UNCLASSIFIED

Change Topic: Technical Note 36

Change Topic: Technical Note 36

This change package accommodates the text changes to support the proposed solution (see table below) within the public Signals-in-Space (SiS) documents. All comments must be submitted in Comments Resolution Matrix (CRM) form.

The columns in the WAS/IS table following this page are defined below:
Section Number: This number indicates the location of the text change within the document.
(WAS) <Document Title>: Contains the baseline text of the impacted document.

Proposed Heading: Contains proposed changes to existing section titles and/or the titles to new sections

Proposed Text: Contains proposed changes to baseline text.
Rationale: Contains the supporting information to explain the reason for the proposed changes.

PROBLEM STATEMENT:

Current Signal in Space (SiS) documents reference an outdated coordinate conversion standard (Technical Note 21) between earth centered earth fixed (ECEF) and earth centered inertial (ECI).

SOLUTION: (Proposed)

Update GPS technical baseline documents to reflect the latest coordinate conversion standard between ECEF and ECI as documented in Technical Note 36.

Start of WAS/IS for IS-GPS-200E Changes

Section Number	Tech Note 36 Propose d Heading	IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces	Tech Note 36 Redlines	Rationale
				how to utilize those information .
$\begin{array}{\|l\|} \hline 30.3 .3 .5 .1 . \\ 1 \end{array}$		The EOP fields in the message type 32 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 30-II. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in Table 30-VIII. The coordinate systems are defined in Section 20.3.3.4.3.3	The EOP fields in the message type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 30-II. The full coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, ismay derivedbe usingaccomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations shownfor UT1, xp and yp as documented in Table 30 -VIII. The coordinatefigure systems 5.1 areon definedpage in73 Sectionof 20 that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). 3 Ongoing WGS 84 re-adiustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm .3 In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". 4 The EOP parameters for $\Delta U T 1$ are to be applied within the "Rotation to terrestrial system" process, and the parameters for xp and yp are applied in the "Rotation for polar motion" process. 3 Users are advised that the broadcast message type 32 EOP parameters already account for zonal, diurnal and semidiurnal effects (described in Chapter 8 of the IERS Conventions (2010)), so these effects should not be further applied by the user. 3	The GPS Directorate will only provide description on information that is broadcaste d in the navigational message. It is not Directorate' S responsibilit y to show users on how to utilize those information Details for the calculation of Inertial-to-Geodetic rotation matrix can be found in

Section Number	Tech Note 36 Propose d Heading	IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces	Tech Note 36 Redlines	Rationale
				IERS TN36.
$\begin{aligned} & \text { 30.3.3.5.1. } \\ & 1 \end{aligned}$		An ECI position, $\mathrm{R}_{\text {eci }}$, is related to an ECEF position, $\mathrm{R}_{\text {ecef }}$, by a series of rotation matrices as following: $R_{\text {ecef }}=[A][B][C][D] R_{\text {eci }}$ where the rotation matrices, A, B, C, and D, represent the effects of Polar Motion, Earth Rotation, Nutation and Precession, respectively. The message type 32 specifies the EOP parameters used in the construction of the Polar Motion, A, and Earth Rotation, B, matrices. The rotation matrices, A, B, C and D are specified in terms of elementary rotation matrices, $\mathrm{R}_{\mathrm{i}}(\alpha)$, where α is a positive rotation about the $\mathrm{i}^{\text {th }}$-axis ordinate, as follows: $\begin{aligned} & R_{1}(\alpha)=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos (\alpha) & \sin (\alpha) \\ 0 & -\sin (\alpha) & \cos (\alpha) \end{array}\right], \quad R_{2}(\alpha)=\left[\begin{array}{ccc} \cos (\alpha) & 0 & -\sin (\alpha) \\ 0 & 1 & 0 \\ \sin (\alpha) & 0 & \cos (\alpha) \end{array}\right] \\ & R_{3}(\alpha)=\left[\begin{array}{ccc} \cos (\alpha) & \sin (\alpha) & 0 \\ -\sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$	An ECI position, Reci, is related to an ECEF position, Recef, by a series of rotation matrices as following: The relevant computations utilize elementary rotation matrices $\mathrm{Ri}(\alpha)$, where α is a positive rotation about the ith-axis ordinate, as follows: $R_{\text {eefef }}=[A][B][C][D] R_{\text {eci }}$ Where the rotation matrices, A, B, C, and D, represent the effects of Polar Motion, Earth Rotation, Autation and Precession, respectively. The message type 32 specifies the EOP parameters used in the construction of the Polar Motion, 1 , and Earth Rotation, B, matrices. The rotation matrices, Λ, B, C and D are-specified in terms of elementary rotation matrices, $R_{1}((\alpha)$, Where a-is a positive rotation about the $i^{\text {th }}$-axis ordinate, as follows: $\begin{aligned} & R_{1}(\alpha)=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos (\alpha) & \sin (\alpha) \\ 0 & -\sin (\alpha) & \cos (\alpha) \end{array}\right], \quad R_{2}(\alpha)=\left[\begin{array}{ccc} \cos (\alpha) & 0 & -\sin (\alpha) \\ 0 & 1 & 0 \\ \sin (\alpha) & 0 & \cos (\alpha) \end{array}\right] \\ & R_{3}(\alpha)=\left[\begin{array}{ccc} \cos (\alpha) & \sin (\alpha) & 0 \\ -\sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$	The GPS Directorate will only provide description on information that is broadcaste d in the navigational message. It is not Directorate' s responsibilit y to show users on how to utilize that information Details for the calculation of Inertial- to-Geodetic rotation matrix can be found in IERS TN36.
30.3.3.5.1.		The user shall compute the Inertial-to-Geodetic rotation matrix, ABCD using the equations shown in	The user shall compute the-Inertial-to-Geodetic rotation matrix; ABCD shall usingbe calculated in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS	The GPS Directorate

