CHANGE NOTICE						
Affected Document: IS-GPS-800 Rev H	IRN/SCN Number IRN-IS-800H-001	Date: 13-JAN-2022				
Authority: RFC-00467	Proposed Change Notice PCN-IS-800G_RFC467	Date: 10-DEC-2021				
Document Title: NAVSTAR GPS Space Segment / User Segment L1C Interfaces						
RFC Title: 2021 Proposed Chan	ges to the Public Documents	and the second				
Reason For Change (Driver):						
implementation to fill those bi integrity checks. 2 The GPS IIIF SV Configuration	AV/CNAV-2 in IS-GPS-200 are assumed to be a static bit pattern ts with a pseudorandom bit pattern, users are at risk of incorrectl on Code '101' confirms that the "alert" in HOW is still applicabl	y using those bits for e. As such, one of the public				
undefined configuration codes because the alert is part of the ARAIM integrity context.	irification to confirm if the "alert" in the HOW will also be applied. This is not sufficient for safety-of-life equipment that would ne "marginal" conditions leading to the selection/deselection of a set	ed to have the confirmation atellite in a RAIM or				
transmitted by the SV during t	ck (IODC) requirement in IS-GPS-200 states that the IODC will he preceding 7-days. In certain occasions, current operations have	ve shown not to follow that				
under extended navigation) do	avigation message changes with time (for example, transitions be o not capture all the implementation differences between earlier S and clean-up, as identified in past Public ICWGs and as newly-id	SVs and GPS III/IIIF.				
Description of Change:1. Clarify language in IS-GPS-202. Add clarification to the SV Co3. Modify or delete the IODC re4. Update the timing-related infoAlso added deferred (from RFRelationships section outline	00, IS-GPS-705 and IS-GPS-800 to tell users to not utilize the sp onfiguration Code section for the undefined SV codes. quirement. ormation to reflect the current implementation, including aspects 'C-444 RSAM') a Timing Relationships section to ICD-GPS-700 in IS-GPS-200 to ensure the entire subject is covered for MNAV dentified administrative changes in all affected documents.	specific to GPS III/IIIF. following the Timing				
Authored By: RE: Tony Anthony		RE: Meaghan Leonhardt				
AUTHORIZED SIGNATURES	REPRESENTING	DATE				
DUNN.MICHAEL. Digitally signed by DUNN.MICHAELJ.1171235045 J.1171235045 Date: 2022.04.19 06:54:35 -07'00'	PNT Technical Director, MilComm & PNT Directorate, Space Systems Command (SSC)	19 April 2022				
J.1171235045 Date: 2022.04.19 06:54:35 -07'00' Space Systems Command (SSC) DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution Is Unlimited						

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS	Interface Control Contractor:
AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO	SAIC (GPS SE&I)
ALTER THE TERMS OF ANY CONTRACT OR PURCHASE	200 N. Pacific Coast Highway, Suite 1800
ORDER BETWEEN ALL PARTIES AFFECTED.	El Segundo, CA 90245
	CODE IDENT 66RP1

IS800-5:

Section Number:

1.2.0-1

WAS:

Utilizing the L1 open link defined in this document, GPS space vehicles (SVs), except Block II/IIA, IIR/IIR-M, and IIF SVs, shall transmit continuous earth coverage L1C signal that provides the ranging codes and the system data needed to accomplish the navigation mission to all users having RF visibility to SVs and suitable receivers.

Redlines:

Utilizing the L1 open link defined in this document, GPS space vehicles (SVs), except Block H/HA, IIR/IIR-M, and IIF SVs, shall transmit continuous earth coverage L1C signal that provides the ranging codes and the system data needed to accomplish the navigation mission to all users having RF visibility to SVs and suitable receivers.

IS:

Utilizing the L1 open link defined in this document, GPS space vehicles (SVs), except Block IIR/IIR-M, and IIF SVs, shall transmit continuous earth coverage L1C signal that provides the ranging codes and the system data needed to accomplish the navigation mission to all users having RF visibility to SVs and suitable receivers.

IS800-145:

Section Number:

3.5.2.0-3 WAS:

		DI	RECTION	I OF DATA FL		/ISV —	—— MS	SB FIRST -	
1	14	22	34	39	50		7	76	
WN	ITOW	top		t _{oe}		ΔA			Å
13 BITS	8 BITS	11 BITS	5 BITS	11 BITS	26 BITS		2	25 BITS	
			1 1		IDEX		I		
			ALIH – 1E	311					
t		DI	RECTION - 100 BI	OF DATA FL TS	OW FROM	/ SV	—— MS	SB FIRST -	
101	118			141			174	Ļ	
Δn _o		$\Delta \hat{n}_0$			M _{0-n}				en
17 BITS		23 BITS			33 BITS	6			MSBs
			1						
					000 500	4.0)/	-		
└────			RECTION - 100 B	I OF DATA FL		/15V	MS	SB FIRST -	
201 207			2	40			273	5	
en	ω _n				Ω _{0-n}				i _{o-n}
6 LSBs	33 BIT	rs			33 BITS	3			MSBs
		2	400 0			/ISV —	—— MS	BELIKSI -	
301 306		323	- 100 BI	TS	_OW FROM		MS	B FIRST -	394
i _{0-n}	ΔΩ		- 100 BI	TS				C _{rs-n}	
i _{0-n}	ΔΩ BITS	323	– 100 BI	TS ——— 338					394 C _{rc-n}
i₀.n 5 LSBs 17		323 ion 15 BIT	- 100 BI	TS 338 16 BITS 10F DATA FL TS 39	_ 354	C _{ic-n} 16 BITS	370	C _{rs-n} 24 BITS SB FIRST -	394 Crc-n 7 MSB 497
i₀.n 5 LSBs 17 401 Crc.n	BITS	323 io-n 15 BIT DIF	- 100 BI	TS 338 C _{is-n} 16 BITS 10F DATA FL TS 39 C _{uc-r}	_ 354	C _{IE-0} 16 BITS A SV 460 46 5	370	C _{rs-n} 24 BITS SB FIRST -	394 Crc-n 7 MSB 497
i₀n 5 LSBs 17	BITS	323 ion 15 BIT	- 100 BI	TS 338 C _{is-n} 16 BITS 10F DATA FL TS 39 C _{ue-r} 21 BIT	354 	C _{ic-n} 16 BITS A SV	370	C _{rs-n} 24 BITS 68 FIRST - a _{ro-n} 26 BITS	394 Crc-n 7 MSB 497 497 4 4 5
i₀.n 5 LSBs 17 401 Crc.n	BITS	323 io-n 15 BIT DIF	- 100 BI	TS 338 C _{is-n} 16 BITS 10F DATA FL TS 39 C _{ue-r} 21 BIT	_ 354	C _{IE-0} 16 BITS A SV 460 46 5	370 MS 55 471	C _{rs-n} 24 BITS 58 FIRST - a _{to-n} 26 BITS — URA _{MED2} IN	394 Crc-n 7 MSB 497 a _{rt-r} 4
i₀.n 5 LSBs 17 401 Crc.n	BITS	323 ion 15 BIT DIF Cusin 21 BITS	- 100 BI	TS 338 C _{is-n} 16 BITS 10F DATA FL TS 39 Cuc-1 39 Cuc-1 URA NEC N OF DATA FL	354 	С _{іс-п} 16 ВІТS Л SV 460 46 ВІТS ВІТS URA _{NED1} INDI	370 MS 55 471 1 2 4 1 2 3 4 7	C _{rs-n} 24 BITS SB FIRST - a _{r0-n} 26 BITS - URA _{NED2} IN	394 Crc-n 7 MSB 7 MSB 7 MSB 7 MSB 497 4 497 4 497 4 5 10 10 10 10 10 10 10 10
401 Crc-n 17 LSBs	BITS	323 io-n 15 BIT DIF Cus-n 21 BITS DI	- 100 BI	TS Clis-n 16 BITS 10F DATA FL TS 21 BIT URA NEE N OF DATA FL ITS	354 	C _{IE-N} 16 BITS A SV 460 460 460 460 460 460 460 460	370 370 MS 5 471 5 471 5 471 5 471 666	C _{rs-n} 24 BITS 58 FIRST - a _{ro-n} 26 BITS - URA _{VED2} IN 58 FIRST -	394 Crc-n 7 MSB 7 MSB 7 MSB 7 MSB 497 4 497 4 497 4 5 10 10 10 10 10 10 10 10
i₀.n 5 LSBs 17 401 Crc.n 17 LSBs 501	BITS	323 i 15 BIT DIF Cus-n 21 BITS DI 15 DI 1	- 100 BI	TS 338 Cis-n 16 BITS 16 BITS 16 BITS 16 BITS 21 BIT URA NEE N OF DATA FI ITS 1540	354 	Cic-n 16 BITS A SV 460 460 460 460 460 460 460 460	370 	C _{rs-n} 24 BITS 58 FIRST - a _{r0-n} 26 BITS - URA _{VED2} IN 58 FIRST -	394 Crc-n 7 MSB 7 MSB 497 4 497 4 497 5 10EX – 3 BITS
401 Crc-n 17 LSBs	BITS	323 ion 15 BIT DIF Cus-n 21 BITS DI 527	- 100 BI	TS Clis-n 16 BITS 10F DATA FL TS 21 BIT URA NEE N OF DATA FL ITS	354 	C _{IE-N} 16 BITS A SV 460 460 460 460 460 460 460 460	370 370 MS 5 471 5 471 5 471 5 471 666	Crs-n 24 BITS 24 BITS 58 FIRST - 26 BITS - URANED2IN 58 FIRST - 575 577	394 Crc-n 7 MSB 497 4 497 4 5 MSB IDEX – 3 BITS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				DI	RECTION			//SV		MSB FIF	RST	
13 BITS 8 BITS 11 BITS 11 BITS 26 BITS 25 BITS URAge INDEX L1C HEALTH -1 BIT URAge INDEX OT IT BITS 26 BITS 25 BITS OT RECTION OF DATA FLOW FROM SV MSB FIRST OT IT BITS 23 BITS 33 BITS 27 MSBs OT IT BITS 23 BITS 33 BITS 27 MSB OT IT			14	22			50			76		
13 BITS 8 BITS 11 BITS 11 BITS 26 BITS 25 BITS LIC HEALTH -1 BIT URAccilNDEX URAccilNDEX MSB FIRST		WN	ITOW	t _{op}		t _{oe}		ΔΑ			Å	
DIRECTION OF DATA FLOW FROM SV MSB FIRST 01 118 141 174 Δ0°0 ΔΛ°0 ΔΛ°0 MSB 97 17 BITS 23 BITS 33 BITS 27 MSBs 01 118 141 174 Δ0°0 ΔΛ°0 MSB FIRST 97 01 207 240 273 01 207 240 273 02 00 BITS 100 BITS 100 BITS 01 207 240 273 02 01 207 240 273 03 BITS 33 BITS 28 MSBs 28 MSBs 01 206 323 338 354 370 94 100 BITS 16 BITS 16 BITS 24 BITS 7 MSB 15 BITS 16 BITS 24 BITS 7 MSB 01 306 323 15 BITS 16 BITS 24 BITS 26 BITS 460 100 BITS 010 BITS 010 BITS 02 BITS	13	3 BITS	8 BITS	11 BITS		11 BITS		26 BITS			25 BITS	8
01 118 141 174 ΔΠο ΔΠο Mo.4 en 17 BITS 23 BITS 33 BITS 27 MSBs DIRECTION OF DATA FLOW FROM SV MSB FIRST 100 BITS 240 273 en 00. 0.0. 0.0. 58 33 BITS 28 MSBs DIRECTION OF DATA FLOW FROM SV MSB FIRST OI 306 323 DIRECTION OF DATA FLOW FROM SV MSB FIRST OI BITS OI DIRECTION OF DATA FLOW FROM SV MSB FIRST OI DIRECTION OF DATA FLOW FROM SV MSB FIRST OI DIRECTION OF DATA FLOW FROM SV MSB FIRST OI MSB FIRST						BIT		∕ISV —	r	/ISB FIR	кsт ———	
ΔΠο ΔΠο Μο. en. 17 BITS 23 BITS 33 BITS 27 MSBs DIRECTION OF DATA FLOW FROM SV MSB FIRST mss First 100 BITS 240 273 en 0n Ωο.n b.n 5 33 BITS 28 MSBs DIRECTION OF DATA FLOW FROM SV main 00 BITS 20 MSBs DIRECTION OF DATA FLOW FROM SV MSB FIRST DIRECTION OF DATA FLOW FROM SV MSB FIRST <td< td=""><td></td><td></td><td></td><td></td><td>- 100 Bl</td><td>TS</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					- 100 Bl	TS						
17 BITS 23 BITS 33 BITS 27 MSBs DIRECTION OF DATA FLOW FROM SV MSB FIRST 01 207 240 273 0a Ωcm Lm Lm 6B 33 BITS 28 MSBs 28 MSBs DIRECTION OF DATA FLOW FROM SV MSB FIRST DIRECTION OF DATA FLOW FROM SV MSB FIRST DIRECTION OF DATA FLOW FROM SV MSB FIRST OI 306 323 338 State of the state of th	01		118			141			1	74		
