CHANGE NOTICE

Affected Document:	IRN/SCN Number IS-GPS-800 Rev F	IRN-IS-800F-002
Authority:	Proposed Change Notice	
RFC-00395	PCN-IS-800F_RFC395	

IS800-15 :

Section Number :

2.1.0-4

WAS :
Other Publications

IS-GPS-200 (current issue)	Navstar GPS Space Segment/Navigation User
	Interfaces
GP-03-001A (20 April 2006)	GPS Interface Control Working Group Charter

Redlines:

Other Publications

IS-GPS-200 (current issue)	Navstar GPS Space Segment/Navigation User
	Interfaces
GP-03-001A (20 April	GPS Interface Control Working Group Chater GPS
2006Current Issue)	$\underline{\text { Adjudication Working Group (AWG) and Rough Order }}$
	$\underline{\text { of Magnitude (ROM)/ Impact Assessment (IA) Charter }}$

IS:

Other Publications

IS-GPS-200 (current issue)

GP-03-001A (Current Issue)
Navstar GPS Space Segment/Navigation User Interfaces

GPS Adjudication Working Group (AWG) and Rough Order of Magnitude (ROM)/ Impact Assessment (IA) Charter

IS800-1020 :

Insertion after object IS800-179
The user shall compute the ECEF coordinates of position for the SV's antenna phase center (APC) utilizing a variation of the equations shown in Table 3.5-2. The ephemeris parameters are Keplerian in appearance; however, the values of these parameters are produced by the SV via a least squares curve fit of the propagated ephemeris of the SV APC (timeposition quadruples: t, x, y, z expressed in ECEF coordinates). Particulars concerning the applicable coordinate system are given in Sections 20.3.3.4.3.3 and 20.3.3.4.3.4 of IS-GPS-200.

Section Number :

3.5.3.6.1.1

WAS :

N/A

Redlines:

<INSERTED OBJECT>
IS :
The user can compute velocity and acceleration for the SV utilizing a variation of the equations, as required, shown in Table 3.5-2 Part 3 and 4.

IS800-948 :

Section Number :

3.5.3.6.1.1-2

WAS :

Table 3.5-2. Elements of Coordinate System (part 1 of 2)

Redlines

Table 3.5-2._Elements of Broadcast Goordinate Navigation SystemUser Equations (partsheet 1 of Z $\underline{4}$)
IS :
Table 3.5-2. Broadcast Navigation User Equations (sheet 1 of 4)

Section Number :

3.5.3.6.1.1-3

WAS :
Table 3.5-2

Element/Equation	Description
$\mu=3.986005 \times 10^{14}$ meters $^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\dot{\Omega}_{\mathrm{e}}=7.2921151467 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$	WGS 84 value of the earth's rotation rate
$\mathrm{A}_{0}=\mathrm{A}_{\text {REF }}+\Delta \mathrm{A}^{*}$	Semi-Major Axis at reference time
$\mathrm{A}_{\mathrm{k}}=\mathrm{A}_{0}+(\dot{\mathrm{A}}) \mathrm{t}_{\mathrm{k}}$	Semi-Major Axis
$\mathrm{n}_{0}=\sqrt{\frac{\mu}{\mathrm{A}_{0}{ }^{3}}}$	Computed Mean Motion (rad/sec)
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{\text {oe }} * *$	Time from ephemeris reference time
$\Delta \mathrm{n}_{\mathrm{A}}=\Delta \mathrm{n}_{0}+1 / 2 \Delta \mathrm{n}_{0} \mathrm{t}_{\mathrm{k}}$	Mean motion difference from computed value
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{0}+\Delta \mathrm{n}_{\mathrm{A}}$	Corrected Mean Motion
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{n}_{\mathrm{A}} \mathrm{t}_{\mathrm{k}}$	Mean Anomaly
$\mathrm{M}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}}-\mathrm{e}_{\mathrm{n}} \sin \mathrm{E}_{\mathrm{k}}$	Kepler's equation for Eccentric Anomaly (radians) (may be solved by iteration)
$v_{\mathrm{k}}=\tan ^{-1}\left\{\frac{\sin v_{\mathrm{k}}}{\cos v_{\mathrm{k}}}\right\}$	True Anomaly
$=\tan ^{-1}\left\{\frac{\sqrt{1-\mathrm{e}_{\mathrm{n}}^{2}} \sin \mathrm{E}_{\mathrm{k}} /\left(1-\mathrm{e}_{\mathrm{n}} \cos \mathrm{E}_{\mathrm{k}}\right)}{\left(\cos \mathrm{E}_{\mathrm{k}}-\mathrm{e}_{\mathrm{n}}\right) /\left(1-\mathrm{e}_{\mathrm{n}} \cos \mathrm{E}_{\mathrm{k}}\right)}\right\}$	
$E_{k}=\cos ^{-1}\left\{\frac{e_{n}+\cos v_{k}}{1+e_{n} \cos v_{k}}\right\}$	Eccentric Anomaly

