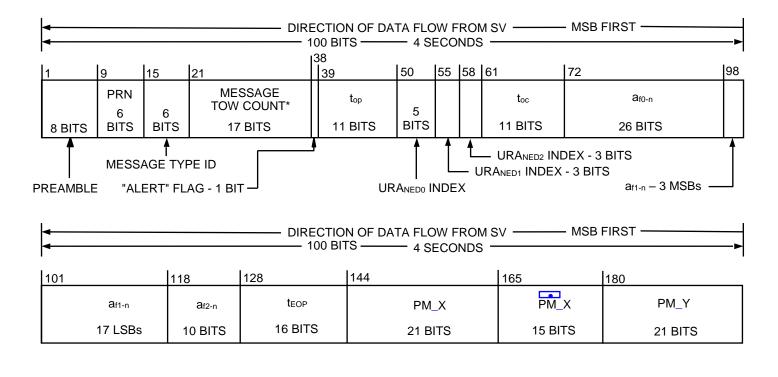

CHANGE NOTICE						
Affected Document: IS-GPS-200 Rev K	IRN/SCN Number IRN-IS-200K-001		Date: 07-MAY-2019			
Authority: RFC-00400	Proposed Change Notice PCN-IS-200J_RFC400		Date: 20-DEC-2018			
CLASSIFIED BY: N/A DECLASSIFY ON: N/A						
Document Title: NAVSTAR	GPS Space Segment / Nav	vigation User Interfaces	6			
RFC Title: Leap Second and	Earth Orientation Paramete	ers				
Reason For Change (Driver) As currently documented in the tech CNAV/CNAV-2 and MNAV users wi linkage between Coordinated Univer applications that require high precise this requirement. Documents affector GPS-901. The topic was originally a	nnical baseline for Earth Orienta ill calculate the wrong UT1 time rsal Time (UTC) and UT1 time i ion pointing, which may include ed: IS-GPS-200, IS-GPS-705, IS	immediately following a lease so the property captured. The optical telescopes, spaced	ap second change, as the his issue affects user craft, or any system with			
Description of Change : Resolve the leap second problem such that the user knows how to calculate the correct UT1 time following a leap second change given the current definition and implementation of EOP and UTC parameters.						
Resolve the leap second problem s						
Resolve the leap second problem s	finition and implementation of E		· ·			
Resolve the leap second problem s second change given the current de	efinition and implementation of E Cho REPRESEN	OP and UTC parameters. ecked By: Jennifer Lemu NTING	· ·			
Resolve the leap second problem s second change given the current de Authored By: Philip Kwan	finition and implementation of E	OP and UTC parameters. Ecked By: Jennifer Lemu NTING torate	s			
Resolve the leap second problem s second change given the current de Authored By: Philip Kwan AUTHORIZED SIGNATURES	efinition and implementation of E Char REPRESEN GPS Direct Space & Missile Systems C EMENT A: Approved for Pu IICAL REQUIREMENTS AND L BE DEEMED TO ALTER THE	EOP and UTC parameters. Ecked By: Jennifer Lemu TING torate enter (SMC) – LAAFB blic Release; Distribution Interface Com SAIC (G 200 N. Pacific Coast	s DATE			

IS200-520 :

Section Number :

30.3.3.0-10

WAS :



DIRECTION OF DATA FLOW FROM SV — MSB FIRST — 100 BITS — 4 SECONDS — 4 SEC				
201	216	247	266	277
PM-Y	∆UT1	∆UT1	RESERVED	CRC
15 BITS	31 BITS	19 BITS	11 BITS	24 BITS

