CHANGE NOTICE

Affected Document: IS-GPS-800 Rev F	IRN/SCN Number IRN-IS-800F-001		Date: 07-MAY-2019
Authority: RFC-00400	Proposed Change Notice PCN-IS-800E_RFC400		Date: 20-DEC-2018
CLASSIFIED BY: N/A DECLASSIFY ON: N/A			
Document Title: NAVSTAR GPS Space Segment / User Segment L1C Interfaces			
RFC Title: Leap Second and Earth Orientation Parameters			
Reason For Change (Driver): As currently documented in the technical baseline for Earth Orientation Parameters (EOP) data and applications, CNAV/CNAV-2 and MNAV users will calculate the wrong UT1 time immediately following a leap second change, as the linkage between Coordinated Universal Time (UTC) and UT1 time is not properly captured. This issue affects user applications that require high precision pointing, which may include optical telescopes, spacecraft, or any system with this requirement. Documents affected: IS-GPS-200, IS-GPS-705, IS-GPS-800, ICD-GPS-700, ICD-GPS-801, and IS-GPS-901. The topic was originally a part of RFC-354 \& RFC-374.			
Description of Change: Resolve the leap second problem such that the user knows how to calculate the correct UT1 time following a leap second change given the current definition and implementation of EOP and UTC parameters.			
Authored By: Philip Kwan Checked By: Jennifer Lemus			
AUTHORIZED SIGNATURES	REPRESE		DATE
	Space \& Missile Systems	MC) - LAAFB	
DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution Is Unlimited			
THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED.		Interface SA 200 N. Pacific El Se	$\begin{aligned} & \hline \text { Contractor: } \\ & \text { S SE\&I) } \\ & \text { ighway, Suite } 1800 \\ & \text { CA 90245 } \end{aligned}$
		COD	T 66RP1

Section Number :

3.5.2.0-7

WAS :

$\Delta \mathrm{UT} 1-1$ LSB

Figure 3.5-3 Subframe 3, Page 2

Redlines:

Figure 3.5-3 Subframe 3, Page 2

IS :

Figure 3.5-3 Subframe 3, Page 2

Section Number :

3.5.4.2.2

WAS :
EOP Parameter Content

Redlines :

EOP Parameter-Content

IS:

EOP Content

IS800-240 :

Section Number :

3.5.4.2.3.0-1

WAS :
The EOP fields in subframe 3, page 2 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 3.5-2. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in IERS Technical Note 36 and Table 30-VIII of IS-GPS-200. The coordinate systems are defined in Section 20.3.3.4.3.3 of IS-GPS-200.

Redlines :

The EOP fields in subframe 3, page 2 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 3.5-2. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in IERS Technical Note 36 and Table 30-VIII of IS-GPS-200 in accordance with Section 30.3.3.5.1.1 of IS-GPS-200. The coordinate systems are defined in Section 20.3.3.4.3.3 of IS-GPS-200.

EOPs that are not updated by the CS will degrade in accuracy over time.
IS:
The EOP fields in subframe 3, page 2 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 3.5-2. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in IERS Technical Note 36 and Table 30-VIII of IS-GPS-200 in accordance with Section 30.3.3.5.1.1 of IS-GPS-200. The coordinate systems are defined in Section 20.3.3.4.3.3 of IS-GPS-200.

EOPs that are not updated by the CS will degrade in accuracy over time.

Section Number :

3.5.4.2.3.0-2 (after IS800-240)

The EOP fields in subframe 3, page 2 contain the EOP needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 3.5-2. The coordinate transformation, for translating to the corresponding ECI SV antenna phase center position, is derived using the equations shown in IERS Technical Note 36 and Table 30-VIII of IS-GPS-200. The coordinate systems are defined in Section 20.3.3.4.3.3 of IS-GPS-200.

WAS :

N/A
Redlines:
<INSERTED OBJECT>

IS :

When calculating UT1, x_{p}, and y_{p} in Table 30 -VIII of IS-GPS-200, the week number for $t_{\text {EOP }}$ is equal to the $W N_{\text {ot }}$ value in subframe 3 page 2 when both criteria are met:

- $\quad t_{\text {EOp }}$ in subframe 3 page 1 is equal to $t_{\text {tt }}$ in subframe 3 page 2
- Subframe 3 page 1 and subframe 3 page 2 were transmitted within a continuous 4 -hour period

If both criteria are not met, the data between the two pages may be inconsistent with each other and should not be used for the calculations in Table 30-VIII of IS-GPS-200.

Section Number :

3.5.4.2.3.0-5

WAS :
Table 3.5-5. Earth Orientation Parameters

Parameter		No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
$\mathrm{t}_{\text {EOP }}$	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
PM_X ${ }^{\dagger}$	X-Axis Polar Motion Value at Reference Time.	21*	2^{-20}		arc-seconds
PM_X	X-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
PM_Y ${ }^{\dagger}$	Y-Axis Polar Motion Value at Reference Time.	21*	2^{-20}		arc-seconds
PM_Y	Y-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
$\Delta \mathrm{UT} 1^{\dagger \dagger}$	UT1-UTC Difference at Reference Time.	31*	2^{-24}		seconds
$\Delta \mathrm{UT} 1^{\text {\# }}$	Rate of UT1-UTC Difference at Reference Time	19*	2^{-25}		seconds/day

* Parameters so indicated are in two's complement notation;
** See Figure 3.5-3 for complete bit allocation in subframe 3, page 2;
*** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.
\dagger Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.
\dagger Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.
$\dagger \dagger$ With zonal tides restored.

Table 3.5-5. Earth Orientation Parameters

Parameter		No. of Bits**	Scale Factor (LSB)	$\begin{gathered} \text { Valid } \\ \text { Range*** } \end{gathered}$	Units
$\mathrm{t}_{\text {EOP }}$	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
PM_X ${ }^{\text {+ }+ \text { t+t }}$	X-Axis Polar Motion Value at Reference Time.	21*	2^{-20}		arc-seconds
PM_X ${ }^{\text {P+\#+ }}$	X-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
PM_Y ${ }_{\text {¢ }}^{\text {+ }}$ +\#\#	Y-Axis Polar Motion Value at Reference Time.	21*	2^{-20}		arc-seconds
PM_Y ${ }_{\text {¢ }}^{\text {¢ }}$	Y-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
Δ UT 4 GPS ${ }^{\text {\# }}$	UT1 UTCUT1-GPS Difference at Reference Time.	31*	2^{-2423}		seconds
	Rate of UT1 UTCUT1-GPS Difference at Reference Time.	19*	2^{-25}		seconds/day
* Parameters so indicated are in two's complement notation; ** See Figure 3.5-3 for complete bit allocation in subframe 3, page 2; *** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.					
	predicted angular displacem semi-minor axis of the refer	tof insta ce ellips	along	tial Ephemer wich meridi	ermediate Pole
	predicted angular displacem semi-minor axis of the refere	t of inst ce ellips	on a line	tial Ephemeris rected 90° wes	ermediate Pole Greenwich
\#	des restored.Already account d by the user.	zonal, d	rnal, and	i-diurnal tides	d should not be
\#ii\% Alr	unt for diurnal and semi-diurna	tides and	hould not	further applied	the user.

Table 3.5-5. Earth Orientation Parameters