* $\quad \mathrm{A}_{\text {REF }}=26,559,710$ meters
** \mathbf{t} is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time \mathbf{t} and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than -302,400 seconds, add 604,800 seconds to t_{k}.

Redlines:

Table 3.5-2

Element/Equation	Description
$\mu=3.986005 \times 10^{14} \mathrm{~meters}^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\dot{\Omega}_{\mathrm{e}}=7.2921151467 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$	WGS 84 value of the earth's rotation rate
$\mathrm{A}_{0}=\mathrm{A}_{\text {REF }}+\Delta \mathrm{A} *$	Semi-Major Axis at reference time
$\mathrm{A}_{\mathrm{k}}=\mathrm{A}_{0}+(\dot{\mathrm{A}}) \mathrm{t}_{\mathrm{k}}$	Semi-Major Axis
$\mathrm{n}_{0}=\sqrt{\frac{\mu}{\mathrm{A}^{3}}}$	Computed Mean Motion (rad/sec)
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{\mathrm{oe}}$ **	Time from ephemeris reference time
$\Delta \mathrm{n}_{\mathrm{A}}=\Delta \mathrm{n}_{0}+1 / 2 \Delta \mathbf{n}_{0} \mathrm{t}_{\mathrm{k}}$	Mean motion difference from computed value
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{0}+\Delta \mathrm{n}_{\mathrm{A}}$	Corrected Mean Motion
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{n}_{\mathrm{A}} \mathrm{t}_{\mathrm{k}}$	Mean Anomaly
$\mathrm{M}_{k}=\mathrm{E}_{k}-\mathrm{e}_{\mathrm{H}} \sin \mathrm{E}_{k}$	Kepler's equation for Eccentric Anomaly (radians) (may be solved by iteration)
	Kepler's equation $\left(M_{k}=E_{k}-e \sin E_{k}\right)$ solved for Eccentric anomaly $\left(E_{k}\right)$ by iteration:
$\underline{\underline{E}} \underline{0}=\mathrm{M}_{\underline{\underline{k}}}$	- Initial Value (radians)
$E_{j}=E_{j-1}+\frac{M_{k}-E_{j-1}+e \sin E_{j-1}}{1-e \cos E_{j-1}}$	- Refined Value, three iterations, ($\mathrm{j}=1,2,3$)
$\underline{E}_{\underline{k}}=\mathrm{E}_{\underline{3}}$	- Final Value (radians)
$\begin{aligned} & \forall_{k}=\tan ^{-}\left\{\frac{\sin v_{k}}{\left\{\cos v_{k}\right.}\right\} \\ & \left.=\tan ^{-} \frac{\left(\sqrt{1-e_{\#}^{2}} \sin E_{k} /\left(1-e_{n} \cos E_{k}\right)\right.}{\left(\cos E_{k}-e_{H}\right) /\left(1-e_{A} \cos E_{k}\right)}\right\} \end{aligned}$	True Anomaly
$\underline{v}_{\underline{k}}=2 \tan ^{-1}\left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E_{k}}{2}\right)$	True Anomaly (unambiguous quadrant)
$\mathrm{E}_{k}=\cos ^{-1}\left\{\frac{e_{n}+\cos v_{k}}{1+e_{\pi} \cos v_{k}}\right\}$	Eceentric Amomaly

* $\quad \mathrm{A}_{\text {ReF }}=26,559,710$ meters
** \mathbf{t} is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time \mathbf{t} and the epoch time t_{oe}, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than -302,400 seconds, add 604,800 seconds to t_{k}.

