signal, as specified elsewhere in this document, which signifies to users that the conveying signal may be invalid or should not be used, such as the health bits not indicating operational-healthy, broadcasting non-standard code, parity error, etc. | Rationale #5                                                                                                                                                                                                                                                                                               |

| Section | IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proposed | URA Definition Proposed Text                                                                                                                                                                                                                                                                                                                                                                                                                      | Rationale    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Number  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heading  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| 6.2.1.1 | 6.2.1.1 Integrity Assured URA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | <delete></delete>                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| 6.2.1.1 | When the integrity assurance monitoring is available, as indicated by the "integrity status flag" being set to "1", the URA value is chosen such that the probability of the "actual" URE exceeding a threshold is met (see section 3.5.3.10 for probability values). The URA value is conveyed to the user in the form of a URA index value. The URA index represents a range of values; for integrity assurance applications, it is prudent to use the RSS of the largest URA index values in the URA index range. |          | <delete></delete>                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rationale #5 |
| 6.2.1.1 | User Differential Range Accuracy (UDRA) is a statistical indicator of the GPS ranging accuracy obtainable with a specific signal and SV after the application of the associated differential corrections (DC parameters).                                                                                                                                                                                                                                                                                            |          | User Differential Range Accuracy (UDRA) is a statistical indicator of the GPS ranging accuracy obtainable<br>with a specific signal and SV after the application of the associated differential corrections (DC<br>parameters). UDRA provides a conservative RMS estimate of the differential user range errors in the<br>navigation data for that satellite. It includes all errors for which the Space and Control Segments are<br>responsible. | Rationale #5 |

End of WAS/IS for IS-GPS-800A