DIRECTION OF DATA FLOW FROM SV MSB FIRST 01 207 240 273 en 0n 20n 268 SBs 33 BITS 28 MSBs 01 306 323 338 100 BITS 100 BITS MSB FIRST 01 306 323 338 5 17 BITS 15 BITS 16 BITS 16 BITS 100 BITS 16 BITS 16 BITS 24 BITS 7 MSB 01 418 439 460 465 471 497 17 LSBs 21 BITS 21 BITS 21 BITS 26 BITS 480 URAveolNDEX - 3 BITS URAveolNDEX - 3 BITS URAveolNDEX - 3 B		Δn_0		Δn_0			M _{0-n}				en	
100 BITS 273 en 0n Ωon box 6 33 BITS 33 BITS 28 MSBs DIRECTION OF DATA FLOW FROM SV MSB FIRST DIRECTION OF DATA FLOW FROM SV MSB FIRST 100 BITS 100 BITS 28 MSBs 01 306 323 338 354 370 394 100 BITS 100 BITS Cen Gen 400 410 417 497 Crean Crean Crean Cenn Se Bits 26 Bits MsE URA MEDINDEX 21 Bits 21 Bits DIRECTION OF DATA FLOW FROM SV MSE FIRST MSE MSE MSE MSE </td <td></td> <td>17 BITS</td> <td></td> <td>23 BITS</td> <td></td> <td></td> <td>33 BITS</td> <td>6</td> <td></td> <td></td> <td>27 MSBs</td> <td></td>		17 BITS		23 BITS			33 BITS	6			27 MSBs	
6 0.01 0.01 0.01 0.01 0.01 0.01 0.15Bs 0.33 BITS 0.33 BITS 0.33 BITS 0.28 MSBs 01 0.06 32.3 33.8 354 370 394 01 306 32.3 33.8 354 370 394 01 306 32.3 13.8 354 370 394 55 17 BITS 15 BITS 16 BITS 16 BITS 24 BITS 7 MSB 01 418 439 460 465 471 497 17 LSBs 21 BITS 21 BITS 21 BITS 26 BITS 460 465 471 497 17 LSBs 21 BITS 21 BITS 21 BITS 26 BITS 488 497 00 BITS 21 BITS 21 BITS 26 BITS 488 0100 BITS 100 BITS 100 BITS 100 BITS 100 BITS 100 BITS 100 BITS 0100 BITS 501 517 527 <th>01</th> <th>207</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th>73</th> <th></th> <th></th>	01	207							2	73		
LSBs 33 BITS 33 BITS 28 MSBs DIRECTION OF DATA FLOW FROM SV MSB FIRST			ω _n				$\Omega_{\text{0-n}}$				İo-n	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			33 BI	TS			33 BITS	3			28 MSBs	
SBs 17 BITS 15 BITS 16 BITS 16 BITS 16 BITS 24 BITS 7 MSB DIRECTION OF DATA FLOW FROM SV MSB FIRST 01 418 439 460 465 471 497 Cre-n Cre-n Cre-n 5 aro-n aro-n 4 17 LSBs 21 BITS 21 BITS 21 BITS 26 BITS MSE URA NEEDINDEX 100 BITS URA NEEDINDEX 100 BITS DIRECTION OF DATA FLOW FROM SV URAWEDINDEX - 3 BITS URA NEEDINDEX 100 BITS DIRECTION OF DATA FLOW FROM SV MSB FIRST URANED INDEX - 3 BITS 566 566 566 566 566 566 566 566 566 566 100 BITS 566 566 566 56	01				- 100 BI	тѕ ——					RST	204
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	İ _{0-n}			323	– 100 BI	TS ——— 338)		
Ote-In Ote-In 5 attorn 4 17 LSBs 21 BITS 21 BITS 5 26 BITS 4 URA NEDOINDEX 1 1 26 BITS 4 URA NEDOINDEX 1 1 1 1 4 0 0 0 1 1 1 4 0 0 0 0 1 1 1 4 0 <	i _{0-n} 5		ΔΩ	323	- 100 BI	TS 338 C _{is-n}		C _{ic-n})	C _{rs-n}	Crc-n
URA NEDOINDEX URANED INDEX - 3 BITS DIRECTION OF DATA FLOW FROM SV 566 501 517 527 540 553 567 575 577 38 ISCLIC D WNOP CRC	i₀₋n 5 SBs	17	ΔΩ BITS	323 io.al 15 BIT	- 100 BI 3 00T 'S RECTION - 100 BI	TS Cis-n 16 BITS 1 OF DATA F TS 39	354	C _{ic-n} 16 BITS M SV —	370	24 24 MSB FIF	C _{rs-n} 4 BITS RST	Crc-n 7 MSB
501 517 527 540 553 567 575 577 ar1-n ar2-n T_GD ISCLICP ISCLICD WNOP CRC	i₀₋n 5 SBs 01	Cre-n	ΔΩ BITS	323 io.al 15 BIT DII	- 100 BI 3 00T 'S RECTION - 100 BI	TS Cis-n 16 BITS 10F DATA F TS 39 Cuc	LOW FROM	C _{ie-n} 16 BITS M SV - 460 5	370	24 24 MSB FIF	Crs-n 4 BITS RST aro-n	497 417
501 517 527 540 553 567 575 577 ar1-n ar2-n T_GD ISCLICP ISCLIC D WNOP CRC	i₀₋n 5 SBs 01	Cre-n	ΔΩ BITS	323 io.al 15 BIT DII Cus.n 21 BITS	- 100 BI 3 20T 3 3 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9	TS 338 Cis-n 16 BITS 16 BITS 10 F DATA F TS 39 Cut 21 BI URA NE	354	C _{ie-n} 16 BITS A SV - 460 5 BITS URA _{NED1} IN	465 47 465 47	24 MSB FIF 71 2 	Crs-n 4 BITS RST aro-n 26 BITS Avec21NDEX -	497 4 MSB
	i _{0-n} 5 SBs	Cre-n	ΔΩ BITS	323 io.al 15 BIT DII Cus.n 21 BITS	- 100 BI 3 20T 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TS 338 Cis-n 16 BITS 16 BITS 16 BITS 16 BITS 21 BI 07 DATA F URA NI 0 OF DATA F	354	C _{ie-n} 16 BITS A SV - 460 5 BITS URA _{NED1} IN	465 47 465 47	24 MSB FIF 71 2 	Crs-n 4 BITS RST aro-n 26 BITS Avec21NDEX -	497 4 MSB
16 LSBs 10 BITS 13 BITS 13 BITS 13 BITS 13 BITS 8 BITS 24 BITS	i _{0-n} 5 SBs	Cre-n	ΔΩ BITS 418	323 io.al 15 BIT DII Cus.n 21 BITS DI	- 100 BI 3 20T 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TS 338 Cis-n 16 BITS 16 BITS 16 BITS 16 BITS 21 BI URANE URANE NOF DATA F ITS	1354	C _{IE-n} 16 BITS A SV - 460 5 BITS URA _{NED1} IN M SV -	465 47 465 47 10EX - 3 BI	24 MSB FIF 71 	Crs-n H BITS RST	497 4 MSB
	i _{0-n} 5 SBs	C _{rc-n} 17 LSBs	ΔΩ BITS 418 517	323 io.el 15 BIT DII Cus.n 21 BITS DI 527	- 100 BI 3 00T 3 8 8 8 8 8 8 8 8 8 8 9 100 BI 4 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TS 338 Cis-n 16 BITS 16 BITS 16 BITS 21 BI URA NE URA NE 10F DATA F 17S	354	C _{ic-n} 16 BITS M SV - 460 5 BITS URA _{NED} IN M SV -	370 	24 MSB FIF 71 2 75 MSB FIF 575	Crs-n 4 BITS RST aro-n 26 BITS ZANED2INDEX RST 577	497 497 3 BITS
	i _{0-n} 5 SBs 01	Сте-п 17 LSBs аті-п	ΔΩ̂ BITS 418 517 a _{12-n}	323 io.al 15 BIT DI Cus-n 21 BITS DI 527	- 100 BI 3 20T 5 RECTION - 100 BI 43 RECTION - 100 BI TGD	TS 338 Cis-n 16 BITS 16 BITS 16 BITS 21 BI URA NU URA NU URA NU URA NU S40 ISCL10P	354 ELOW FROM ITS EDOINDEX FLOW FROM 553 5	C _{IC-n} 16 BITS A SV - 460 5 BITS URA _{NED} IN M SV - 3 ISC L1C D	370 	24 MSB FIF 712 MSB FIF 575 	Crs-n 4 BITS RST	Cre-n 7 MSB 497 a _{f1-n} 4 MSB 3 BITS

