CHANGE NOTICE Affected Document: IRN/SCN Number Date: IS-GPS-800 Rev E IRN-IS-800E-001 12-FEB-2019 Authority: Proposed Change Notice Date: RFC-00374 IS800E_RFC374 20-DEC-2018

CLASSIFIED BY: N/A DECLASSIFY ON: N/A

Document Title: NAVSTAR GPS Space Segment / User Segment L1C Interface

RFC Title: 2018 Proposed Changes to the Public Documents

Reason For Change (Driver):

The following topic was deferred from the 2017 Public ICWG and will now be resolved by this RFC.

1. Currently the Operational Advisories (OAs) that are published and archived contain plane/slot descriptions that are not in the constellation definition provided to the public in the Standard Positioning Service (SPS) Performance Standard (PS). The OA does not have the capability to correctly publish information regarding fore/aft position since moving to the 24+3 constellation with three expanded slots. In addition, the Points of Contact of the OA are not represented in a way that allows for efficient updates. This is a follow-up to RFC-351, which was CCB-approved on 8-Jan-2018.

The following topic resolves 3 document clean-up related activities:

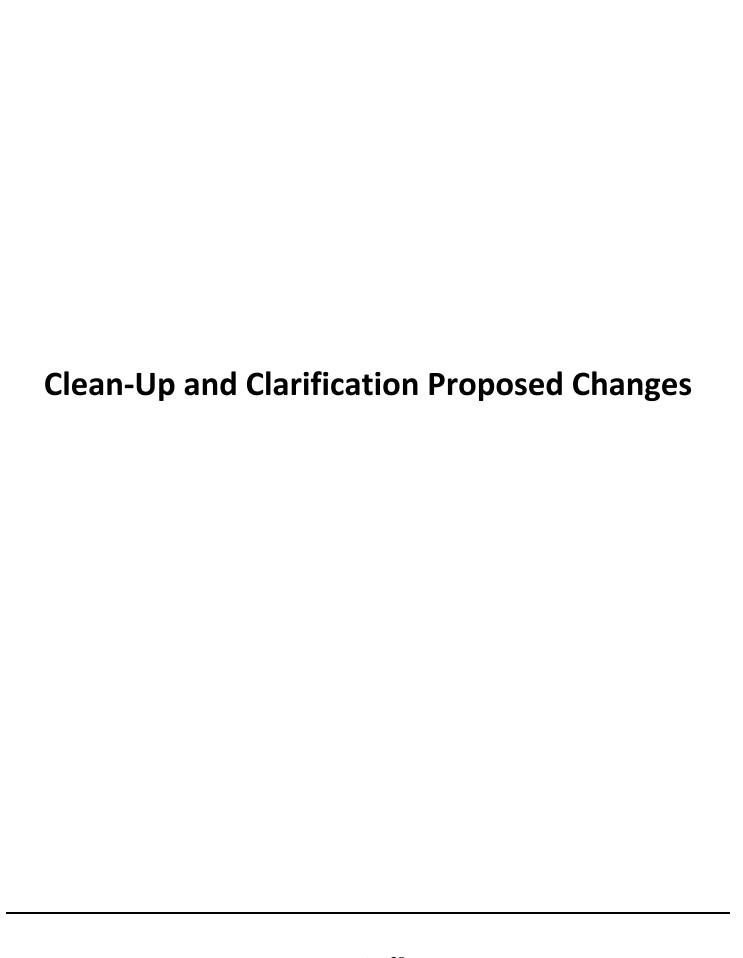
2. a) Signal-in-space topics need clarification, as identified by the public in past Public ICWGs. b) There were some administrative errors found during the UpRev process of the public documents. c) Contractor signatories are required for government-controlled documents.

(Pre-RFCs 819, 861)

Description of Change:

1. Modify the OA as agreed to in ICD-GPS-240 and ICD-GPS-870.

2. a) Provide clarity for the list of signal-in-space topics identified by the public. b) Clean up identified administrative changes in all public documents. c) Remove required contractor signatories from government-controlled documents.


Authored By: Philip Kwan	Checked By: Jennifer Lem	us	
AUTHORIZED SIGNATURES	REPRESENTING	DATE	
Mclay	GPS Directorate Space & Missile Systems Center (SMC) – LAAFB	4MARI9	

DISTRIBUTION STATEMENT A: Approved For Public Release; Distribution is Unlimited

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED.

Interface Control Contractor: SAIC (GPS SE&I) 200 N. Pacific Coast Highway, Suite 1800 El Segundo, CA 90245

CODE IDENT 66RP1

IS800-15:

Section Number:

2.1.0-4

WAS:

Other Publications

IS-GPS-200 (current issue) Navstar GPS Space Segment/Navigation User Interfaces

GP-03-001A (20 April 2006) GPS Interface Control Working Group Charter

Redlines:

Other Publications

IS-GPS-200 (current issue) Navstar GPS Space Segment/Navigation User

Interfaces

GP-03-001A (20 April 2006) GPS Interface Control Working Group Charter

IS:

Other Publications

IS-GPS-200 (current issue) Navstar GPS Space Segment/Navigation User

Interfaces

GP-03-001A (20 April 2006) GPS Interface Control Working Group Charter

IS800-115:

Section Number:

3.2.3.5.0-2

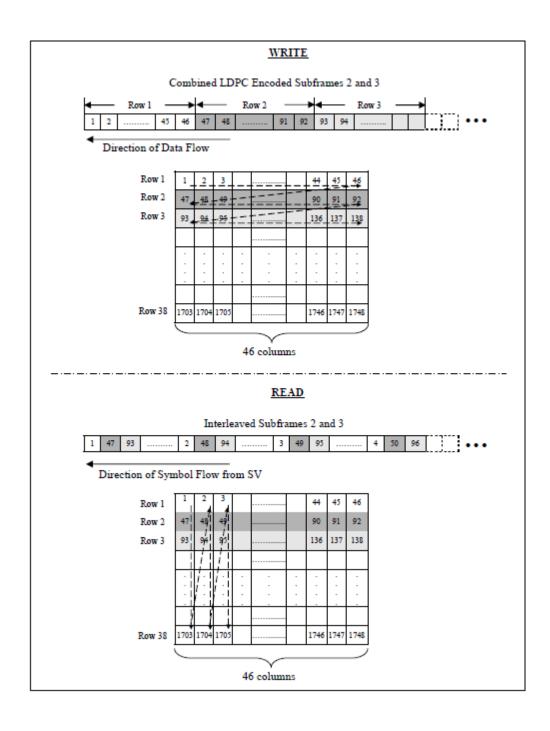


Figure 3.2-6. Conceptual Block Interleaver

Redlines:

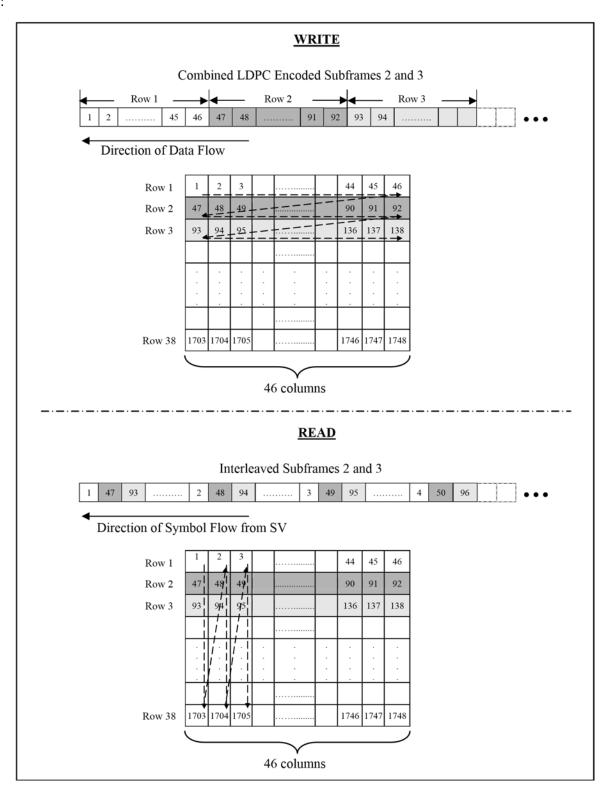


Figure 3.2-6. Conceptual Block Interleaver

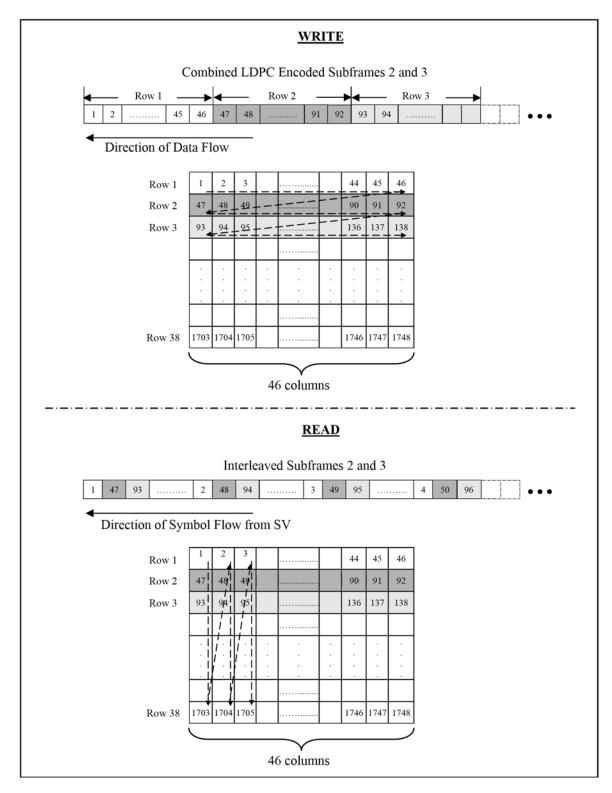


Figure 3.2-6. Conceptual Block Interleaver

IS800-146:

Section Number:

3.5.2.0-5

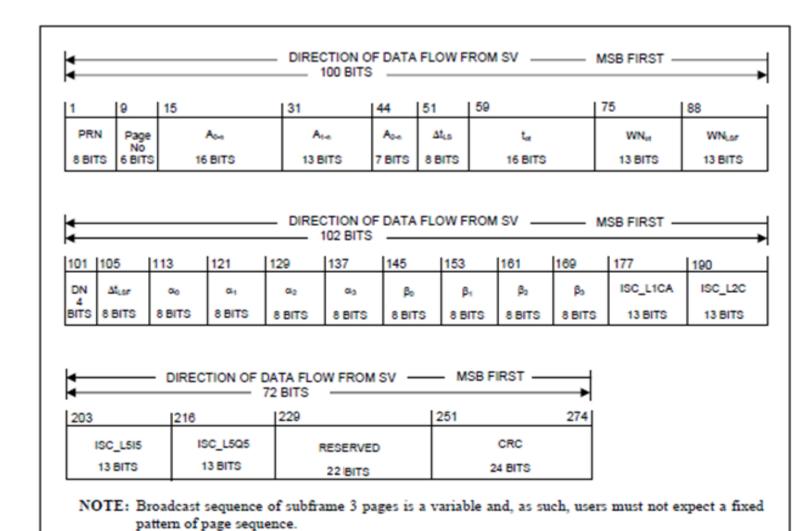
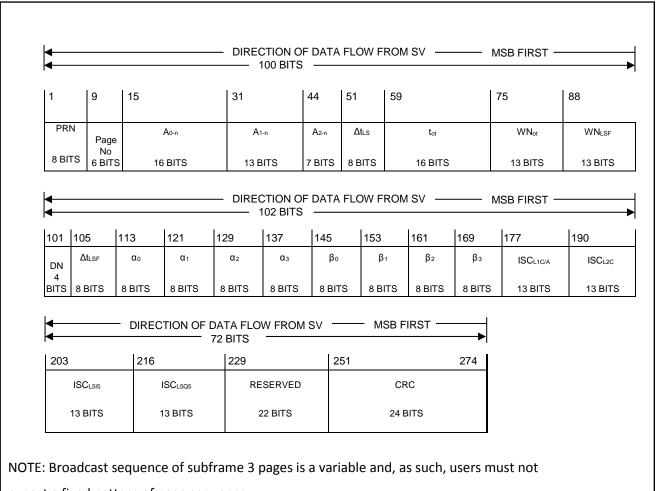



Figure 3.5-2. Subframe 3, Page 1 - UTC & IONO

Redlines:

expect a fixed pattern of page sequence.

Figure 3.5-2. Subframe 3, Page 1 - UTC & IONO [Figure was redrawn for legibility]

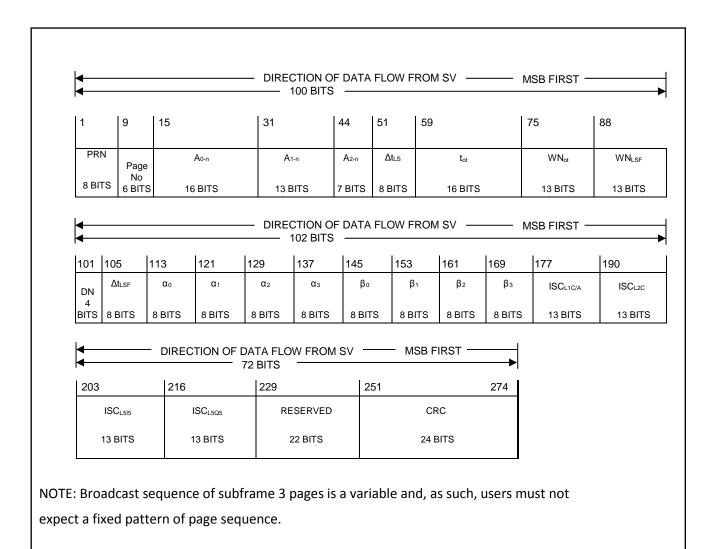


Figure 3.5-2. Subframe 3, Page 1 - UTC & IONO

IS800-159:

Section Number:

3.5.3.0-8

Table 3.5-1. Subframe 2 Parameters (1 of 3)

			Scale		
	Parameter	No. of Bits**	Factor (LSB)	Effective Range***	Units
WN	Data Sequence Propagation Week Number	13	1		weeks
ITTOWN		8		0 to 83	(see text)
ITOW	Interval time of week	11	300	0 to 604,500	seconds
t_{op}	CEI Data sequence propagation time of week	1			(see text)
L1C health		5*			(see text)
URA _{ED} Index	ED accuracy index Ephemeris/clock data	11	300	0 to 604,500	seconds
ΔΑ ****	reference time of week	26*	2-9		meters
ΔA *****	Semi-major axis difference at reference time	25*	2 ⁻²¹		meters/sec
Å	Change rate in semi-major axis				
Δn_0	Mean Motion difference from computed value at reference	17*	2 ⁻⁴⁴		semi-circles/sec
Δn_0^{ullet}	time Rate of mean motion	23*	2-57		semi-circles/sec ²
	difference from computed value	33*	2-32		semi-circles
M_{0-n}	Mean anomaly at reference time				,
	Eccentricity	33	2-34	0.0 to 0.03	dimensionless
e _n		33*	2-32		semi-circles
ω_{n}	Argument of perigee				

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} Relative to $A_{REF} = 26,559,710$ meters.