Section Number	Tech Note 36 Propose d Heading	IS-GPS-200 Rev E Navstar GPS Space Segment/Navigation User Interfaces	Tech Note 36 Redlines	
1		Table 30-VIII.		Rationale Conventions (2010) and equations shownfor UT1, xp and yp as documented in Table 30-VIII.

End of WAS/IS for IS-GPS-200E

Start of WAS/IS for IS-GPS-705A Changes

Section Number	Tech Note 36 Proposed Heading	IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces	Tech Note 36 Redlines	Rationale
2.2		$\frac{\text { Other Publications }}{\text { None }}$	Other Publications \qquad None International Earth Rotation and Reference Systems Service (IERS) Technical Note 36	Add reference to the latest coordinate conversion standard (TN36).
20.3.3.5.1		The EOP fields in the message type 32 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20-II. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in Table 20-VIII. The coordinate systems are defined in Section 20.3.3.4.3.3 of IS-GPS-200. The equations described in this section are based on (International Earth Rotation and Reference Systems Service) IERS Technical Note 21. However, these equations will be updated to a new Technical Note in revision TBD.	The EOP fields in the message type 32 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20.11. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in Table zo-VIII. The coordinate systems are defined in Section 20.3.3.4.3.3 of IS-GPS-200. The equations described in this section are based on (International Earth Rotation and Reference Systems Service) IERS Technical Note 21. However, these equations will be updated to a new Technical Note in revision TBD.-SDELETE>	Contents of IS705-319 is now merged as a part of IS705-320.
20.3.3.5.1		An ECI position, $\mathrm{R}_{\text {eci, }}$, is related to an ECEF position, $\mathrm{R}_{\text {ecef, }}$, by a series of rotation matrices as following: $R_{\text {ecef }}=[A][B][C][D] R_{\text {eci }},$ where the rotation matrices, A, B, C, and D, represent the effects of Polar Motion, Earth Rotation, Nutation and Precession, respectively. The message type 32 specifies the EOP parameters used in the construction of the Polar Motion, A, and Earth Rotation, B, matrices. The rotation matrices, A, B, C and D are specified in terms of elementary rotation matrices $R_{i}(\alpha)$, where α is a positive rotation about the i^{th} - axis ordinate, as follows:	An ECI position, Reci, is related to an ECEF position, Recef, by a series of rotation matrices as following: $\text { Recef }=[A][B][C][D] \text { Reci },$ Where the rotation matrices, A, B, C, and D, represent the effects of Polar Motion, Earth Rotation, Nutation and Precession, respectively. The message type 32 specifies the EOP parameters used in the construction of the Polar Motion, A, and Earth Rotation, B, matrices. The rotation matrices, A, B, C and D are specified in terms of elementary rotation matrices $R i\left({ }^{(}\right)$, where 3 is a positive rotation about the ith -axis ordinate, as follows: The EOP fields in the message type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the	The GPS Directorate will only provide description on information that is broadcasted in the navigational message. It is not Directorate's responsibility to show users on how to utilize those

