CHANGE NOTICE							
Affected Document:	IRN/SCN Number		Date:				
IS-GPS-705 Rev F Authority:	IRN-IS-705F-001 Proposed Change Notice		07-MAY-2019 Date:				
RFC-00400	PCN-IS-705E_RFC400		20-DEC-2018				
CLASSIFIED BY: N/A DECLASSIFY ON: N/A							
Document Title: NAVSTAR	GPS Space Segment / Use	er Segment L5 Interfac	es				
RFC Title: Leap Second and	Earth Orientation Paramete	ers					
As currently documented in the tech CNAV/CNAV-2 and MNAV users wi linkage between Coordinated Unive applications that require high precis this requirement. Documents affected	Reason For Change (Driver): As currently documented in the technical baseline for Earth Orientation Parameters (EOP) data and applications, CNAV/CNAV-2 and MNAV users will calculate the wrong UT1 time immediately following a leap second change, as the linkage between Coordinated Universal Time (UTC) and UT1 time is not properly captured. This issue affects user applications that require high precision pointing, which may include optical telescopes, spacecraft, or any system with this requirement. Documents affected: IS-GPS-200, IS-GPS-705, IS-GPS-800, ICD-GPS-700, ICD-GPS-801, and IS- GPS-901. The topic was originally a part of RFC-354 & RFC-374.						
Description of Change : Resolve the leap second problem s second change given the current de							
Authored By: Philip Kwan	Ch	ecked By: Jennifer Lemu	S				
AUTHORIZED SIGNATURES	REPRESE	ITING	DATE				
	GPS Direc Space & Missile Systems C						
DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution Is Unlimited							
THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED.Interface Control Contractor: SAIC (GPS SE&I)200 N. Pacific Coast Highway, Suite 1800 EI Segundo, CA 90245EI Segundo, CA 90245							

IS705-202 :

Section Number :

20.3.3.0-10

WAS :

•	DIRECTION OF DATA FLOW FROM SV — MSB FIRST — 100 BITS — 2 SECONDS — 100 BITS — 1				
201		216	247	266	277
	PM-Y	∆UT1	∆UT1	RESERVED	CRC
	15 BITS	31 BITS	19 BITS	11 BITS	24 BITS

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE

Figure 20-5. Message Type 32 – Clock & EOP

Redlines :

DIRECTION OF DATA FLOW FROM SV MSB FIRST 100 BITS 2 SECONDS				
201	216	247	266	277
PM_Y	∆UT4 <u>GPS</u>	 ∆UT4 <u>GPS</u>	RESERVED	CRC
15 BITS	31 BITS	19 BITS	11 BITS	24 BITS

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE

Figure 20-5. Message Type 32 – Clock & EOP

Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv Image: Direction of data flow from sv					
201	216	247	266	277	
PM_Y	∆UTGPS		RESERVED	CRC	
15 BITS	31 BITS	19 BITS	11 BITS	24 BITS	

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE

Figure 20-5. Message Type 32 – Clock & EOP

Section Number :

20.3.3.5.1.1-1

WAS :

The EOP fields in the message type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_p and y_p as documented in Table 20-VIII. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm. In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". The EOP parameters for Δ UT1 are to be applied within the "Rotation to terrestrial system" process, and the parameters for x_p and y_p are applied in the "Rotation for polar motion" process. Users are advised that the broadcast message type 32 EOP parameters already account for zonal, diurnal and semidiurnal effects (described in Chapter 8 of the IERS Conventions (2010)), so these effects should not be further applied by the user.

The relevant computations utilize elementary rotation matrices $R_i(\alpha)$, where α is a positive rotation about the ith-axis ordinate, as follows:

$$R_1(\alpha) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha) & \sin(\alpha)\\ 0 & -\sin(\alpha) & \cos(\alpha) \end{bmatrix}, \qquad R_2(\alpha) = \begin{bmatrix} \cos(\alpha) & 0 & -\sin(\alpha)\\ 0 & 1 & 0\\ \sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix}$$

$$R_3(\alpha) = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0\\ -\sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Redlines :

The EOP fields in the message type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_p and y_p as documented in Table 20-VIII. For UT1, Table 20-VIII documents the relationship between GPS time and UT1 with Δ UTGPS and Δ UTGPS, which are provided in message type 32. Users who may need ΔUT1 (UT1-UTC) as detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) can calculate this parameter from UT1-UTC, or more accurately as (UT1-GPS) + (GPS-UTC), using intermediate quantities (UT1-GPS) and (GPS-UTC) which are produced during calculation of UT1 and UTC. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm. In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin- (CIO) based approach" or the "Equinox based approach". The EOP parameters for UT1 are to be applied within the "Rotation to terrestrial system" process, and the parameters for x_p and y_p are applied in the "Rotation for polar motion" process. Users are advised that the broadcast message type 32 EOP parameters already account for zonal, diurnal and semidiurnal effects (described in Chapter 8 of the IERS Conventions (2010)), so these effects should not be further applied by the user. The EOPs are used to calculate UT1 (applied in the "Rotation to terrestrial system" process) and the polar motion parameters, x_p and y_p (applied in the "Rotation for polar motion" process). Details of the calculation are given in Table 20-VIII. Users are advised that the broadcast message type 32 EOPs already account for the following effects and should not be further applied by the user: (1) zonal, diurnal and semi-diurnal effects (described in Chapter 8 of the IERS Conventions (2010)) (2) A_{0-n} , A_{1-n} , A_{2-n} and the leap second count in message type 33