Redlines:

Table 3.5-1. Subframe 2 Parameters (1 of 3)

		No. of	Scale Factor	Effective Vali	
Parameter		Bits**	(LSB)	d Range***	Units
WN	Data Sequence Propagation Week Number	13	1		weeks
ITOW	Interval time of week	8		0 to 83	(see text)
t _{op}	CEI Data sequence propagation time of week	11	300	0 to 604,500	seconds
L1C health		1			(see text)
URA _{ED} Index	ED accuracy index	5*			(see text)
t _{oe}	Ephemeris/clock data reference time of week	11	300	0 to 604,500	seconds
Δ A ****	Semi-major axis difference at reference time	26*	2-9		meters
Å	Change rate in semi-major axis	25*	2 ⁻²¹		meters/sec
Δ n ₀	Mean Motion difference from computed value at reference time	17*	2-44		semi-circles/sec
$\Delta \stackrel{ullet}{n_0}$	Rate of mean motion difference from computed value	23*	2 ⁻⁵⁷		semi-circles/sec ²
$\mathbf{M}_{0\text{-n}}$	Mean anomaly at reference time	33*	2-32		semi-circles
e_n	Eccentricity	33	2-34	0.0 to 0.03	dimensionless
ω_{n}	Argument of perigee	33*	2-32		semi-circles

^{*} Parameters so indicated are in two's complement notation;

[parameter alignment fixed]

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} Relative to $A_{REF} = 26,559,710$ meters.

Table 3.5-1. Subframe 2 Parameters (1 of 3)

			G 1		
		No. of	Scale Factor	Valid	
	Parameter		(LSB)	Range***	Units
WN	Data Sequence Propagation Week Number	13	1		weeks
ITOW	Interval time of week	8		0 to 83	(see text)
t_{op}	CEI Data sequence propagation time of week	11	300	0 to 604,500	seconds
L1C health		1			(see text)
URA _{ED} Index	ED accuracy index	5*			(see text)
t _{oe}	Ephemeris/clock data reference time of week	11	300	0 to 604,500	seconds
ΔΑ****	Semi-major axis difference at reference time	26*	2-9		meters
Å	Change rate in semi-major axis	25*	2-21		meters/sec
Δ n ₀	Mean Motion difference from computed value at reference time	17*	2-44		semi-circles/sec
$\Delta \stackrel{ullet}{n_0}$	Rate of mean motion difference from computed value	23*	2-57		semi-circles/sec ²
M_{0-n}	Mean anomaly at reference time	33*	2-32		semi-circles
e_n	Eccentricity	33	2-34	0.0 to 0.03	dimensionless
ω_{n}	Argument of perigee	33*	2-32		semi-circles

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} Relative to $A_{REF} = 26,559,710$ meters.

IS800-161:

Section Number:

3.5.3.0-12

Table 3.5-1. Subframe 2 Parameters (3 of 3)

	Parameter	No. of Bits**	Scale Factor (LSB)	Effective Range***	Units
			(LSD)	Kange	
URA _{NED0} Index	NED Accuracy Index	5*			(see text)
URA _{NED1} Index	NED Accuracy Change Index	3			(see text)
URA _{NED2} Index	NED Accuracy Change Rate Index	3			(see text)
a _{f2-n}	SV Clock Drift Rate Correction Coefficient	10*	2 ⁻⁶⁰		sec/sec ²
$a_{\mathrm{fl-n}}$	SV Clock Drift Correction Coefficient	20*	2-48		sec/sec
$a_{ m f0-n}$	SV Clock Bias Correction Coefficient	26*	2-35		seconds
T _{GD} ****	Inter-Signal Correction for L1 or L2 P(Y)	13*	2-35		seconds
ISC _{LICP} ****	Inter-Signal Correction for L1C _P	13*	2 ⁻³⁵		seconds
ISC _{LICD} ****	Inter-Signal Correction for L1C _D	13*	2-35		seconds
$ m WN_{op}$	CEI Data Sequence Propagation Week Number	8	1		weeks

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, effective range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} The bit string of "100000000000" will indicate that the group delay value is not available.

Redlines:

Table 3.5-1. Subframe 2 Parameters (3 of 3)

Parameter		No. of Bits**	Scale Factor (LSB)	Effective Valid Range***	Units
URA _{NED0} Index	NED Accuracy Index	5*		8	(see text)
URA _{NED1} Index	NED Accuracy Change Index	3			(see text)
URA _{NED2} Index	NED Accuracy Change Rate Index	3			(see text)
a _{f2-n}	SV Clock Drift Rate Correction Coefficient	10*	2-60		sec/sec ²
$a_{\mathrm{fl-n}}$	SV Clock Drift Correction Coefficient	20*	2-48		sec/sec
$a_{ m f0-n}$	SV Clock Bias Correction Coefficient	26*	2-35		seconds
T_{GD} ****	Inter-Signal Correction for L1 or L2 P(Y)	13*	2-35		seconds
ISC _{L1CP} ****	Inter-Signal Correction for L1C _P	13*	2-35		seconds
ISC _{L1CD} ****	Inter-Signal Correction for L1C _D	13*	2-35		seconds
WN_{op}	CEI Data Sequence Propagation Week Number	8	1		weeks

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, <u>effective</u> range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} The bit string of "1000000000000" will indicate that the group delay value is not available.

Table 3.5-1. Subframe 2 Parameters (3 of 3)

Parameter		No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
URA _{NED0} Index	NED Accuracy Index	5*			(see text)
URA _{NED1} Index	NED Accuracy Change Index	3			(see text)
URA _{NED2} Index	NED Accuracy Change Rate Index	3			(see text)
a _{f2-n}	SV Clock Drift Rate Correction Coefficient	10*	2-60		sec/sec ²
$a_{\mathrm{f1-n}}$	SV Clock Drift Correction Coefficient	20*	2-48		sec/sec
a _{f0-n}	SV Clock Bias Correction Coefficient	26*	2-35		seconds
T_{GD}^{****}	Inter-Signal Correction for L1 or L2 P(Y)	13*	2-35		seconds
ISC _{L1CP} ****	Inter-Signal Correction for L1C _P	13*	2-35		seconds
ISC _{LICD} ****	Inter-Signal Correction for L1C _D	13*	2-35		seconds
WN_{op}	CEI Data Sequence Propagation Week Number	8	1		weeks

^{*} Parameters so indicated are in two's complement notation;

^{**} See Figure 3.5-1 for complete bit allocation in Subframe 2;

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

^{****} The bit string of "1000000000000" will indicate that the group delay value is not available.