IS:

118 Δ ^ή α 23 Bľ	TS BITS BITS CHEALTH – 1 E DIRECTION 100 BI	URA _{ED} INDE: BIT	∆A 26 BITS	76 Å 25 BIT MSB FIRST	s
BITS 11 BΓ L10 118 Δη 23 ΒΓ	TS BITS BITS CHEALTH – 1 E DIRECTION 100 BI	11 BITS URA _{ED} INDE BIT I OF DATA FLOV TS	26 BITS X	A 25 BIT	s
L10 118 23 Bi	TS BITS T T CHEALTH - 1 E DIRECTION 100 BI	URA _{ED} INDE: BIT I OF DATA FLOV TS	x	MSB FIRST	S
118 Δ ^ή α 23 Bľ	DIRECTION 100 BI	BIT I OF DATA FLOV TS			
118 Δ ^ή α 23 Bľ	DIRECTION 100 BI	I OF DATA FLOV	V FROM SV		
<u>118</u> ∆ື້າເ 23 Bl	100 Bľ	TS			
∆n 23 Bľ	0	141		174	
23 BI					
	rs		M _{0-n}	en	
			33 BITS	27 MSBs	
	DIDECTION				
		I OF DATA FLOV		MSB FIRST	
	2	240		273	
ω _n			Ω _{0-n}	İo-n	
			33 BITS		
323	3	338	354	370	394
	IDOT	C _{is-n}	C _{ic-n}	C _{rs-n}	Crc-n
1	5 BITS	16 BITS	16 BITS	24 BITS	7 MSB
	100 BI	ITS			
18	43	39	460 465	471	497
C _{us -n}		C _{uc-n}	5	aro-n	a _{f1-r} 4
21 BIT	S	21 BITS	BITS	26 BITS	MSB
		URA NEDOIN		URANED2INDEX -	– 3 BITS
		N OF DATA FLO			
	100 B		566		
			500		
17 52	27	540	553	567 575 577	
17 52 ar2-n	27 Tgd	540 ISCL1CP			
			553	567 575 577	
	33 BITS 323 3 1 3 1 418 Cus.n		33 BITS DIRECTION OF DATA FLOW 100 BITS 100 BITS 323 338 IDOT Clis-n 15 BITS 16 BITS DIRECTION OF DATA FLOW 100 BITS 16 BITS DIRECTION OF DATA FLOW 118 439 Cus-n Cus-n 21 BITS 21 BITS	ωn Ωo-n 33 BITS 33 BITS DIRECTION OF DATA FLOW FROM SV	ωn Ωon ion 33 BITS 33 BITS 28 MSBs

IS800-160:

Section Number: 3.5.3.0-10 **WAS**:

	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range** *	Units		
Ω0-n	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	33*	2-32		semi-circles		
$ \begin{array}{c} \Delta \\ \Omega \end{array}^{\bullet} * * * * * \\ \Omega \end{array} $	Rate of right ascension difference	17*	2 ⁻⁴⁴		semi- circles/sec		
i _{0-n}	Inclination angle at reference time	33*	2-32				
i _{0-n} –	Rate of inclination angle	15*	2-44		semi-circles		
	Amplitude of the sine harmonic correction term to the angle of	16*	2-30		semi- circles/sec		
C _{is-n}	inclination	16*	2-30		radians		
C _{ic-n}	Amplitude of the cosine harmonic correction term to the angle of inclination	24*	2-8		radians		
C _{rs-n}	Amplitude of the sine correction term to the orbit radius	24*	2-8		meters		
C _{rc-n}	Amplitude of the cosine correction term to the orbit radius	21*	2-30		meters		
Cus-n	Amplitude of the sine harmonic correction term to the argument of latitude	21*	2-30		radians		
Cuc-n	Amplitude of the cosine harmonic correction term to the argument of latitude				radians		
* ** *** at	 * Parameters so indicated are in two's complement notation; ** See Figure 3.5-1 for complete bit allocation in Subframe 2; 						
****	Relative to $\Omega_{\text{REF}} = -2.6 \times 10^{-9} \text{ ser}$	ni-circles	/second.				