IS :
Table 3.5-2

Element/Equation	Description
$\mu=3.986005 \times 10^{14} \mathrm{~meters}^{3} / \mathrm{sec}^{2}$	WGS 84 value of the earth's gravitational constant for GPS user
$\dot{\Omega}_{\mathrm{e}}=7.2921151467 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$	WGS 84 value of the earth's rotation rate
$\mathrm{A}_{0}=\mathrm{A}_{\text {REF }}+\Delta \mathrm{A}^{*}$	Semi-Major Axis at reference time
$\mathrm{A}_{\mathrm{k}}=\mathrm{A}_{0}+(\dot{\mathrm{A}}) \mathrm{t}_{\mathrm{k}}$	Semi-Major Axis
$\mathrm{n}_{0}=\sqrt{\frac{\mu}{\mathrm{A}_{0}{ }^{3}}}$	Computed Mean Motion (rad/sec)
$\mathrm{t}_{\mathrm{k}}=\mathrm{t}-\mathrm{t}_{\text {oe }} * *$	Time from ephemeris reference time
$\Delta \mathrm{n}_{\mathrm{A}}=\Delta \mathrm{n}_{0}+1 / 2 \Delta \mathrm{n}_{0} \mathrm{t}_{\mathrm{k}}$	Mean motion difference from computed value
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{0}+\Delta \mathrm{n}_{\mathrm{A}}$	Corrected Mean Motion
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{0}+\mathrm{n}_{\mathrm{A}} \mathrm{t}_{\mathrm{k}}$	Mean Anomaly
	Kepler's equation ($M_{k}=E_{k}-e \sin E_{k}$) solved for Eccentric anomaly $\left(E_{k}\right)$ by iteration:
$\mathrm{E}_{0}=\mathrm{M}_{\mathrm{k}}$	- Initial Value (radians)
$E_{j}=E_{j-1}+\frac{M_{k}-E_{j-1}+e \sin E_{j-1}}{1-e \cos E_{j-1}}$	- Refined Value, three iterations, (j=1,2,3)
$\mathrm{E}_{\mathrm{k}}=\mathrm{E}_{3}$	- Final Value (radians)
$v_{\mathrm{k}}=2 \tan ^{-1}\left(\sqrt{\frac{1+e}{1-e}} \tan \frac{E_{k}}{2}\right)$	True Anomaly (unambiguous quadrant)

* $\quad \mathrm{A}_{\text {ReF }}=26,559,710$ meters
** \mathbf{t} is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, t_{k} shall be the actual total difference between the time \mathbf{t} and the epoch time $\mathrm{t}_{\mathrm{e} \text { e }}$, and must account for beginning or end of week crossovers. That is if t_{k} is greater than 302,400 seconds, subtract 604,800 seconds from t_{k}. If t_{k} is less than -302,400 seconds, add 604,800 seconds to t_{k}.

IS800-949 :

Section Number :

3.5.3.6.1.1-4

WAS :

Table 3.5-2. Elements of Coordinate System (part 2 of 2)

Redlines :

Table 3.5-2.—Elements θ Broadcast CoordinateNavigation Systemuser Equations (partsheet 2 of $z \underline{\text {) }}$)
IS:
Table 3.5-2. Broadcast Navigation User Equations (sheet 2 of 4)

IS800-1009 :

Insertion after object IS800-182
Table 3.5-2. Part 2

Element/Equation	Description
	$\left.\begin{array}{l}\text { Argument of Latitude } \\ \text { Argument of Latitude Correction } \\ \text { Radial Correction } \\ \text { Inclination Correction }\end{array}\right\}$ Second Harmonic Perturbations Corrected Argument of Latitude Corrected Radius Corrected Inclination Positions in orbital plane Rate of Right Ascension Corrected Longitude of Ascending Node Earth-fixed coordinates of SV antenna phase center
*** $\dot{\Omega}_{\text {REF }}=-2.6 \times 10^{-9}$ semi-circles/second.	