IS800-182:

Section Number:

3.5.3.6.1.0-6

Table 3.5-2. Elements of Coordinate System (part 2 of 2)

Element/Equation *	Description
$\Phi_k = \nu_k + \omega_n$	Argument of Latitude
$\delta u_k = C_{us-n} sin 2\Phi_k + C_{uc-n} cos 2\Phi_k$	Argument of Latitude Correction
$\delta r_k = C_{rs-n} sin 2\Phi_k + C_{rc-n} cos 2\Phi_k$	Radial Correction Second Harmonic Perturbations
$\delta i_k = C_{is-n} sin 2\Phi_k + C_{ic-n} cos 2\Phi_k$	Inclination Correction
$u_k = \Phi_k + \delta u_k$	Corrected Argument of Latitude
$r_k = A_k(1 - e_n \cos E_k) + \delta r_k$	Corrected Radius
$i_k = i_{o\text{-}n} + (i_{o\text{-}n}\text{-}DOT)t_k + \delta i_k$	Corrected Inclination
$ \begin{cases} x_k' = r_k \cos u_k \\ y_k' = r_k \sin u_k \end{cases} $	Positions in orbital plane
$\overset{ullet}{\Omega} = \overset{ullet}{\Omega}_{ m REF} + \Delta \overset{ullet}{\Omega} ***$	Rate of Right Ascension
$\Omega_{\rm k} = \Omega_{\rm 0-n} + (\stackrel{\bullet}{\Omega} - \stackrel{\bullet}{\Omega}_{\rm e}) t_{\rm k} - \stackrel{\bullet}{\Omega}_{\rm e} t_{\rm oe}$	Corrected Longitude of Ascending Node
$ \left. \begin{array}{l} x_k = x_k' \cos \Omega_k - y_k' \cos i_k \sin \Omega_k \\ \\ y_k = x_k' \sin \Omega_k + y_k' \cos i_k \cos \Omega_k \\ \\ z_k = y_k' \sin i_k \end{array} \right\} $	Earth-fixed coordinates of SV antenna phase center
*** $\Omega_{REF}^{\bullet} = -2.6 \text{ x } 10^{-9} \text{ semi-circles/second.}$	

Redlines :

Table 3.5-2. Elements of Coordinate System (part 2 of 2)

Element/Equation*	Description
$\Phi_k = \nu_k + \omega_n$	Argument of Latitude
$\delta u_k = C_{us-n} sin 2\Phi_k + C_{uc-n} cos 2\Phi_k$	Argument of Latitude Correction
$\delta r_k = C_{rs-n} sin2\Phi_k + C_{rc-n} cos2\Phi_k$	Radial Correction Second Harmonic Perturbations
$\delta i_k = C_{is-n} sin2\Phi_k + C_{ic-n} cos2\Phi_k$	Inclination Correction
$u_k = \Phi_k + \delta u_k$ $r_k = A_k(1 - e_n \cos E_k) + \delta r_k$	Corrected Argument of Latitude Corrected Radius
$i_k = i_{o-n} + (i_{o-n}\text{-DOT})t_k + \delta i_k$	Corrected Inclination
$ \begin{cases} x_k' = r_k \cos u_k \\ y_k' = r_k \sin u_k \end{cases} $	Positions in orbital plane
$\overset{ullet}{\Omega} = \overset{ullet}{\Omega}_{ m REF} + \Delta \overset{ullet}{\Omega} ***$	Rate of Right Ascension
$\Omega_{\mathrm{k}} = \Omega_{\mathrm{0-n}} + (\stackrel{\bullet}{\Omega} - \stackrel{\bullet}{\Omega_{\mathrm{e}}}) \mathrm{t_{k}} - \stackrel{\bullet}{\Omega_{\mathrm{e}}} \mathrm{t_{oe}}$	Corrected Longitude of Ascending Node
$ x_k = x_k' \cos \Omega_k - y_k' \cos i_k \sin \Omega_k $ $ y_k = x_k' \sin \Omega_k + y_k' \cos i_k \cos \Omega_k $ $ z_k = y_k' \sin i_k $	Earth-fixed coordinates of SV antenna phase center
*** $\Omega_{REF}^{\bullet} = -2.6 \text{ x } 10^{-9} \text{ semi-circles/second.}$	

Table 3.5-2. Elements of Coordinate System (part 2 of 2)

Element/Equation	Description
$\Phi_k = \nu_k + \omega_n$	Argument of Latitude
$\delta u_k = C_{us-n} sin 2\Phi_k + C_{uc-n} cos 2\Phi_k$	Argument of Latitude Correction
$\delta r_k = C_{rs-n} sin 2\Phi_k + C_{rc-n} cos 2\Phi_k$	Radial Correction Second Harmonic Perturbations
$\delta i_k = C_{is-n} sin 2\Phi_k + C_{ic-n} cos 2\Phi_k$	Inclination Correction
$u_k = \Phi_k + \delta u_k$	Corrected Argument of Latitude
$r_k = A_k(1 - e_n \cos E_k) + \delta r_k$	Corrected Radius
$i_k = i_{o\text{-}n} + (i_{o\text{-}n}\text{-}DOT)t_k + \delta i_k$	Corrected Inclination
$ x_{k'} = r_k \cos u_k $ $ y_{k'} = r_k \sin u_k $	Positions in orbital plane
$\overset{ullet}{\Omega} = \overset{ullet}{\Omega}_{ m REF} + \Delta \overset{ullet}{\Omega} ***$	Rate of Right Ascension
$\Omega_{\rm k} = \Omega_{\rm 0-n} + (\stackrel{\bullet}{\Omega} - \stackrel{\bullet}{\Omega_{\rm e}}) t_{\rm k} - \stackrel{\bullet}{\Omega_{\rm e}} t_{\rm oe}$	Corrected Longitude of Ascending Node
$ \left. \begin{array}{l} x_k = x_k' \cos \Omega_k - y_k' \cos i_k \sin \Omega_k \\ \\ y_k = x_k' \sin \Omega_k + y_k' \cos i_k \cos \Omega_k \\ \\ z_k = y_k' \sin i_k \end{array} \right\} $	Earth-fixed coordinates of SV antenna phase center
*** $\Omega_{REF}^{\bullet} = -2.6 \text{ x } 10^{-9} \text{ semi-circles/second.}$	

IS800-193:

Section Number:

3.5.3.8.0-6

WAS:

For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters, respectively.

The nominal URA_{NEDO} value (X) shall be suitable for use as a conservative prediction of the RMS NED range errors for accuracy-related purposes in the pseudorange domain (e.g., measurement de-weighting RAIM, FOM computations). Integrity properties of the IAURA_{NEDO} are specified with respect to the scaled (multiplied by either 4.42 or 5.73 as appropriate) upper bound values of the URA_{NEDO} index, URA_{NEDO} index, and URA_{NEDO} index (see 3.5.3.10.1).

URA_{NEDO} accounts for zeroth order SIS contributions to user range error which include, but are not limited to, the following: LSB representation/truncation error; the net effect of clock correction polynomial error and code phase error in the transmitted signal for single-frequency L1C/A or single-frequency L2C users who correct the code phase as described in Section 3.5.3.9; the net effect of clock parameter, code phase, and inter-signal correction error for dual-frequency L1/L2 and L1/L5 users who correct for group delay and ionospheric effects as described in Section 3.5.3.9; radial ephemeris error; anisotropic antenna errors; and signal deformation error. URA_{NED} does not account for user range contributions due to the inaccuracy of the broadcast ionospheric data parameters used in the single-frequency ionospheric model or for other atmospheric effects.

Redlines:

For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters, respectively.

The nominal URA_{NEDO} value (X) shall be suitable for use as a conservative prediction of the RMS NED range errors for accuracy-related purposes in the pseudorange domain (e.g., measurement de-weighting RAIM, FOM computations). Integrity properties of the IAURA_{NED} are specified with respect to the scaled (multiplied by either 4.42 or 5.73 as appropriate) upper bound values of the URA_{NEDO} index, URA_{NEDO} index, and URA_{NEDO} index (see 3.5.3.10.1).