	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units		
Ω_{0-n}	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	33*	2-32		semi-circles		
Δ •****	Rate of right ascension difference	17*	2-44		semi-circles/sec		
$\Omega_{i_{0-n}}$	Inclination angle at reference time	33*	2-32		semi-circles		
<mark>i₀."—]</mark> DOT	Rate of inclination angle	15*	2-44		semi-circles/sec		
C _{is-n}	Amplitude of the sine harmonic correction term to the angle of inclination	16*	2 ⁻³⁰		radians		
C _{ic-n}	Amplitude of the cosine harmonic correction term to the angle of inclination	16*	2-30		radians		
C _{rs-n}	Amplitude of the sine correction term to the orbit radius	24*	2-8		meters		
C _{rc-n}	Amplitude of the cosine correction term to the orbit radius	24*	2-8		meters		
C _{us-n}	Amplitude of the sine harmonic correction term to the argument of latitude	21*	2-30		radians		
C _{uc-n}	Amplitude of the cosine harmonic correction term to the argument of latitude	21*	2-30		radians		
** See *** Un	 * Parameters so indicated are in two's complement notation; ** See Figure 3.5-1 for complete bit allocation in Subframe 2; 						
**** Rel	ative to $\hat{\Omega}_{\text{REF}} = -2.6 \text{ x } 10^{-9} \text{ semi-circles/second.}$						

		No. of	Scale Factor	Valid			
	Parameter	Bits**	(LSB)	Range***	Units		
Ω 0-n	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	33*	2 ⁻³²		semi-circles		
$\stackrel{\Delta}{\Omega}^{\bullet}****$	* Rate of right ascension difference	17*	2 ⁻⁴⁴		semi- circles/sec		
i _{0-n}	Inclination angle at reference time	33*	2-32				
IDOT	Rate of inclination angle	15*	2-44		semi-circles		
C _{is-n}	Amplitude of the sine harmonic correction term to the angle of	16*	2-30		semi- circles/sec		
C _{ic-n}	inclination	16*	2-30		radians		
C _{rs-n}	Amplitude of the cosine harmonic correction term to the angle of inclination	24*	2-8		radians		
C _{rc-n}	Amplitude of the sine correction term to the orbit radius	24*	2-8		meters		
C _{us-n}	Amplitude of the cosine correction term to the orbit radius	21*	2-30		meters		
Cuc-n	Amplitude of the sine harmonic correction term to the argument of	21*	2-30		radians		
	atitude Amplitude of the cosine harmonic correction term to the argument of latitude				radians		
* ** ***	 * Parameters so indicated are in two's complement notation; ** See Figure 3.5-1 for complete bit allocation in Subframe 2; 						
****	Relative to $\Omega_{\text{REF}} = -2.6 \times 10^{-9} semi-$	i-circles/s	second.				

IS800-161:

Section Number: 3.5.3.0-12 **WAS**:

	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units			
URA _{NED0} Index	NED Accuracy Index	5*	(===)	8-	(see text)			
					、 <i>,</i> ,			
URA _{NED1} Index	NED Accuracy Change Index	3			(see text)			
URA _{NED2} Index	NED Accuracy Change Rate Index	3			(see text)			
a _{f2-n}	SV Clock Drift Rate Correction Coefficient	10*	2-60		sec/sec ²			
a _{fl-n}	SV Clock Drift Correction Coefficient	20*	2-48		sec/sec			
a _{f0-n}	SV Clock Bias Correction Coefficient	26*	2-35		seconds			
T _{GD} ****	Inter-Signal Correction for L1 or L2 P(Y)	13*	2-35		seconds			
ISC _{L1CP} ****	Inter-Signal Correction for L1C _P	13*	2-35		seconds			
ISC _{LICD} ****	Inter-Signal Correction for L1C _D	13*	2 ⁻³⁵		seconds			
WN _{op}	CEI Data Sequence Propagation Week Number	8	1		weeks			
* Paramete	* Parameters so indicated are in two's complement notation;							
** See Figu	re 3.5-1 for complete bit allocation in Subframe	2;						
	therwise indicated in this column, valid range is n and scale factor.	the maximu	ım range a	ttainable with	indicated bit			

	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units		
URA _{NED0} Index	NED Accuracy Index	5*			(see <u>text3.5.3.8</u>)		
URA _{NED1} Index	NED Accuracy Change Index	3			(see <u>text3.5.3.8</u>)		
URA _{NED2} Index	NED Accuracy Change Rate Index	3			(see <u>text3.5.3.8</u>)		
a _{f2-n}	SV Clock Drift Rate Correction Coefficient	10*	2-60		sec/sec ²		
a _{fl-n}	SV Clock Drift Correction Coefficient	20*	2-48		sec/sec		
a _{f0-n}	SV Clock Bias Correction Coefficient	26*	2-35		seconds		
T _{GD} ****	Inter-Signal Correction for L1 or L2 P(Y)	13*	2-35		seconds		
ISC _{L1CP} ****	Inter-Signal Correction for L1C _P	13*	2 ⁻³⁵		seconds		
ISC _{L1CD} ****	Inter-Signal Correction for L1C _D	13*	2-35		seconds		
WN _{op}	CEI Data Sequence Propagation Week Number	8	1		weeks		
Parameters so indicated are in two's complement notation;							
** See Figure 3.5-1 for complete bit allocation in Subframe 2;							
	herwise indicated in this column, valid range is the and scale factor.	ne maximur	n range at	tainable wit	h indicated bit		

	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
URA _{NED0} Index	NED Accuracy Index	5*			(see 3.5.3.8)
URA _{NED1} Index	NED Accuracy Change Index	3			(see 3.5.3.8)
URA _{NED2} Index	NED Accuracy Change Rate Index	3			(see 3.5.3.8)
a _{f2-n}	SV Clock Drift Rate Correction Coefficient	10*	2-60		sec/sec ²
a_{fl-n}	SV Clock Drift Correction Coefficient	20*	2 ⁻⁴⁸		sec/sec
a _{f0-n}	SV Clock Bias Correction Coefficient	26*	2 ⁻³⁵		seconds
T _{GD}	Inter-Signal Correction for L1 or L2 P(Y)	13*	2 ⁻³⁵		seconds
ISC _{L1CP}	Inter-Signal Correction for L1C _P	13*	2-35		seconds
ISC _{L1CD}	Inter-Signal Correction for L1C _D	13*	2-35		seconds
WN _{op}	CEI Data Sequence Propagation Week Number	8	1		weeks
** See Figur *** Unless ot	s so indicated are in two's complement notation; e 3.5-1 for complete bit allocation in Subframe 2 herwise indicated in this column, valid range is the and scale factor.	;	n range at	tainable witl	n indicated bit

IS800-182:

Section Number:

3.5.3.6.1.0-7

WAS:

Element/Equation	Description
$\Phi_k = v_k + \omega_n$	Argument of Latitude
$\delta u_k = C_{us-n} \sin 2\Phi_k + C_{uc-n} \cos 2\Phi_k$	Argument of Latitude Correction
$\delta r_k = C_{rs-n} sin 2\Phi_k + C_{rc-n} cos 2\Phi_k$	Radial Correction Perturbations
$\delta i_k = C_{is-n} \sin 2\Phi_k + C_{ic-n} \cos 2\Phi_k$	Inclination Correction
$u_k = \Phi_k + \delta u_k$	Corrected Argument of Latitude
$r_k = A_k(1 - e_n \cos E_k) + \delta r_k$	Corrected Radius
$i_k = i_{o\text{-}n} + (i_{o\text{-}n}\text{-}DOT)t_k + \delta i_k$	Corrected Inclination
$ \begin{array}{l} x_k' \ = \ r_k \cos u_k \\ \\ y_k' \ = \ r_k \sin u_k \end{array} \right\} $	Positions in orbital plane
$\Omega = \Omega_{\text{REF}} + \Delta \Omega$ ***	Rate of Right Ascension
$\Omega_{k} = \Omega_{0-n} + \left(\Omega - \Omega_{e} \right) t_{k} - \Omega_{e} t_{oe}$	Corrected Longitude of Ascending Node
$\begin{aligned} x_k &= x_k' \cos \Omega_k - y_k' \cos i_k \sin \Omega_k \\ y_k &= x_k' \sin \Omega_k + y_k' \cos i_k \cos \Omega_k \\ z_k &= y_k' \sin i_k \end{aligned}$	Earth-fixed coordinates of SV antenna phase center
*** $\Omega_{\text{REF}} = -2.6 \text{ x } 10^{-9} \text{ semi-circles/second}$	nd.

Element/Equation	Description			
$\begin{split} \Phi_{k} &= \nu_{k} + \omega_{n} \\ \delta u_{k} &= C_{us-n} sin2 \Phi_{k} + C_{uc-n} cos2 \Phi_{k} \\ \delta r_{k} &= C_{rs-n} sin2 \Phi_{k} + C_{rc-n} cos2 \Phi_{k} \\ \delta i_{k} &= C_{is-n} sin2 \Phi_{k} + C_{ic-n} cos2 \Phi_{k} \end{split}$	Argument of Latitude Argument of Latitude Correction Radial Correction Inclination Correction			
$\begin{split} u_k &= \Phi_k + \delta u_k \\ r_k &= A_k (1 - e_n \cos E_k) + \delta r_k \\ i_k &= i_{o-n} + (\underline{i_{o-n}} - \underline{I}DOT) t_k + \delta i_k \end{split}$	Corrected Argument of Latitude Corrected Radius Corrected Inclination			
$ \begin{array}{l} x_k' = r_k \cos u_k \\ y_k' = r_k \sin u_k \end{array} \right\} $	Positions in orbital plane			
$\begin{split} \hat{\boldsymbol{\Omega}} &= \hat{\boldsymbol{\Omega}}_{REF} + \Delta \hat{\boldsymbol{\Omega}} * * * \\ \boldsymbol{\Omega}_{k} &= \boldsymbol{\Omega}_{0\text{-}n} + \left(\begin{array}{c} \hat{\boldsymbol{\Omega}} &- \begin{array}{c} \hat{\boldsymbol{\Omega}}_{e} \end{array} \right) t_{k} - \begin{array}{c} \hat{\boldsymbol{\Omega}}_{e} t_{oe} \end{split}$	Rate of Right Ascension Corrected Longitude of Ascending Node			
$\left. \begin{array}{l} x_k \ = \ x_k' \cos \Omega_k - y_k' \cos i_k \sin \Omega_k \\ y_k \ = \ x_k' \sin \Omega_k + y_k' \cos i_k \cos \Omega_k \\ z_k \ = \ y_k' \sin i_k \end{array} \right\}$	Earth-fixed coordinates of SV antenna phase center			
*** $\Omega_{REF} = -2.6 \times 10^{-9}$ semi-circles/second.				

Element/Equation	Description			
$\begin{split} \Phi_{k} &= \nu_{k} + \omega_{n} \\ \delta u_{k} &= C_{us-n} sin2 \Phi_{k} + C_{uc-n} cos2 \Phi_{k} \\ \delta r_{k} &= C_{rs-n} sin2 \Phi_{k} + C_{rc-n} cos2 \Phi_{k} \\ \delta i_{k} &= C_{is-n} sin2 \Phi_{k} + C_{ic-n} cos2 \Phi_{k} \end{split}$	Argument of Latitude Argument of Latitude Correction Radial Correction Inclination Correction			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Corrected Argument of Latitude Corrected Radius Corrected Inclination			
$\left. \begin{array}{l} x_k' = r_k \cos u_k \\ y_k' = r_k \sin u_k \end{array} \right\} \\$	Positions in orbital plane			
$\begin{split} \hat{\boldsymbol{\Omega}} &= \hat{\boldsymbol{\Omega}}_{\text{REF}} + \Delta \hat{\boldsymbol{\Omega}} *** \\ \boldsymbol{\Omega}_{k} &= \boldsymbol{\Omega}_{0\text{-}n} + \left(\begin{array}{cc} \hat{\boldsymbol{\Omega}} &- \begin{array}{c} \hat{\boldsymbol{\Omega}}_{e} \end{array} \right) \mathbf{t}_{k} \ - \begin{array}{c} \hat{\boldsymbol{\Omega}}_{e} \ \mathbf{t}_{oe} \end{split}$	Rate of Right Ascension Corrected Longitude of Ascending Node			
$\left. \begin{array}{l} x_k \ = \ x_k' \cos \Omega_k - y_k' \cos i_k \sin \Omega_k \\ y_k \ = \ x_k' \sin \Omega_k + y_k' \cos i_k \cos \Omega_k \\ z_k \ = \ y_k' \sin i_k \end{array} \right\}$	Earth-fixed coordinates of SV antenna phase center			
*** $\Omega_{\text{REF}} = -2.6 \text{ x } 10^{-9} \text{ semi-circles/sec}$	cond.			

IS800-1173:

Insertion after object IS800-262 Section Number: 3.5.4.3.6.0-2 WAS: <INSERTED OBJECT> Redlines:

The Midi almanac parameters shall be updated by the CS at least once every 3 days while the CS is able to upload the SVs. If the CS is unable to upload the SVs, the accuracy of the Midi almanac parameters transmitted by the SVs will degrade over time.

Object Type: <u>Requirement</u>

IS:

The Midi almanac parameters shall be updated by the CS at least once every 3 days while the CS is able to upload the SVs. If the CS is unable to upload the SVs, the accuracy of the Midi almanac parameters transmitted by the SVs will degrade over time.

Object Type: Requirement

IS800-1057:

Section Number: 3.5.4.7.1.7 WAS: Object Heading: Satellite Fault Probability Redlines: Object Heading: Satellite Fault ProbabilityRate IS: Object Heading: Satellite Fault Rate

IS800-1058:

Section Number:

3.5.4.7.1.7.0-1

WAS:

Bits 50 through 53 of Subframe 3, Page 8 shall provide the assumed Satellite Fault Probability (R_{sat}) value for ARAIM at the current time for the associated GNSS constellation.

