CHANGE NOTICE

$\left.\begin{array}{|l|l||}\hline \text { Affected Document: } & \begin{array}{l}\text { IRN/SCN Number } \\ \text { IRN-IS-705F-001 }\end{array} \\ \hline \begin{array}{l}\text { Authority: } \\ \text { RFC-00400 }\end{array} & \begin{array}{l}\text { Proposed Change Notice } \\ \text { PCN-IS-705E_RFC400 }\end{array} \\ \hline \hline \text { CLASSIFIED BY: N/A } \\ \text { DECLASSIFY ON: N/A }\end{array} \quad \begin{array}{c}\text { Date: } \\ \text { 20-DEC-2018 }\end{array}\right]$

Chuthored By: Philip Kwan	REPRESENTING	DATE
AUTHORIZED SIGNATURES	GPS Directorate	
	Space \& Missile Systems Center (SMC) - LAAFB	

DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution Is Unlimited

THIS DOCUMENT SPECIFIES TECHNICAL REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED.

Interface Control Contractor: SAIC (GPS SE\&I)
200 N. Pacific Coast Highway, Suite 1800
El Segundo, CA 90245 CODE IDENT 66RP1

IS705-202 :

Section Number :

20.3.3.0-10

WAS :

201	$\mid 216$	247	$\underline{266}$	277
PM-Y	$\Delta \mathrm{UT} 1$	$\Delta \mathrm{U} \stackrel{\text { T }}{1}$	RESERVED	CRC
15 BITS	31 BITS	19 BITS	11 BITS	24 BITS

[^0]Figure 20-5. Message Type 32 - Clock \& EOP

Redlines:

101	118	128	144	165	180
$\mathrm{a}_{\mathrm{f1}-\mathrm{n}}$	at2-n	teop	PM_X	$\stackrel{\square}{\mathrm{PM} _\mathrm{X}}$	PM_Y
17 LSBs	10 BITS	16 BITS	21 BITS	15 BITS	21 BITS

201	216	247	266	277
PM_¢	$\Delta \mathrm{UT} 1$ GPS	$\square \dot{\square}$	RESERVED	CRC
15 BITS	31 BITS	19 BITS	11 BITS	24 BITS

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE

Figure 20-5. Message Type 32 - Clock \& EOP

IS :

101	118	128	144	165	
	$\mathrm{a}_{\mathrm{f} 2-\mathrm{n}}$	teop	PM_X	PM_X	PM_Y
	16 LSBs	10 BITS	16 BITS	21 BITS	15 BITS

201	216	247	266	277
PḾY	Δ UTGPS	$\Delta \dot{U} T G P S$	RESERVED	CRC
15 BITS	31 BITS	19 BITS	11 BITS	24 BITS

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE

Figure 20-5. Message Type 32 - Clock \& EOP

Section Number :

20.3.3.5.1.1-1

WAS :

The EOP fields in the message type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_{p} and y_{p} as documented in Table 20-VIII. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm . In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". The EOP parameters for $\Delta U T 1$ are to be applied within the "Rotation to terrestrial system" process, and the parameters for x_{p} and y_{p} are applied in the "Rotation for polar motion" process. Users are advised that the broadcast message type 32 EOP parameters already account for zonal, diurnal and semidiurnal effects (described in Chapter 8 of the IERS Conventions (2010)), so these effects should not be further applied by the user.

The relevant computations utilize elementary rotation matrices $R_{i}(\alpha)$, where α is a positive rotation about the $i^{\text {th }}$-axis ordinate, as follows:

$$
R_{1}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) \\
0 & -\sin (\alpha) & \cos (\alpha)
\end{array}\right], \quad R_{2}(\alpha)=\left[\begin{array}{ccc}
\cos (\alpha) & 0 & -\sin (\alpha) \\
0 & 1 & 0 \\
\sin (\alpha) & 0 & \cos (\alpha)
\end{array}\right]
$$

$$
R_{3}(\alpha)=\left[\begin{array}{ccc}
\cos (\alpha) & \sin (\alpha) & 0 \\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Redlines :