URA_{NEDO} accounts for zeroth order SIS contributions to user range error which include, but are not limited to, the following: LSB representation/truncation error; the net effect of clock correction polynomial error and code phase error in the transmitted signal for single-frequency L1C/A or single-frequency L2C users who correct the code phase as described in Section 3.5.3.9; the net effect of clock parameter, code phase, and inter-signal correction error for dual-frequency L1C/L2C and L1L1C/L5 users who correct for group delay and ionospheric effects as described in Section 3.5.3.9; radial ephemeris error; anisotropic antenna errors; and signal deformation error. URA_{NED} does not account for user range contributions due to the inaccuracy of the broadcast ionospheric data parameters used in the single-frequency ionospheric model or for other atmospheric effects.

IS:

For N = 1, 3, and 5, X should be rounded to 2.8, 5.7, and 11.3 meters, respectively.

The nominal URA_{NEDO} value (X) shall be suitable for use as a conservative prediction of the RMS NED range errors for accuracy-related purposes in the pseudorange domain (e.g., measurement de-weighting RAIM, FOM computations). Integrity properties of the IAURA_{NEDO} are specified with respect to the scaled (multiplied by either 4.42 or 5.73 as appropriate) upper bound values of the URA_{NEDO} index, URA_{NEDO} index, and URA_{NEDO} index (see 3.5.3.10.1).

URA_{NEDO} accounts for zeroth order SIS contributions to user range error which include, but are not limited to, the following: LSB representation/truncation error; the net effect of clock correction polynomial error and code phase error in the transmitted signal for single-frequency L1C users who correct the code phase as described in Section 3.5.3.9; the net effect of clock parameter, code phase, and inter-signal correction error for dual-frequency L1C/L2C and L1C/L5 users who correct for group delay and ionospheric effects as described in Section 3.5.3.9; radial ephemeris error; anisotropic antenna errors; and signal deformation error. URA_{NED} does not account for user range contributions due to the inaccuracy of the broadcast ionospheric data parameters used in the single-frequency ionospheric model or for other atmospheric effects.

IS800-202:

Section Number:

3.5.3.9.2.0-1

WAS:

The two frequency (L1C_P and L2C) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L2C} - \gamma_{12}PR_{L1CP}) + c \, (ISC_{L2C} - \gamma_{12}ISC_{L1CP})}{1 - \gamma_{12}} - c \, T_{GD}$$

The two frequency (L1C_D and L2C) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L2C} - \gamma_{12}PR_{L1CD}) + c (ISC_{L2C} - \gamma_{12}ISC_{L1CD})}{1 - \gamma_{12}} - c T_{GD}$$

Redlines:

The twodual-frequency (L1C_P and L2C) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L2C} - \gamma_{12}PR_{L1CP}) + c(ISC_{L2C} - \gamma_{12}ISC_{L1CP})}{1 - \gamma_{12}} - cT_{GD}$$

The twodual-frequency (L1C_D and L2C) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L2C} - \gamma_{12}PR_{L1CD}) + c(ISC_{L2C} - \gamma_{12}ISC_{L1CD})}{1 - \gamma_{12}} - cT_{GD}$$

IS:

The dual-frequency (L1C_P and L2C) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L2C} - \gamma_{12}PR_{L1CP}) + c (ISC_{L2C} - \gamma_{12}ISC_{L1CP})}{1 - \gamma_{12}} - c T_{GD}$$

The dual-frequency (L1C $_D$ and L2C) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L2C} - \gamma_{12}PR_{L1CD}) + c (ISC_{L2C} - \gamma_{12}ISC_{L1CD})}{1 - \gamma_{12}} - c T_{GD}$$

IS800-205:

Section Number:

3.5.3.9.3.0-1

WAS:

The two frequency (L1C_P and L5 Q5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L5Q5} - \gamma_{15}PR_{L1CP}) + c (ISC_{L5Q5} - \gamma_{15}ISC_{L1CP})}{1 - \gamma_{15}} - c T_{GD}$$

Redlines:

The twodual-frequency (L1C_P and L5 Q5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L5Q5} - \gamma_{15}PR_{L1CP}) + c\,(ISC_{L5Q5} - \gamma_{15}ISC_{L1CP})}{1 - \gamma_{15}} - c\,T_{GD}$$

IS:

The dual-frequency (L1C_P and L5 Q5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L5Q5} - \gamma_{15}PR_{L1CP}) + c\,(ISC_{L5Q5} - \gamma_{15}ISC_{L1CP})}{1 - \gamma_{15}} - c\,T_{GD}$$

IS800-206:

Section Number:

3.5.3.9.3.0-2

WAS:

The two frequency (L1C_D and L5 Q5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L5Q5} - \gamma_{15}PR_{L1CD}) + c (ISC_{L5Q5} - \gamma_{15}ISC_{L1CD})}{1 - \gamma_{15}} - c T_{GD}$$

Redlines:

The twodual-frequency (L1C_D and L5 Q5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L5Q5} - \gamma_{15}PR_{L1CD}) + c\,(ISC_{L5Q5} - \gamma_{15}ISC_{L1CD})}{1 - \gamma_{15}} - c\,T_{GD}$$

IS:

The dual-frequency (L1C_D and L5 Q5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L5Q5} - \gamma_{15}PR_{L1CD}) + c\,(ISC_{L5Q5} - \gamma_{15}ISC_{L1CD})}{1 - \gamma_{15}} - c\,T_{GD}$$

IS800-207:

Section Number:

3.5.3.9.3.0-3

WAS:

The two frequency (L1C_P and L5 I5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L515} - \gamma_{15}PR_{L1CP}) + c \, (ISC_{L515} - \gamma_{15}ISC_{L1CP})}{1 - \gamma_{15}} - c \, T_{GD}$$

Redlines:

The twodual-frequency (L1C_P and L5 I5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L515} - \gamma_{15}PR_{L1CP}) + c(ISC_{L515} - \gamma_{15}ISC_{L1CP})}{1 - \gamma_{15}} - cT_{GD}$$

IS:

The dual-frequency (L1C_P and L5 I5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L5I5} - \gamma_{15}PR_{L1CP}) + c(ISC_{L5I5} - \gamma_{15}ISC_{L1CP})}{1 - \gamma_{15}} - cT_{GD}$$

IS800-208:

Section Number:

3.5.3.9.3.0-4

WAS:

The two frequency (L1C_D and L5 I5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L515} - \gamma_{15}PR_{L1CD}) + c(ISC_{L515} - \gamma_{15}ISC_{L1CD})}{1 - \gamma_{15}} - cT_{GD}$$

Redlines:

The two dual-frequency (L1C_D and L5 I5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L515} - \gamma_{15}PR_{L1CD}) + c(ISC_{L515} - \gamma_{15}ISC_{L1CD})}{1 - \gamma_{15}} - cT_{GD}$$

IS:

The dual-frequency (L1C_D and L5 I5) user shall correct for the group delay and ionospheric effects by applying the relationship

$$PR = \frac{(PR_{L515} - \gamma_{15}PR_{L1CD}) + c(ISC_{L515} - \gamma_{15}ISC_{L1CD})}{1 - \gamma_{15}} - cT_{GD}$$

IS800-226:

Section Number:

3.5.4.1.2.0-1

WAS:

The ionospheric parameters which allow the "L1 only" user to utilize the ionospheric model for computation of the ionospheric delay are contained in subframe 3, page 1. The "one frequency" user should use the model given in paragraph 20.3.3.5.2.5 of IS-GPS-200 to make this correction for the ionospheric effects. The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-X of IS-GPS-200.