Section Number	Tech Note 36 Proposed Heading	IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces	Tech Note 36 Redlines	Rationale
		$\begin{aligned} & R_{1}(\alpha)=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos (\alpha) & \sin (\alpha) \\ 0 & -\sin (\alpha) & \cos (\alpha) \end{array}\right], R_{2}(\alpha)=\left[\begin{array}{ccc} \cos (\alpha) & 0 & -\sin (\alpha) \\ 0 & 1 & 0 \\ \sin (\alpha) & 0 & \cos (\alpha) \end{array}\right] \\ & R_{3}(\alpha)=\left[\begin{array}{ccc} \cos (\alpha) & \sin (\alpha) & 0 \\ -\sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$	computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, xp and yp as documented in Table 20-VIII. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm . In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". The EOP parameters for \triangle UT1 are to be applied within the "Rotation to terrestrial system" process, and the parameters for $x p$ and $y p$ are applied in the "Rotation for polar motion" process. Users are advised that the broadcast message type 32 EOP parameters already account for zonal, diurnal and semidiurnal effects (described in Chapter 8 of the IERS Conventions (2010)), so these effects should not be further applied by the user. The relevant computations utilize elementary rotation matrices $\mathrm{Ri}(\alpha)$, where α is a positive rotation about the ith-axis ordinate, as follows: $\begin{aligned} & R_{1}(\alpha)=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos (\alpha) & \sin (\alpha) \\ 0 & -\sin (\alpha) & \cos (\alpha) \end{array}\right], \quad R_{2}(\alpha)=\left[\begin{array}{ccc} \cos (\alpha) & 0 & -\sin (\alpha) \\ 0 & 1 & 0 \\ \sin (\alpha) & 0 & \cos (\alpha) \end{array}\right] \\ & R_{3}(\alpha)=\left[\begin{array}{ccc} \cos (\alpha) & \sin (\alpha) & 0 \\ -\sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$	information.
20.3.3.5.1		The user shall compute the Inertial-to-Geodetic rotation matrix, ABCD using the equations shown in Table 20-VIII.	The user shall compute the-Inertial-to-Geodetic rotation matrix, ABCDshall usingbe calculated in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations shownfor UT1, xp and yp as documented in Table 20-VIII.	The GPS Directorate will only provide description on information that is broadcasted in the

$\begin{aligned} & \text { Section } \\ & \text { Number } \end{aligned}$	Tech Note 36 Proposed Heading	IS-GPS-705 Rev A L5 SS and Nav User Segment Interfaces	Tech Note 36 Redlines	Rationale
				navigational message. It is not Directorate's responsibility to show users on how to utilize those information. Details for the calculation of Inertial-to-Geodetic rotation matrix can be found in IERS TN36.

End of WAS/IS for IS-GPS-705A

Start of WAS/IS for IS-GPS-800A Changes

Section Number	Tech Note 36 Proposed Heading	IS-GPS-800 Rev A Navstar GPS Space Segment/User Segment L1C Interface	Tech Note 36 Redlines	Rationale
2.2			IERS Technical Note 36 International Earth Rotation and Reference System Technical Note 36	ECEF-ECI conversion details can be found in IERS TN36.
3.5.4.2.3		The EOP fields in subframe 3, page 2 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 3.5-2. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in Section 30.3.3.5.1.1 and Table 30-VIII of IS-GPS-200. The coordinate systems are defined in Section 20.3.3.4.3.3 of IS-GPS-200.	The EOP fields in subframe 3, page 2 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 3.5-2. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in SectionIERS 30.3.3.5.1.1 Technical Note 36 and Table 30-VIII of IS-GPS-200. The coordinate systems are defined in Section 20.3.3.4.3.3 of IS-GPS-200.	ECEF-ECI conversion details can be found in IERS TN36.

End of WAS/IS for IS-GPS-800A