Section Number :

3.5.3.6.1.1-6

WAS :
N/A

Redlines:

<INSERTED OBJECT>
IS :
Broadcast Navigation User Equations (sheet 3 of 4)

IS800-1011 :

Insertion after object IS800-1009 (See Previous)

Section Number :

3.5.3.6.1.1-7

WAS :
N/A
Redlines:
<INSERTED OBJECT>
IS :
Table 3.5-2. Part 3

Element/Equation	Description
SV Velocity	
$\dot{E}_{\mathrm{k}}=\mathrm{n} /\left(1-\mathrm{ecos} \mathrm{E}_{\mathrm{k}}\right)$	Eccentric Anomaly Rate
$\dot{v}_{k}=\dot{\mathrm{E}}_{\mathrm{k}} \sqrt{1-e^{2}} /\left(1-e \cos E_{k}\right)$	True Anomaly Rate
$\begin{aligned} & \left(d i_{k} / d t\right)=(\text { IDOT })+2 \dot{v}_{k}\left(\mathrm{c}_{\text {is }} \cos 2 \phi_{\mathrm{k}}-\mathrm{c}_{\mathrm{ic}} \sin \right. \\ & \left.2 \phi_{\mathrm{k}}\right) \end{aligned}$	Corrected Inclination Angle Rate
$\dot{u}_{\mathrm{k}}=\dot{v}_{k}+2 \dot{v}_{k}\left(\mathrm{cus}_{\text {us }} \cos 2 \phi_{\mathrm{k}}-\mathrm{c}_{\text {uc }} \sin 2 \phi_{\mathrm{k}}\right)$	Corrected Argument of Latitude Rate
$\dot{r}_{k}=\mathrm{eAE} \dot{E}_{\mathrm{k}} \sin \mathrm{Ek}+2 \dot{v}_{k}\left(\mathrm{c}_{\mathrm{rs}} \cos 2 \phi_{\mathrm{k}}-\mathrm{c}_{\mathrm{rc}} \sin 2 \phi_{\mathrm{k}}\right)$	Corrected Radius Rate
$\dot{\Omega}_{\mathrm{k}}=\dot{\Omega}-\dot{\Omega}_{\mathrm{e}}$	Longitude of Ascending Node Rate
$\dot{\mathrm{x}}_{k}^{\prime}=\dot{r}_{k} \cos \mathrm{u}_{\mathrm{k}}-r_{k} \dot{\mathrm{u}}_{\mathrm{k}} \sin \mathrm{u}_{\mathrm{k}}$	In- plane x velocity
$\dot{y}_{k}^{\prime}=\dot{r}_{k} \sin \mathrm{u}_{\mathrm{k}}+r_{k} \dot{\mathrm{u}}_{\mathrm{k}} \cos \mathrm{u}_{\mathrm{k}}$	In- plane y velocity
$\begin{array}{r} \dot{x}_{\mathrm{k}}=-x_{k}^{\prime} \dot{\Omega}_{\mathrm{k}} \sin \Omega_{\mathrm{k}}+\dot{x}_{k}^{\prime} \cos \Omega_{\mathrm{k}}-\dot{y}_{k}^{\prime} \sin \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}} \\ \\ -y_{k}^{\prime}\left(\dot{\Omega}_{\mathrm{k}} \cos \Omega_{\mathrm{k}} \cos i_{\mathrm{k}}-\left(d i_{k} / d t\right) \sin \Omega_{\mathrm{k}} \sin \mathrm{i}_{\mathrm{k}}\right) \end{array}$	Earth- Fixed x velocity (m/s)
$\begin{aligned} \dot{y}_{\mathrm{k}} & =x_{k}^{\prime} \dot{\Omega}_{\mathrm{k}} \cos \Omega_{\mathrm{k}}+\dot{x}_{k}^{\prime} \sin \Omega_{\mathrm{k}}+\dot{y}_{k}^{\prime} \cos \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}} \\ & -y_{k}^{\prime}\left(\dot{\Omega}_{\mathrm{k}} \sin \Omega_{\mathrm{k}} \cos \mathrm{i}_{\mathrm{k}}+\left(d i_{k} / d t\right) \cos \Omega_{\mathrm{k}} \sin \mathrm{i}_{\mathrm{k}}\right) \end{aligned}$	Earth- Fixed y velocity (m/s)
$\dot{z}_{\mathrm{k}}=\dot{y}_{k}^{\prime} \sin \mathrm{i}_{\mathrm{k}}+y_{k}^{\prime}\left(d i_{k} / d t\right) \cos \mathrm{i}_{\mathrm{k}}$	Earth- Fixed z velocity (m/s)