Redlines:

The ionospheric parameters which allow the "L1 only" user to utilize the ionospheric model for computation of the ionospheric delay are contained in subframe 3, page 1. The "one-single-frequency" user should use the model given in paragraph 20.3.3.5.2.5 of IS-GPS-200 to make this correction for the ionospheric effects. The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-X of IS-GPS-200.

IS:

The ionospheric parameters which allow the "L1 only" user to utilize the ionospheric model for computation of the ionospheric delay are contained in subframe 3, page 1. The "single-frequency" user should use the model given in paragraph 20.3.3.5.2.5 of IS-GPS-200 to make this correction for the ionospheric effects. The bit lengths, scale factors, ranges, and units of these parameters are given in Table 20-X of IS-GPS-200.

IS800-251:

Section Number:

3.5.4.3.4.0-1

WAS:

The three, one-bit, health indication in bits 44, 45 and 46 of subframe 3, page 4 and bits 31, 32 and 33 of each packet of reduced almanac refers to the L1, L2, and L5 signals of the SV whose PRN number is specified in the message or in the packet. For each health indicator, a "0" signifies that all signals on the associated frequency are okay and "1" signifies that some or all signals on the associated frequency are bad. The predicted health data will be updated at the time of upload when a new reduced almanac has been built by the CS. The transmitted health data may not correspond to the actual health of the transmitting SV or other SVs in the constellation.

Redlines:

The three, one-bit, health indication in bits 44, 45 and 46 of subframe 3, page 4 and bits 31, 32 and 33 of each packet of reduced almanac refers to the L1, L2, and L5 signals of the SV whose PRN number is specified in the message or in the packet. For each health indicator, a "0" signifies that all signals on the associated frequency are okay and "1" signifies that some or all signals on the associated frequency are bad. The predicted health data will be updated at the time of upload when a new midi almanac or reduced almanac has been built by the CS. The transmitted health data may not correspond to the actual health of the transmitting SV or other SVs in the constellation.

IS:

The three, one-bit, health indication in bits 44, 45 and 46 of subframe 3, page 4 and bits 31, 32 and 33 of each packet of reduced almanac refers to the L1, L2, and L5 signals of the SV whose PRN number is specified in the message or in the packet. For each health indicator, a "0" signifies that all signals on the associated frequency are okay and "1" signifies that some or all signals on the associated frequency are bad. The predicted health data will be updated at the time of upload when a new midi almanac or reduced almanac has been built by the CS. The transmitted health data may not correspond to the actual health of the transmitting SV or other SVs in the constellation.

IS800-267:

Section Number:

3.5.4.4.1.0-1

WAS:

Subframe 3, page 5 shall contain DC parameters that apply to the clock and ephemeris data transmitted by another SV. One subframe 3, page 5, as depicted in Figure 3.5-6, shall contain 34 bits of clock differential correction (CDC) parameters and 92 bits of ephemeris differential correction (EDC) parameters for one SV other than the transmitting SV. Bit 37 of subframe 3, page 5 shall be a DC Data Type indicator that indicates the data type for which the DC parameters apply. Zero (0) signifies that the corrections apply to CNAV-2 data, D_{L1C}(t), and one (1) signifies that the corrections apply to NAV (legacy) data, D(t), defined in Appendix II of IS-GPS-200.

Redlines:

Subframe 3, page 5 shall contain DC parameters that apply to the clock and ephemeris data transmitted by another SV. One subframe 3, page 5, as depicted in Figure 3.5-6, shall contain 34 bits of clock differential correction (CDC) parameters and 92 bits of ephemeris differential correction (EDC) parameters for one SV other than the transmitting SV. Bit 37 of subframe 3, page 5 shall be a DC Data Type indicator that indicates the data type for which the DC parameters apply. Zero (0) signifies that the corrections apply to CNAV-2 data, D_{L1C}(t), and one (1) signifies that the corrections apply to NAV legacy navigation (legacyLNAV) data, D(t), defined in Appendix II of IS-GPS-200.

IS:

Subframe 3, page 5 shall contain DC parameters that apply to the clock and ephemeris data transmitted by another SV. One subframe 3, page 5, as depicted in Figure 3.5-6, shall contain 34 bits of clock differential correction (CDC) parameters and 92 bits of ephemeris differential correction (EDC) parameters for one SV other than the transmitting SV. Bit 37 of subframe 3, page 5 shall be a DC Data Type indicator that indicates the data type for which the DC parameters apply. Zero (0) signifies that the corrections apply to CNAV-2 data, D_{L1C}(t), and one (1) signifies that the corrections apply to legacy navigation (LNAV) data, D(t), defined in Appendix II of IS-GPS-200.

IS800-871:

Section Number:

3.5.5.2.0-1

WAS:

The following rule governs the transmission of t_{oe} in different CEI data sets: The transmitted t_{oe} will be different from any value transmitted by the SV during the preceding six hours. t_{op} does not have to match t_{oe} .

Cutovers to new CEI data sets will occur only on hour boundaries except for the first CEI data set of a new CEI data sequence propagation. The first CEI data set may be cut-in (reference paragraph 3.5.5.1) at any time during the hour and therefore may be transmitted by the SV for less than one hour.

The start of the transmission interval for each CEI data set corresponds to the beginning of the curve fit interval for the CEI data set. Each CEI data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval. A CEI data set is rendered invalid before the end of its curve fit interval when it is superseded by the SV cutting over to the first CEI data set of a new CEI data sequence propagation.

Normal Operations. The subframe 2 CEI data sets are transmitted by the SV for periods of two hours. The corresponding curve fit interval is three hours.

Redlines:

The following rule governs the transmission of t_{oe} in different CEI data sets: The transmitted t_{oe} will be different from any value transmitted by the SV during the preceding six hours. t_{op} does not have to match t_{oe} .

Cutovers to new CEI data sets will occur only on hour boundaries except for the first CEI data set of a new CEI data sequence propagation. The first CEI data set may be cut-in (reference paragraph 3.5.5.1) at any time during the hour and therefore may be transmitted by the SV for less than one hour.

The start of the transmission interval for each CEI data set corresponds to the beginning of the curve fit interval for the CEI data set. Each CEI data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval. A CEI data set is rendered invalidobsolete before the end of its curve fit interval when it is superseded by the SV cutting over to the first CEI data set of a new CEI data sequence propagation.

Normal Operations. The subframe 2 CEI data sets are transmitted by the SV for periods of two hours. The corresponding curve fit interval is three hours.

IS:

The following rule governs the transmission of t_{oe} in different CEI data sets: The transmitted t_{oe} will be different from any value transmitted by the SV during the preceding six hours. t_{op} does not have to match t_{oe} .

Cutovers to new CEI data sets will occur only on hour boundaries except for the first CEI data set of a new CEI data sequence propagation. The first CEI data set may be cut-in (reference paragraph 3.5.5.1) at any time during the hour and therefore may be transmitted by the SV for less than one hour.

The start of the transmission interval for each CEI data set corresponds to the beginning of the curve fit interval for the CEI data set. Each CEI data set remains valid for the duration of its transmission interval, and nominally also remains valid for the duration of its curve fit interval. A CEI data set is rendered obsolete before the end of its curve fit interval when it is superseded by the SV cutting over to the first CEI data set of a new CEI data sequence propagation.

Normal Operations. The subframe 2 CEI data sets are transmitted by the SV for periods of two hours.	The corresponding
curve fit interval is three hours.	