Redlines:

Bits 50 through 53 of Subframe 3, Page 8 shall provide the assumed Satellite Fault $\frac{\text{ProbabilityRate}}{\text{Rsat}}$ (R_{sat}) value for ARAIM at the current time for the associated GNSS constellation.

IS:

Bits 50 through 53 of Subframe 3, Page 8 shall provide the assumed Satellite Fault Rate (R_{sat}) value for ARAIM at the current time for the associated GNSS constellation.

IS800-289:

Section Number:

3.5.5.1.0-2

WAS:

Cutovers of subframe 2 data to new CEI data sets will nominally occur on hour boundaries except for the first CEI data set of a new CEI data sequence propagation.

Redlines:

Cutovers of subframe 2 data to new CEI data sets will nominally occur on hour boundaries except for the first CEI data set of a new CEI data sequence propagation.

IS:

<DELETED OBJECT>

IS800-1158:

Section Number:

3.5.5.2.0-2

WAS:

Cutovers to new CEI data sets will occur only on hour boundaries except for the first CEI data set of a new CEI data sequence propagation. The first CEI data set may be cut-in (reference paragraph 3.5.5.1) at any time during the hour and therefore may be transmitted by the SV for less than one hour.

Redlines:

Cutovers to new CEI data sets will occur only on <u>two-</u>hour boundaries except for the first CEI data set of a new CEI data sequence propagation.- The first CEI data set may be cut-in (reference paragraph 3.5.5.1) at any time during the <u>hourtwo hours</u> and therefore may be transmitted by the SV for less than <u>onetwo hourhours</u>. **IS**:

Cutovers to new CEI data sets will occur only on two-hour boundaries except for the first CEI data set of a new CEI data sequence propagation. The first CEI data set may be cut-in (reference paragraph 3.5.5.1) at any time during the two hours and therefore may be transmitted by the SV for less than two hours.

Section Number:

3.5.5.2.0-3

WAS:

The start of the transmission interval for each CEI data set corresponds to the beginning of the curve fit interval for the CEI data set. Each CEI data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval. A CEI data set is rendered obsolete before the end of its curve fit interval when it is superseded by the SV cutting over to the first CEI data set of a new CEI data sequence propagation.

Redlines:

The Except for the first CEI data set of a new CEI data sequence propagation, the start of the transmission interval for each CEI data set corresponds to the beginning of the curve fit interval for the CEI data set.- Each CEI data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval.- A CEI data set is rendered obsolete before the end of its curve fit interval when it is superseded by the SV cutting over to the first CEI data set of a new CEI data sequence propagation. **IS**:

Except for the first CEI data set of a new CEI data sequence propagation, the start of the transmission interval for each CEI data set corresponds to the beginning of the curve fit interval for the CEI data set. Each CEI data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval. A CEI data set is rendered obsolete before the end of its curve fit interval when it is superseded by the SV cutting over to the first CEI data set of a new CEI data sequence propagation.

IS800-1172:

Insertion after object IS800-1159 Section Number: 3.5.5.2.0-4 WAS: <INSERTED OBJECT>

Redlines:

The start time of the curve fit interval of the first CEI data set of a new CEI data sequence propagation may be later than the start time of the curve fit interval of the preceding CEI data set that was transmitted prior to the cutover. The beginning of the curve fit interval of the first CEI data set of a new CEI data sequence propagation will be a multiple of 300 seconds (5 minutes) relative to the start of week.

Object Type: Info-Only

IS:

The start time of the curve fit interval of the first CEI data set of a new CEI data sequence propagation may be later than the start time of the curve fit interval of the preceding CEI data set that was transmitted prior to the cutover. The beginning of the curve fit interval of the first CEI data set of a new CEI data sequence propagation will be a multiple of 300 seconds (5 minutes) relative to the start of week. *Object Type*: Info-Only

IS800-917:

Section Number: 6.2.8.1-2 WAS:

Symbol	Parameter Name	Subframe
À	Change Rate in Semi-major Axis	2
ΔA	Semi-major Axis Difference at Reference Time	2
Δn_0	Mean Motion Difference from Computed Value at Reference Time	2
$\Delta \dot{n_0}$	Rate of Mean Motion Difference from Computed Value	2
Ω ₀	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	2
ΔÀ	Rate of Right Ascension Difference	2
ω	Argument of Perigee	2
a _{f0}	SV Clock Bias Correction Coefficient	2
a _{f1}	SV Clock Drift Correction Coefficient	2
a _{f2}	Drift Rate Correction Coefficient Index	2
C _{ic}	Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination	2
C _{is}	Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination	2
C _{rc}	Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius	2
C _{rs}	Amplitude of the Sine Correction Term to the Orbit Radius	2
C _{uc}	Amplitude of Cosine Harmonic Correction Term to the Argument of Latitude	2
Cus	Amplitude of Sine Harmonic Correction Term to the Argument of Latitude	2
е	Eccentricity	2
i ₀	Inclination Angle at Reference Time	2
i _{0-n} -DOT	Rate of Inclination Angle	2
ISC _{L1CP}	Inter-signal Correction	2
ISCL1CD	Inter-signal Correction	2
ISC _{L1CA}	Inter-signal Correction	3
ISC _{L2C}	Inter-signal Correction	3
ISC _{L515}	Inter-signal Correction	3
ISC _{L5Q5}	Inter-signal Correction	3
ISF	Integrity Status Flag NOTE1	2

Symbol	Parameter Name	Subframe			
ITOW	Interval Time of Week	2			
L1C	Signal Health (1 bits)	2			
M ₀	Mean Anomaly at Reference Time	2			
T _{GD}	Group Delay Differential	2			
t _{oe}	Time of Ephemeris	2			
t _{op}	CEI Data Sequence Propagation Time of Week	2			
URA _{ED} Index	Elevation Dependent User Range Accuracy, URA _{ED} Index	2			
URA _{NED0} Index	NED Accuracy Index	2			
URA _{NED1} Index	NED Accuracy Change Index 2				
URA _{NED2} Index	NED Accuracy Change Rate Index	2			
WN	WN Data Sequence Propagation Week Number 2				
NOTE1: Parameters so indicated are for CEI Refinement – not limited to curve fit. Parameters not indicated are needed for/limited to curve fit.					
Updates to parameters in table shall prompt changes in t_{oe} . Any parameter marked with NOTE1 may be changed with or without a change in t_{oe} .					