EOPs that are not updated by the CS will degrade in accuracy over time.

The relevant computations utilize elementary rotation matrices $R_i(\alpha)$, where α is a positive rotation about the ith-axis ordinate, as follows:

$$R_1(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & \sin(\alpha) \\ 0 & -\sin(\alpha) & \cos(\alpha) \end{bmatrix}, \qquad R_2(\alpha) = \begin{bmatrix} \cos(\alpha) & 0 & -\sin(\alpha) \\ 0 & 1 & 0 \\ \sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix}$$

$$R_3(\alpha) = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0\\ -\sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

IS :

The EOP fields in the message type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_p and y_p as documented in Table 20-VIII. For UT1, Table 20-VIII documents the relationship between GPS time and UT1 with Δ UTGPS and Δ UTGPS, which are provided in message type 32. Users who may need ΔUT1 (UT1-UTC) as detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) can calculate this parameter from UT1-UTC, or more accurately as (UT1-GPS) + (GPS-UTC), using intermediate quantities (UT1-GPS) and (GPS-UTC) which are produced during calculation of UT1 and UTC. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm. In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". The EOPs are used to calculate UT1 (applied in the "Rotation to terrestrial system" process) and the polar motion parameters, x_p and y_p (applied in the "Rotation for polar motion" process). Details of the calculation are given in Table 20-VIII. Users are advised that the broadcast message type 32 EOPs already account for the following effects and should not be further applied by the user:

(1) zonal, diurnal and semi-diurnal effects (described in Chapter 8 of the IERS Conventions (2010))

(2) A_{0-n} , A_{1-n} , A_{2-n} and the leap second count in message type 33

EOPs that are not updated by the CS will degrade in accuracy over time.

The relevant computations utilize elementary rotation matrices $R_i(\alpha)$, where α is a positive rotation about the ith-axis ordinate, as follows:

$$R_{1}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & \sin(\alpha) \\ 0 & -\sin(\alpha) & \cos(\alpha) \end{bmatrix}, \quad R_{2}(\alpha) = \begin{bmatrix} \cos(\alpha) & 0 & -\sin(\alpha) \\ 0 & 1 & 0 \\ \sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix}$$
$$R_{3}(\alpha) = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

IS705-322 :

Section Number :

20.3.3.5.1.1-4

WAS :

Table 20-VII. Earth Orientation Parameters

		No. of	Scale Factor	Valid	
Parameter Symbol	Parameter Description	Bits**	(LSB)	Range***	Units
teop	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
PM_X [†]	X-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_X	X-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
$PM_Y^{\dagger\dagger}$	Y-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_Y	Y-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
ΔUT1 ^{†††}	UT1-UTC Difference at Reference Time.	31*	2-24		seconds
ΔUT1 ^{†††}	Rate of UT1-UTC Difference at Reference Time	19*	2-25		seconds/day
** See Figure 2	o indicated are two's compleme 0-5 for complete bit allocation in	n message	type 32;		

*** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

[†] Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.

^{††} Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.

^{†††} With zonal tides restored.

Parameter Symbol	Parameter Description	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
t _{EOP}	EOP Data Reference Time	16	2 ⁴	0 to 604,784	seconds
PM_X ^{†, †††††}	X-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_X ⁺⁺⁺⁺	X-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
PM_Y ^{††<u></u>, ††††}	Y-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_Y ****	Y-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
ΔUT <mark>4<u>GPS</u> ^{†††}</mark>	UT1-UTCUT1-GPS Difference at Reference Time.	31*	2- 24<u>23</u>		seconds
∆UT <mark>4<u>GPS</u> †††</mark>	Rate of <u>UT1-UTCUT1-GPS</u> Difference at Reference Time <u>.</u>	19*	2-25		seconds/day

Table 20-VII. Earth Orientation Parameters

** See Figure 20-5 for complete bit allocation in message type 32;

*** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

[†] Represents the predicted angular displacement of instantaneous Celestial EphemerisIntermediate Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.

^{††} Represents the predicted angular displacement of instantaneous Celestial EphemerisIntermediate Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.