IS800-893:

Section Number:

6.1.0-1

APC	-	antenna phase center	
ASCII	-	American Standard Code for Information Interchange	
BCH	-	Bose, Chaudhuri, and Hocquenghem	
BOC	-	Binary Offset Carrier	
BPSK	-	Bi-Phase Shift Key	
CCB	-	Configuration Control Board	
CDC	-	clock differential correction	
CEI	-	Clock/Ephemeris/ Integrity	
CNAV-2-	-	L1C Navigation Message	
CRC	-	Cyclic Redundancy Check	
CS	-	Control Segment	
dBc	-	Power ratio of a signal to a (unmodulated) carrier signal, expressed in decibels	
DC	-	differential correction	
DN	-	Day Number	
ECEF	=	Earth-Centered, Earth-Fixed	
ECI	=	Earth-Centered, Inertial	
EDC	-	ephemeris differential correction	
EOE	-	Edge-of-Earth	
EOL	-	End-of-Life	
EOP	-	Earth Orientation Parameters	
FEC	-	Forward Error Correction	

GBAS	-	Ground Based Augmentation System
GGTO	-	GPS/GNSS Time Offset
GNSS	-	Global Navigation Satellite System
GPS	-	Global Positioning System
GPSW	-	GPS Wing
ICC	-	Interface Control Contractor
ICWG	-	Interface Control Working Group
IRN	-	Interface Revision Notice
IS	-	Interface Specification
ISC	-	Inter-Signal Correction
ITOW	-	Interval Time of Week
LDPC	-	Low Density Parity Check
LFSR	-	Linear Feedback Shift Register
LSB	-	Least Significant Bit
LSF	-	Leap Seconds Future
L1C	-	Common L1 Signal
MCS	-	Master Control Station
MHz	-	Megahertz
MSB	-	Most Significant Bit
NAV	-	Legacy Navigation Message, D(t)
NSCD	-	non-standard L1C _D
NSCP	-	non-standard L1C _P
PIRN	-	Proposed Interface Revision Notice
PRN	-	Pseudo-Random Noise
RF	-	Radio Frequency
RHCP	-	Right-Hand Circularly Polarized
RMS	-	Root Mean Square
SBAS	-	Satellite Based Augmentation System
sps	-	symbols per second
SS	-	Space Segment
SSV	-	Space Service Volume
<u> </u>	1	ı

SV	-	Space Vehicle
TBD	-	To Be Determined
TBR	-	To Be Resolved
TBS	-	To Be Supplied
TMBOC	-	Time-Multiplexed BOC
TOI	-	Time of Interval
TOW	-	Time of Week
UDRA	-	User Differential Range Accuracy
UE	-	User Equipment
URA	-	User Range Accuracy
US	-	User Segment
USNO	-	U.S. Naval Observatory
UTC	-	Coordinated Universal Time
WGS 84	-	World Geodetic System 1984

Redlines :

APC	-	antenna phase center
ASCII	-	American Standard Code for Information Interchange
BCH	-	Bose, Chaudhuri, and Hocquenghem
BOC	-	Binary Offset Carrier
BPSK	-	Bi-Phase Shift Key
CCB	-	Configuration Control Board
CDC	-	clock differential correction
CEI	-	Clock/Ephemeris/ Integrity
CNAV-2-	-	L1C Navigation Message
CRC	-	Cyclic Redundancy Check
CS	-	Control Segment
dBc	-	Power ratio of a signal to a (unmodulated) carrier signal, expressed in decibels
DC	-	differential correction
DN	-	Day Number

ECEF	-	Earth-Centered, Earth-Fixed
ECI	-	Earth-Centered, Inertial
EDC	-	ephemeris differential correction
EOE	-	Edge-of-Earth
EOL	-	End-of-Life
EOP	-	Earth Orientation Parameters
FEC	-	Forward Error Correction
GBAS	-	Ground Based Augmentation System
GGTO	-	GPS/GNSS Time Offset
GNSS	=	Global Navigation Satellite System
GPS	-	Global Positioning System
GPSW	-	GPS Wing
ICC	-	Interface Control Contractor
ICWG	-	Interface Control Working Group
IRN	-	Interface Revision Notice
IS	-	Interface Specification
ISC	-	Inter-Signal Correction
ITOW	-	Interval Time of Week
LDPC	-	Low Density Parity Check
LFSR	-	Linear Feedback Shift Register
LNAV	=	Legacy Navigation
LSB	-	Least Significant Bit
LSF	-	Leap Seconds Future
L1C	-	Common L1 Signal
MCS	-	Master Control Station
MHz	-	Megahertz
MSB	-	Most Significant Bit
NAV	-	Navigation
NSCD	-	non-standard L1C _D
NSCP	-	non-standard L1C _P
PIRN	-	Proposed Interface Revision Notice

PRN	-	Pseudo-Random Noise
RF	-	Radio Frequency
RHCP	-	Right-Hand Circularly Polarized
RMS	-	Root Mean Square
SBAS	-	Satellite Based Augmentation System
sps	-	symbols per second
SS	-	Space Segment
SSV	-	Space Service Volume
SV	-	Space Vehicle
TBD	-	To Be Determined
TBR	-	To Be Resolved
TBS	-	To Be Supplied
TMBOC	-	Time-Multiplexed BOC
TOI	-	Time of Interval
TOW	-	Time of Week
UDRA	-	User Differential Range Accuracy
UE	-	User Equipment
URA	-	User Range Accuracy
US	-	User Segment
USNO	-	U.S. Naval Observatory
UTC	-	Coordinated Universal Time
WGS 84	-	World Geodetic System 1984

APC	-	antenna phase center
ASCII	-	American Standard Code for Information Interchange
ВСН	-	Bose, Chaudhuri, and Hocquenghem
BOC	-	Binary Offset Carrier
BPSK	-	Bi-Phase Shift Key
ССВ	-	Configuration Control Board
CDC	-	clock differential correction
CEI	-	Clock/Ephemeris/ Integrity
CNAV-2	-	L1C Navigation Message
CRC	-	Cyclic Redundancy Check
CS	-	Control Segment
dBc	-	Power ratio of a signal to a (unmodulated) carrier signal, expressed in decibels
DC	-	differential correction
DN	-	Day Number
ECEF	-	Earth-Centered, Earth-Fixed
ECI	-	Earth-Centered, Inertial
EDC	-	ephemeris differential correction
EOE	-	Edge-of-Earth
EOL	-	End-of-Life
EOP	-	Earth Orientation Parameters
FEC	-	Forward Error Correction
GBAS	-	Ground Based Augmentation System
GGTO	-	GPS/GNSS Time Offset
GNSS	-	Global Navigation Satellite System
GPS	-	Global Positioning System
GPSW	-	GPS Wing
ICC	-	Interface Control Contractor
ICWG	-	Interface Control Working Group
IRN	-	Interface Revision Notice