The EOP fields in the message type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_{p} and y_{p} as documented in Table 20-VIII. For UT1, Table 20-VIII documents the relationship between GPS time and UT1 with \triangle UTGPS and \triangle U்TGPS, which are provided in message type 32. Users who may need \triangle UT1 (UT1-UTC) as detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) can calculate this parameter from UT1-UTC, or more accurately as (UT1-GPS) + (GPS-UTC), using intermediate quantities (UT1-GPS) and (GPS-UTC) which are produced during calculation of UT1 and UTC. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm . In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin- (CIO) based approach" or the "Equinox based approach". The EOP parameters for UT1 are to be applied within the "Rotation to terrestrial system" process, and the parameters for x_{p} and y_{p} are applied in the "Rotation for polar motion" process. Users are advised that the broadcast message type 32 EOP parameters already account for zonal, diurnal and semidiurnal effects (described in Chapter 8 of the IERS Conventions (2010)), so these effects should not be further applied by the user. The EOPs are used to calculate UT1 (applied in the "Rotation to terrestrial system" process) and the polar motion parameters, x_{p} and y_{p} (applied in the "Rotation for polar motion" process). Details of the calculation are given in Table 20-VIII. Users are advised that the broadcast message type 32 EOPs already account for the following effects and should not be further applied by the user:
(1) zonal, diurnal and semi-diurnal effects (described in Chapter 8 of the IERS Conventions (2010))
(2) $A_{0-n}, A_{1-n}, A_{2-n}$ and the leap second count in message type 33

EOPs that are not updated by the CS will degrade in accuracy over time.
The relevant computations utilize elementary rotation matrices $R_{i}(\alpha)$, where α is a positive rotation about the $i^{\text {th }}$-axis ordinate, as follows:

$$
R_{1}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) \\
0 & -\sin (\alpha) & \cos (\alpha)
\end{array}\right], \quad R_{2}(\alpha)=\left[\begin{array}{ccc}
\cos (\alpha) & 0 & -\sin (\alpha) \\
0 & 1 & 0 \\
\sin (\alpha) & 0 & \cos (\alpha)
\end{array}\right]
$$

$$
R_{3}(\alpha)=\left[\begin{array}{ccc}
\cos (\alpha) & \sin (\alpha) & 0 \\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

IS:
The EOP fields in the message type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 20-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_{p} and y_{p} as documented in Table 20-VIII. For UT1, Table 20-VIII documents the relationship between GPS time and UT1 with \triangle UTGPS and $\triangle U ் T G P S$, which are provided in message type 32. Users who may need \triangle UT1 (UT1-UTC) as detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) can calculate this parameter from UT1-UTC, or more accurately as (UT1-GPS) + (GPS-UTC), using intermediate quantities (UT1-GPS) and (GPS-UTC) which are produced during calculation of UT1 and UTC. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm . In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". The EOPs are used to calculate UT1 (applied in the "Rotation to terrestrial system" process) and the polar motion parameters, x_{p} and y_{p} (applied in the "Rotation for polar motion" process). Details of the calculation are given in Table 20-VIII. Users are advised that the broadcast message type 32 EOPs already account for the following effects and should not be further applied by the user:
(1) zonal, diurnal and semi-diurnal effects (described in Chapter 8 of the IERS Conventions (2010))
(2) $A_{0-n}, A_{1-n}, A_{2-n}$ and the leap second count in message type 33

EOPs that are not updated by the CS will degrade in accuracy over time.
The relevant computations utilize elementary rotation matrices $R_{i}(\alpha)$, where α is a positive rotation about the $i^{\text {th }}$-axis ordinate, as follows:

$$
\begin{gathered}
R_{1}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) \\
0 & -\sin (\alpha) & \cos (\alpha)
\end{array}\right], \quad R_{2}(\alpha)=\left[\begin{array}{ccc}
\cos (\alpha) & 0 & -\sin (\alpha) \\
0 & 1 & 0 \\
\sin (\alpha) & 0 & \cos (\alpha)
\end{array}\right] \\
R_{3}(\alpha)=\left[\begin{array}{ccc}
\cos (\alpha) & \sin (\alpha) & 0 \\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Section Number :