IS800-1008 :

Insertion after object IS800-1011 (See Previous)
Section Number :
3.5.3.6.1.1-8

WAS :
N/A
Redlines:
<INSERTED OBJECT>
IS :
Table 3.5-2. Broadcast Navigation User Equations (sheet 4 of 4)

IS800-1010 :

Insertion after object IS800-1008 (See Previous)

Section Number :

3.5.3.6.1.1-9

WAS :
N/A
Redlines:
<INSERTED OBJECT>
IS :
Table 3.5-2. Part 4

Element/Equation	Description
SV Acceleration	
$\mathrm{R}_{\mathrm{E}}=6378137.0$ meters	WGS 84 Earth Equatorial Radius
$\mathrm{J}_{2}=0.0010826262$	Oblate Earth Gravity Coefficient
$\mathrm{F}=-(3 / 2) \mathrm{J}_{2}\left(\mu / r_{k}^{2}\right)\left(\mathrm{R}_{\mathrm{E}} / r_{\mathrm{k}}\right)^{2}$	Oblate Earth acceleration Factor
$\begin{aligned} & \ddot{x}_{k}=-\mu\left(x_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(1-5\left(z_{k} / r_{k}\right)^{2}\right)\left(x_{k} / r_{k}\right)\right] \\ &+2 \dot{y}_{k} \dot{\Omega}_{e}+x_{k} \dot{\Omega}_{e}^{2} \end{aligned}$	Earth- Fixed x acceleration (m/s ${ }^{2}$)
$\begin{aligned} & \ddot{y}_{k}=-\mu\left(y_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(1-5\left(z_{k} / r_{k}\right)^{2}\right)\left(y_{k} / r_{k}\right)\right] \\ &-2 \dot{x}_{k} \dot{\Omega}_{e}+y_{k} \dot{\Omega}_{e}^{2} \end{aligned}$	Earth- Fixed y Acceleration (m/s ${ }^{2}$)
$\ddot{z}_{k}=-\mu\left(z_{k} / r_{k}^{3}\right)+\mathrm{F}\left[\left(3-5\left(z_{k} / r_{k}\right)^{2}\right)\left(z_{k} / r_{k}\right)\right]$	Earth- Fixed z Acceleration (m/s ${ }^{2}$)

Section Number :

6.3.3.0-1

WAS :
As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III phase noise spectral density for the un-modulated L1C carrier.

Redlines :

As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III and GPS IIIF phase noise spectral density for the un-modulated L1C carrier.

IS :
As an aid to user equipment receiver designers, a plot is provided (Figure 6-1) of a typical GPS III and GPS IIIF phase noise spectral density for the un-modulated L1C carrier.

IS800-1007 :

Section Number :

6.3.3.0-1.0-2

WAS :

Figure 6-1 Typical GPS III L1C Carrier Phase Noise Spectral Density

Redlines :

Figure 6-1 Typical GPS III and GPS IIIF L1C Carrier Phase Noise Spectral Density
IS:
Figure 6-1 Typical GPS III and GPS IIIF L1C Carrier Phase Noise Spectral Density