Inter-Signal Correction	IS	-	Interface Specification
LDPC LDPC LDPC LUST LUST LUNAV LEGACY Navigation LEGACY Navigation LESS LESS LEAST Significant Bit LESF LEUP Seconds Future LUC Common L1 Signal MCS Master Control Station MHz Megahertz Megahertz Most Significant Bit NAV Most Significant Bit NAV Navigation NSCD Non-standard LIC _D non-standard LIC _D NSCP non-standard LIC _D PIRN Proposed Interface Revision Notice PRN PRN Proposed Interface Revision Notice RF Radio Frequency RHCP Right-Hand Circularly Polarized RMS ROM Mean Square SBAS Satellite Based Augmentation System sps Symbols per second SS Space Segment SSV Space Service Volume SV Space Vehicle TBD To Be Determined TBR To Be Resolved TMBOC Time-Multiplexed BOC Tot Immediation Time of Interval	ISC	-	Inter-Signal Correction
LFSR - Linear Feedback Shift Register LNAV - Legacy Navigation - Least Significant Bit LSF - Leap Seconds Future LIC - Common LI Signal MCS - Master Control Station MHz - Megahertz MSB - Most Significant Bit NAV - Navigation NSCD - non-standard LICp NSCP - non-standard LICp PIRN - Proposed Interface Revision Notice PRN - Pscudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - Symbols per second SSV - Space Service Volume SV - To Be Determined TBR - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	ITOW	-	Interval Time of Week
LNAV LSB - Least Significant Bit LCSF - Common LI Signal MCS - Master Control Station MHz - Megahertz MSB - Most Significant Bit NAV - Megahertz MSB - Most Significant Bit NAV - Navigation NSCD - non-standard LICp NSCP - non-standard LICp PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SSV - Space Segment SV - Space Segment - To Be Determined TBB - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	LDPC	-	Low Density Parity Check
LSB - Least Significant Bit LSF - Leap Seconds Future L1C - Common L1 Signal MCS - Master Control Station MHz - Megahertz MSB - Most Significant Bit NAV - Navigation NSCD - non-standard L1C _D NSCP - non-standard L1C _D NSCP - non-standard L1C _D NSCP - Radio-Random Noise RF - Radio-Frequency RHCP - Right-Hand Circularly Polarized RMS - Satellite Based Augmentation System SPS - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	LFSR	-	Linear Feedback Shift Register
LSF - Leap Seconds Future L1C - Common L1 Signal MCS - Master Control Station MHz - Megahertz MSB - Most Significant Bit NAV - Navigation NSCD - non-standard L1C ₀ NSCP - non-standard L1C ₀ NSCP - proposed Interface Revision Notice PRN - Presudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System SPS - Space Segment SSV - Space Segment SSV - Space Service Volume SV - To Be Resolved TBB - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	LNAV	-	Legacy Navigation
LIC - Common L1 Signal MCS - Master Control Station MHz - Megahertz MSB - Most Significant Bit NAV - Navigation NSCD - non-standard L1Cp NSCP - non-standard L1Cp PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	LSB	-	Least Significant Bit
MCS - Master Control Station MHz - Megahertz MSB - Most Significant Bit NAV - Navigation NSCD - non-standard L1C _D NSCP - non-standard L1C _P PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - To Be Determined TBR - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	LSF	-	Leap Seconds Future
MHz - Megahertz MSB - Most Significant Bit NAV - Navigation NSCD - non-standard L1Cp NSCP - non-standard L1Cp PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	LIC	-	Common L1 Signal
MSB - Most Significant Bit NAV - Navigation NSCD - non-standard L1C _D NSCP - non-standard L1C _P PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	MCS	-	Master Control Station
NAV - Navigation NSCD - non-standard L1C _D NSCP - non-standard L1C _P PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	MHz	-	Megahertz
NSCD - non-standard L1C _D NSCP - non-standard L1C _P PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	MSB	-	Most Significant Bit
NSCP - non-standard L1C _P PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TMBOC - Time-Multiplexed BOC TOI - Time of Interval	NAV	-	Navigation
PIRN - Proposed Interface Revision Notice PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	NSCD	-	non-standard L1C _D
PRN - Pseudo-Random Noise RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	NSCP	-	non-standard L1C _P
RF - Radio Frequency RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	PIRN	-	Proposed Interface Revision Notice
RHCP - Right-Hand Circularly Polarized RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	PRN	-	Pseudo-Random Noise
RMS - Root Mean Square SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	RF	-	Radio Frequency
SBAS - Satellite Based Augmentation System sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	RHCP	-	Right-Hand Circularly Polarized
sps - symbols per second SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	RMS	-	Root Mean Square
SS - Space Segment SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	SBAS	-	Satellite Based Augmentation System
SSV - Space Service Volume SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	sps	-	symbols per second
SV - Space Vehicle TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	SS	-	Space Segment
TBD - To Be Determined TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	SSV	-	Space Service Volume
TBR - To Be Resolved TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	SV	-	Space Vehicle
TBS - To Be Supplied TMBOC - Time-Multiplexed BOC TOI - Time of Interval	TBD	-	To Be Determined
TMBOC - Time-Multiplexed BOC TOI - Time of Interval	TBR	-	To Be Resolved
TOI - Time of Interval	TBS	-	To Be Supplied
	TMBOC	-	Time-Multiplexed BOC
TOW - Time of Week	TOI	-	Time of Interval
	TOW	-	Time of Week

UDRA	-	User Differential Range Accuracy
UE	-	User Equipment
URA	-	User Range Accuracy
US	-	User Segment
USNO	-	U.S. Naval Observatory
UTC	-	Coordinated Universal Time
WGS 84	-	World Geodetic System 1984

IS800-298:

Section Number:

6.2.1.0-2

WAS:

Note #1: URA applies over the curve fit interval that is applicable to the NAV data from which the URA is read, for the worst-case location within the satellite footprint.

Redlines:

Note #1: URA applies over the curve fit interval that is applicable to the NAVCNAV-2 data from which the URA is read, for the worst-case location within the satellite footprint.

IS:

Note #1: URA applies over the curve fit interval that is applicable to the CNAV-2 data from which the URA is read, for the worst-case location within the satellite footprint.

IS800-299:

Section Number:

6.2.1.0-3

WAS:

Note #2: The URA for a particular signal may be represented by a single index in the NAV data or by a composite of more than one index representing components of the total URA. Specific URA indexes and formulae for calculating the total URA for each signal are defined in appendix 20 for the LNAV message and appendix 30 for the CNAV message.

Redlines:

Note #2: The URA for a particular signal may be represented by a single index in the NAVCNAV-2 data or by a composite of more than one index representing components of the total URA. Specific URA indexes and formulae for calculating the total URA for each signal are defined in appendix Appendix 20 of IS-GPS-200 for the LNAV message and appendix 30 of IS-GPS-200 for the CNAV message.

IS:

Note #2: The URA for a particular signal may be represented by a single index in the CNAV-2 data or by a composite of more than one index representing components of the total URA. Specific URA indexes and formulae for calculating the total URA for each signal are defined in Appendix II of IS-GPS-200 for the LNAV message and Appendix III of IS-GPS-200 for the CNAV message.

IS800-370:

Section Number:

6.3.2.0-1

WAS:

Before any new signal or group of signals (e.g., L2C, L5, M, L1C, etcetera) is declared operational, the availability of and/or the configuration of the broadcast signal or group of signals may not comply with all requirements of the relevant IS or ICD. For example, the pre-operational broadcast of L2C signals from the IIR-M satellites did not include any NAV or CNAV data as required by IS-GPS-200. Pre-operational use of any new signal or group of signals is at the users own risk.

Redlines:

Before any new signal or group of signals (e.g., L2C, L5, M, L1C, etcetera) is declared operational, the availability of and/or the configuration of the broadcast signal or group of signals may not comply with all requirements of the relevant IS or ICD. For example, the pre-operational broadcast of L2C signals from the IIR-M satellites did not include any NAVLNAV or CNAV data as required by IS-GPS-200. Pre-operational use of any new signal or group of signals is at the users own risk.

IS:

Before any new signal or group of signals (e.g., L2C, L5, M, L1C, etcetera) is declared operational, the availability of and/or the configuration of the broadcast signal or group of signals may not comply with all requirements of the relevant IS or ICD. For example, the pre-operational broadcast of L2C signals from the IIR-M satellites did not include any LNAV or CNAV data as required by IS-GPS-200. Pre-operational use of any new signal or group of signals is at the users own risk.