Redlines: Symbol Parameter Name Subframe Change Rate in Semi-major Axis 2 À 2 ΔA Semi-major Axis Difference at Reference Time Mean Motion Difference from Computed Value at Δn_0 2 Reference Time Rate of Mean Motion Difference from Computed $\Delta \dot{n_0}$ 2 Value Longitude of Ascending Node of Orbit Plane at 2 Ω_0 Weekly Epoch Rate of Right Ascension Difference ΔÀ 2 Argument of Perigee 2 ω SV Clock Bias Correction Coefficient 2 a_{f0} SV Clock Drift Correction Coefficient 2 a_{f1} Drift Rate Correction Coefficient Index 2 a_{f2} Amplitude of the Cosine Harmonic Correction Term 2 Cic to the Angle of Inclination Amplitude of the Sine Harmonic Correction Term to 2 Cis the Angle of Inclination Amplitude of the Cosine Harmonic Correction Term 2 C_{rc} to the Orbit Radius Amplitude of the Sine Correction Term to the Orbit C_{rs} 2 Radius Amplitude of Cosine Harmonic Correction Term to 2 Cuc the Argument of Latitude Amplitude of Sine Harmonic Correction Term to the 2 Cus Argument of Latitude Eccentricity 2 e Inclination Angle at Reference Time 2 io i0-n-Rate of Inclination Angle 2 DOT 2 **ISC**_{L1CP} Inter-signal Correction Inter-signal Correction 2 ISC_{L1CD} ISC_{L1CA} Inter-signal Correction 3 Inter-signal Correction 3 ISC_{L2C} ISC_{L515} Inter-signal Correction 3 ISC_{L505} Inter-signal Correction 3 Integrity Status Flag NOTE1 ISF 2 Interval Time of Week 2 ITOW L1C Signal Health (1 bits) 2 M_0 Mean Anomaly at Reference Time 2 T_{GD} Group Delay Differential 2

Symbol	Parameter Name	Subframe		
t _{oe}	Time of Ephemeris	2		
t _{op}	CEI Data Sequence Propagation Time of Week	2		
URA _{ED} Index	Elevation Dependent User Range Accuracy, URA _{ED} Index	2		
URA _{NED} ₀ Index	NED Accuracy Index	2		
URA _{NED} 1 Index	NED Accuracy Change Index	2		
URA _{NED} 2 Index	NED Accuracy Change Rate Index	2		
WN	Data Sequence Propagation Week Number	2		
NOTE1: Parameters so indicated are for CEI Refinement – not limited to curve				

fit. Parameters not indicated are needed for/limited to curve fit.

Updates to parameters in table shall prompt changes in t_{oe} . Any parameter marked with NOTE1 may be changed with or without a change in t_{oe} .

Symbol	Parameter Name	Subframe
À	Change Rate in Semi-major Axis	2
ΔA	Semi-major Axis Difference at Reference Time	2
Δn_0	Mean Motion Difference from Computed Value at Reference Time	2
$\Delta \dot{n_0}$	Rate of Mean Motion Difference from Computed Value	2
Ω_0	Longitude of Ascending Node of Orbit Plane at Weekly Epoch	2
ΔĊ	Rate of Right Ascension Difference	2
ω	Argument of Perigee	2
a_{f0}	SV Clock Bias Correction Coefficient	2
a _{f1}	SV Clock Drift Correction Coefficient	2
a_{f2}	Drift Rate Correction Coefficient Index	2
C _{ic}	Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination	2
C _{is}	Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination	2
C _{rc}	Amplitude of the Cosine Harmonic Correction Term to the Orbit Radius	2
C _{rs}	Amplitude of the Sine Correction Term to the Orbit Radius	2
Cuc	Amplitude of Cosine Harmonic Correction Term to the Argument of Latitude	2
Cus	Amplitude of Sine Harmonic Correction Term to the Argument of Latitude	2
e	Eccentricity	2
io	Inclination Angle at Reference Time	2
IDOT	Rate of Inclination Angle	2
ISC _{L1CP}	Inter-signal Correction	2
ISC _{L1CD}	Inter-signal Correction	2
ISC _{L1CA}	Inter-signal Correction	3
ISC _{L2C}	Inter-signal Correction	3
ISC _{L515}	Inter-signal Correction	3
ISC _{L5Q5}	Inter-signal Correction	3
ISF	Integrity Status Flag NOTE1	2
ITOW	Interval Time of Week	2
L1C	Signal Health (1 bits)	2
M ₀	Mean Anomaly at Reference Time	2
T _{GD}	Group Delay Differential	2

Symbol	Parameter Name	Subframe			
t _{oe}	Time of Ephemeris	2			
t _{op}	CEI Data Sequence Propagation Time of Week	2			
URA _{ED} Index	Elevation Dependent User Range Accuracy, URA _{ED} Index	2			
URA _{NED} ₀ Index	NED Accuracy Index	2			
URA _{NED} 1 Index	NED Accuracy Change Index	2			
URA _{NED} 2 Index	NED Accuracy Change Rate Index	2			
WN	Data Sequence Propagation Week Number 2				
NOTE1: Parameters so indicated are for CEI Refinement – not limited to curve fit. Parameters not indicated are needed for/limited to curve fit. Updates to parameters in table shall prompt changes in t _{oe} . Any parameter					
marked with NOTE1 may be changed with or without a change in t_{oe} .					

IS800-166, IS800-904, IS800-911, IS800-919, IS800-913, IS800-901:

This change removes the trailing period from all of the above headings.

Section Number:

<many>.

WAS:

<many>.

Redlines:

<many>. IS: <many>

CP Status = 'In Review': 13 # CP Status = 'Applied': 6

of inserted requirements: 1
of modified requirements: 2
of deleted requirements: 1
of TBDs: 0
of TBRs: 0
of (added/modified) effectivities: 0
of VCRM additions: 0
of VCRM modifications: 0
of VCRM deletions: 0
of descriptive texts: 3
of (added/modified) tables: 4
of (added/modified) figures: 1

Verification Cross Reference Matrix:

Only new requirement objects and objects containing VCRM attributes that are being added, modified or deleted in this IRN/SCN will be shown in the "Was" and "Is" fields in the VCRM.

WAS:

DOORS ID	Object Number	Effectivity	CS Effectivity	Effectivity	Highest Verification Level		System Verification Method
IS800-289	3.5.5.1.0-2	15	N/A	15		SV US	Test Inspection

IS:

DOORS ID	Object Number	Effectivity			Effectivity	Highest Verification Level	0	System Verification Method
IS800-289	<deleted></deleted>	<deleted></deleted>	<deleted></deleted>	<deleted></deleted>	<deleted></deleted>	<deleted></deleted>	<deleted></deleted>	<deleted></deleted>