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12-SECOND MESSAGE

Figure 30-5. Message Type 32 – Clock and EOP

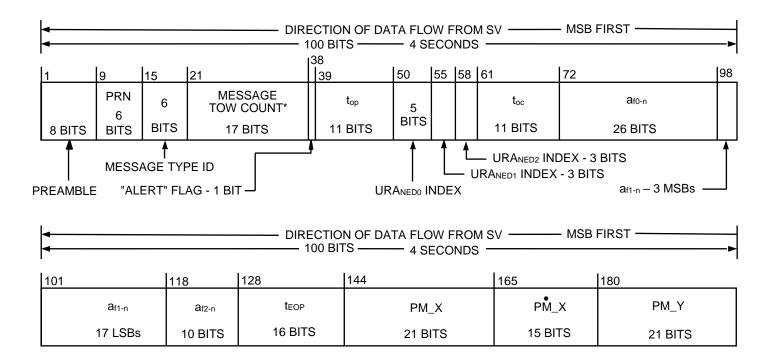

Redlines :

Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST Image: Direction of data flow from sv MSB FIRST				
201	216	247	266	277
PM_Y	∆UT <mark>4<u>GPS</u></mark>	∆UT <u>4GPS</u>	RESERVED	CRC
15 BITS	31 BITS	19 BITS	11 BITS	24 BITS

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12-SECOND MESSAGE

Figure 30-5. Message Type 32 – Clock and EOP

DIRECTION OF DATA FLOW FROM SV — MSB FIRST — MSB FIRST — 100 BITS — 4 SECONDS — 4 SEC					B FIRST ───►
201		216	247	266	277
	₽M_Y	∆UTGPS	∆ŪTGPS	RESERVED	CRC
	15 BITS	31 BITS	19 BITS	11 BITS	24 BITS

* MESSAGE TOW COUNT = 17 MSB OF ACTUAL TOW COUNT AT START OF NEXT 12-SECOND MESSAGE

Figure 30-5. Message Type 32 – Clock and EOP

Section Number :

30.3.3.5.1.1.0-1

WAS :

The EOP fields in the Message Type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 30-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_p and y_p as documented in Table 30-VIII. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm. In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". The EOP parameters for Δ UT1 are to be applied within the "Rotation to terrestrial system" process, and the parameters for x_p and y_p are applied in the "Rotation for polar motion" process. Users are advised that the broadcast Message Type 32 EOP parameters already account for zonal, diurnal and semidiurnal effects (described in Chapter 8 of the IERS Conventions (2010)), so these effects should not be further applied by the user.

Redlines :

The EOP fields in the Message Type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 30-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_p and y_p as documented in Table 30-VIII. For UT1, Table 30-VIII documents the relationship between GPS time and UT1 with ΔUTGPS and ΔUTGPS. Users who may need ΔUT1 (UT1-UTC) as detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) can calculate this parameter from UT1-UTC, or more accurately as (UT1-GPS) + (GPS-UTC), using intermediate guantities (UT1-GPS) and (GPS-UTC) which are produced during calculation of UT1 and UTC. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm. In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". The EOP parameters for AUT1 are to be applied within the "Rotation to terrestrial system" process, and the parameters for x_P and y_P are applied in the "Rotation for polar motion" process. Users are advised that the broadcast Message Type 32 EOP parameters already account for zonal, diurnal and semidiurnal effects (described in Chapter 8 of the IERS Conventions (2010)), so these effects should not be further applied by the user. The EOPs are used to calculate UT1 (applied in the "Rotation to terrestrial system" process) and the polar motion parameters, x_p and y_p (applied in the "Rotation for polar motion" process). Details of the calculation are given in Table 30-VIII. Users are advised that the broadcast Message Type 32 EOPs already account for the following effects and should not be further applied by the user:

(1) zonal, diurnal and semi-diurnal effects (described in Chapter 8 of the IERS Conventions (2010)) (2) A_{0-n}, A_{1-n}, A_{2-n} and the leap second count in Message Type 33

EOPs that are not updated by the CS will degrade in accuracy over time.