20.3.3.5.1.1-4

WAS :
Table 20-VII. Earth Orientation Parameters

Parameter Symbol	Parameter Description	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
$\mathrm{t}_{\text {EOP }}$	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
PM_X ${ }^{\dagger}$	X-Axis Polar Motion Value at Reference Time.	21*	2^{-20}		arc-seconds
PM_X	X-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
PM_Y ${ }^{\dagger}$	Y-Axis Polar Motion Value at Reference Time.	21^{*}	2^{-20}		arc-seconds
PM_Y	Y-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
$\Delta \mathrm{UT} 1{ }^{\dagger}$	UT1-UTC Difference at Reference Time.	$31 *$	2^{-24}		seconds
$\Delta \mathrm{UT} 1{ }^{\bullet} \dagger$	Rate ofUT1-UTC Difference at Time	19*	2^{-25}		seconds/day

* Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB;
** See Figure 20-5 for complete bit allocation in message type 32;
*** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.
\dagger Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.
\dagger Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.
$\dagger \dagger$ With zonal tides restored.

Table 20-VII. Earth Orientation Parameters

Parameter Symbol	Parameter Description	No. of Bits**	Scale Factor (LSB)	$\begin{gathered} \text { Valid } \\ \text { Range*** } \end{gathered}$	Units
$t_{\text {EOP }}$	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
PM_X ${ }^{\text {+ }}$ + + +	X-Axis Polar Motion Value at Reference Time.	21*	2^{-20}		arc-seconds
PM_X ${ }_{\text {¢ }}^{\text {+ + }}$	X-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
PM_Y ${ }_{\text {¢ }}^{\text {Hetm+ }}$	Y-Axis Polar Motion Value at Reference Time.	21*	2^{-20}		arc-seconds
PM_Y ${ }_{\text {¢ }}^{\text {\# }}$	Y-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
	UT1-UTCUT1-GPS Difference at Reference Time.	31*	2^{-2423}		seconds
Δ © ${ }^{\text {(1) }}$ GPS ${ }^{\text {\# }}$	Rate of LT1-UTCUT1-GPS	19*	2^{-25}		seconds/day
	Difference at Reference Time.				
* Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB; ** See Figure 20-5 for complete bit allocation in message type 32;					
*** Unless oth bit allocati	wise indicated in this column, and scale factor.	lid range	the max	m range attaina	with indicated
$\dagger \mathrm{Re}$	predicted angular displacem o semi-minor axis of the refer	t of inst ce ellips	along C	tial Ephemer wich meridia	rmediate Pole
\# Represents with respect meridian.	predicted angular displacem semi-minor axis of the refer	t of inst ce ellips	aneous on a line	tial Ephemeri rected 90° we	rmediate Pole Greenwich
It Withzonal further app	des restored.Already account d by the user.	zonal,	nal, and	i-diurnal tides	should not be
\#iti Already ac	unt for diurnal and semi-diurn	tides and	hould not	further applie	the user.

IS:
Table 20-VII. Earth Orientation Parameters

Parameter Symbol	Parameter Description	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
$\mathrm{t}_{\text {EOP }}$	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
PM_ ${ }^{\text {+, } \dagger+\dagger}$	X-Axis Polar Motion Value at Reference Time.	$21 *$	2^{-20}		arc-seconds
	X-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
PM_Y ${ }^{\text {H, }+\dagger+}$	Y-Axis Polar Motion Value at Reference Time.	21^{*}	2^{-20}		arc-seconds
	Y-Axis Polar Motion Drift at Reference Time.	15*	2^{-21}		arc-seconds/day
Δ UTGPS ${ }^{\dagger \dagger}$	UT1-GPS Difference at Reference Time.	31*	2^{-23}		seconds
$\triangle \stackrel{\bullet}{\text { U }}$ TGPS \dagger	Rate of UT1-GPS Difference at Reference Time.	19*	2^{-25}		seconds/day
Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB; See Figure 20-5 for complete bit allocation in message type 32;					
*** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.					
\dagger	predicted angular displacem axis of the reference ellipsoid	t of inst long Gr	neous C wich me	tial Intermedi n.	Pole with respect
$\#$ Represents	predicted angular displacem axis of the reference ellipsoi	t of inst on a line	neous C ected 90°	tial Intermedi st of Greenwi	Pole with respect meridian.
\dagger	unt for zonal, diurnal, and sem	diurnal t	and shoul	ot be further	lied by the user.
\dagger Hlready a	unt for diurnal and semi-diurn	des and	ould not	urther applied	the user.