^{†††} With zonal tides restored. Already account for zonal, diurnal, and semi-diurnal tides and should not be further applied by the user.

^{††††} Already account for diurnal and semi-diurnal tides and should not be further applied by the user.

Parameter Symbol	Parameter Description	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
t _{EOP}	EOP Data Reference Time	16	24	0 to 604,784	seconds
$PM_X^{\dagger, \dagger\dagger\dagger\dagger}$	X-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_X ^{††††}	X-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
PM_Y **, ****	Y-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_Y ****	Y-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
ΔUTGPS ^{†††}	UT1-GPS Difference at Reference Time.	31*	2-23		seconds
∆UTGPS ^{†††}	Rate of UT1-GPS Difference at Reference Time.	19*	2-25		seconds/day
* Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB;					

Table 20-VII. Earth Orientation Parameters

Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB;

** See Figure 20-5 for complete bit allocation in message type 32;

*** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

t Represents the predicted angular displacement of instantaneous Celestial Intermediate Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.

†† Represents the predicted angular displacement of instantaneous Celestial Intermediate Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.

††† Already account for zonal, diurnal, and semi-diurnal tides and should not be further applied by the user.

†††† Already account for diurnal and semi-diurnal tides and should not be further applied by the user.

IS705-1546 :

Section Number :

20.3.3.5.1.1-5

WAS :

Table 20-VIII. Application of EOP Parameters

Redlines :

Table 20-VIII. Application of EOP ParametersEOPs

IS :

Table 20-VIII. Application of EOPs

Section Number :

20.3.3.5.1.1-6

WAS :

Table 20-VIII. Application of EOP Parameters

Element/Equation	Description
$UT1 = UTC + \Delta UT1 + \Delta UT1 (t - t_{EOP})$ $x_{p} = PM _ X + PM \stackrel{\bullet}{X} (t - t_{EOP})$ $y_{p} = PM _ Y + PM \stackrel{\bullet}{Y} (t - t_{EOP})$	Compute Universal Time at time t Polar Motion in the x-axis Polar Motion in the y-axis
t is GPS system time at time of transmission, i.e., G	PS time corrected for transit time (range/speed of light).

Redlines :

Table 20-VIII. Application of EOP Parameters

Element/Equation		Description
$\underline{t_{\text{diff}}} = (t - t_{\text{EOP}} + 604800(\text{WN - WN}_{\text{ot}}))$	[seconds]	Compute difference between GPS time and EOP reference time
$UT1 = \frac{UTC}{t} + \frac{604800*WN + \Delta UT1}{\Delta UTGPS} + \frac{\Delta UT1(t-t_{EOP})*\Delta UTGPS*t_{diff}/86400}{t_{EOP}}$	[seconds]	Compute <u>Universal Time-UT1</u> at <u>GPS</u> time-t
$x_p = PM_X + \frac{PMX_PM_X^*(t t_{EOP})t_{diff}/86400}{t_{diff}/86400}$	[arc-seconds]	Polar Motion in the x-axis
$y_p = PM_Y + \frac{PM_Y^{\bullet}PM_Y^{\bullet}(t - t_{EOP})t_{diff}/86400}{t_{EOP}}$	[arc-seconds]	Polar Motion in the y-axis

t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). GPS system time (t) is expressed in seconds since start of current GPS week, and WN is the current week number expressed in weeks since GPS epoch.

The divisor 86400 converts rates per day to rates per second.

Table 20-VIII. Application of EOP Parameters

Element/Equation		Description
$t_{diff} = (t - t_{EOP} + 604800(WN - WN_{ot}))$	[seconds]	Compute difference between GPS time and EOP reference time
$UT1 = t + 604800*WN + \Delta UTGPS + \Delta UTGPS*t_{diff}/86400$	[seconds]	Compute UT1 at GPS time
$x_p = PM_X + PM_X*t_{diff}/86400$	[arc-seconds]	Polar Motion in the x-axis
$y_p = PM_Y + P \mathring{M}_Y * t_{diff} / 86400$	[arc-seconds]	Polar Motion in the y-axis
GPS system time (t) is expressed in seconds since start of current C	GPS week, and WN	s the current week number expressed
in weeks since GPS epoch.		
The divisor 86400 converts rates per day to rates per second.		

IS705-1529 :

Section Number :

20.3.3.5.1.1-8, inserted after IS705-324 (see previous):

WAS :

N/A

Redlines :

<INSERTED OBJECT>

IS :

When calculating UT1, x_p , and y_p in Table 20-VIII, the week number for t_{EOP} is equal to the WN_{ot} value in message type 33 when both criteria are met:

- t_{EOP} in message type 32 is equal to the t_{ot} in message type 33
- t_{op} in message type 32 is equal to the t_{op} in message type 33

If both criteria are not met, the data between the two message types may be inconsistent with each other and should not be used for the calculations in Table 20-VIII.