Section Number :
20.3.3.5.1.1-5

WAS :
Table 20-VIII. Application of EOP Parameters
Redlines:
Table 20-VIII. Application of EOP ParametersEOPs

IS :
Table 20-VIII. Application of EOPs

Section Number :

20.3.3.5.1.1-6

WAS :
Table 20-VIII. Application of EOP Parameters

Element/Equation	Description
$U T 1=U T C+\Delta U T 1+\Delta U T 1^{\prime}\left(t-t_{E O P}\right)$	Compute Universal Time at time t
$x_{p}=P M_{-} X+P M \dot{X}\left(t-t_{E O P}\right)$	Polar Motion in the x-axis
$y_{p}=P M_{-} Y+P M \dot{\varphi}\left(t-t_{E O P}\right)$	Polar Motion in the y-axis

t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light).

Redlines:

Table 20-VIII. Application of EOP Parameters

Element/Equation		Description
	[seconds] [seconds] [arc-seconds] [arc-seconds]	Compute difference between GPS time and EOP reference time Compute Universal Time-UT1 at GPS time - Polar Motion in the x -axis Polar Motion in the y-axis
t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). GPS system time (t) is expressed in seconds since start of current GPS week, and WN is the current week number expressed in weeks since GPS epoch. The divisor 86400 converts rates per day to rates per second.		

IS :
Table 20-VIII. Application of EOP Parameters

Element/Equation		Description
$\mathrm{t}_{\text {diff }}=\left(\mathrm{t}-\mathrm{t}_{\text {EOP }}+604800\left(\mathrm{WN}-\mathrm{WN}_{\text {ot }}\right)\right.$)	[seconds]	Compute difference between GPS time and EOP reference time
UT1 $=\mathrm{t}+604800 *$ WN $+\Delta$ UTGPS $+\Delta$ U'TGPS $\mathrm{t}_{\text {diff }} / 86400$	[seconds]	Compute UT1 at GPS time
$\mathrm{x}_{\mathrm{p}}=\mathrm{PM} _\mathrm{X}+\mathrm{P} \mathbf{M}_{-} \mathrm{X} * \mathrm{t}_{\text {diff }} / 86400$	[arc-seconds]	Polar Motion in the x -axis
$\mathrm{y}_{\mathrm{p}}=\mathrm{PM}$ _Y + PM_${ }_{-}{ }^{*} \mathrm{t}_{\text {diff }} / 86400$	[arc-seconds]	Polar Motion in the y-axis
GPS system time (t) is expressed in seconds since start of current GPS week, and WN is the current week number expressed in weeks since GPS epoch. The divisor 86400 converts rates per day to rates per second.		

IS705-1529 :

Section Number :

20.3.3.5.1.1-8, inserted after IS705-324 (see previous):

WAS:
N/A

Redlines :

<INSERTED OBJECT>

IS :

When calculating UT1, x_{p}, and y_{p} in Table 20-VIII, the week number for $\mathrm{t}_{\text {Eop }}$ is equal to the $\mathrm{WN}_{\mathrm{ot}}$ value in message type 33 when both criteria are met:

- $t_{\text {Eop }}$ in message type 32 is equal to the $t_{\text {to }}$ in message type 33
- $\quad t_{\text {op }}$ in message type 32 is equal to the $t_{\text {op }}$ in message type 33

If both criteria are not met, the data between the two message types may be inconsistent with each other and should not be used for the calculations in Table 20-VIII.

[^0]: * MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 6-SECOND MESSAGE