IS :

The EOP fields in the Message Type 32 contain the EOP data needed to construct the ECEF-to-ECI coordinate transformation. The user computes the ECEF position of the SV antenna phase center using the equations shown in Table 30-II. The full coordinate transformation for translating to the corresponding ECI SV antenna phase center position may be accomplished in accordance with the computations detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) and equations for UT1, x_p and y_p as documented in Table 30-VIII. For UT1, Table 30-VIII documents the relationship between GPS time and UT1 with ΔUTGPS and ΔUTGPS. Users who may need ΔUT1 (UT1-UTC) as detailed in Chapter 5 of IERS Technical Note 36: IERS Conventions (2010) can calculate this parameter from UT1-UTC, or more accurately as (UT1-GPS) + (GPS-UTC), using intermediate quantities (UT1-GPS) and (GPS-UTC) which are produced during calculation of UT1 and UTC. Figure 5.1 on page 73 of that document depicts the computational flow starting from GCRS (Geocentric Celestial Reference System) to ITRS (International Terrestrial Reference System). Ongoing WGS 84 re-adjustment at NGA and incorporating the 2010 IERS Conventions, are expected to bring Earth based coordinate agreement to within 2 cm. In the context of the Conventions, the user may as a matter of convenience choose to implement the transformation computations via either the "Celestial Intermediate Origin (CIO) based approach" or the "Equinox based approach". The EOPs are used to calculate UT1 (applied in the "Rotation to terrestrial system" process) and the polar motion parameters, x_p and y_p (applied in the "Rotation for polar motion" process). Details of the calculation are given in Table 30-VIII. Users are advised that the broadcast Message Type 32 EOPs already account for the following effects and should not be further applied by the user:

(1) zonal, diurnal and semi-diurnal effects (described in Chapter 8 of the IERS Conventions (2010))

(2) $A_{0\text{-}n},\,A_{1\text{-}n},\,A_{2\text{-}n}$ and the leap second count in Message Type 33

EOPs that are not updated by the CS will degrade in accuracy over time.

Section Number :

30.3.3.5.1.1.0-5

WAS :

I	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units	
t _{EOP}	EOP Data Reference Time	16	2^4	0 to 604,784	seconds	
PM_X [†]	X-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds	
PM_X	X-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day	
PM_Y ^{††}	Y-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds	
● PM_Y	Y-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day	
ΔUT1 ^{†††}	UT1-UTC Difference at Reference Time.	31*	2-24		seconds	
ΔUT1 ^{†††}	Rate of UT1-UTC Difference at Reference Time	19*	2-25		seconds/day	
	** See Figure 30-5 for complete bit allocation in Message Type 32;					
† Represents th	* Represents the predicted angular displacement of instantaneous Celestial Ephemeris Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.					
	he predicted angular displaceme ninor axis of the reference ellipse ^{†††} With	oid on a lii				

Table 30-VII. Earth Orientation Parameters

	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
t _{EOP}	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
PM_X † <u>. ††††</u>	X-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_X ⁺⁺⁺⁺	X-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
PM_Y ^{††<u>.††††</u>}	Y-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_Y ^{±±±±}	Y-Axis Polar Motion Drift at Reference Time.	15*	2 ⁻²¹		arc-seconds/day
ΔUT <mark>‡<u>GPS</u> ^{†††}</mark>	UT1-UTCUT1-GPS Difference at Reference	31*	2- <u>2423</u>		seconds
∆UT <mark>∔GPS</mark> ^{†††}	Time. Rate of <u>UT1-UTCUT1-GPS</u> Difference at Reference Time <u>.</u>	19*	2 ⁻²⁵		seconds/day
 * Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB; ** See Figure 30-5 for complete bit allocation in Message Type 32; *** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor. * Represents the predicted angular displacement of instantaneous Celestial EphemerisIntermediate Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian. 					
^{††} Represents the predicted angular displacement of instantaneous Celestial EphemerisIntermediate Pole					

Table 30-VII. Earth Orientation Parameters

Represents the predicted angular displacement of instantaneous Celestial EphemerisIntermediate Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.

^{†††} With zonal tides restored. Already account for zonal, diurnal, and semi-diurnal tides and should not be further applied by the user.

titt Already account for diurnal and semi-diurnal tides and should not be further applied by the user.

]	Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
t _{EOP}	EOP Data Reference Time	16	2^{4}	0 to 604,784	seconds
$PM_X^{\dagger,\dagger\dagger\dagger\dagger}$	X-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_X ^{††††}	X-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
PM_Y ^{††, ††††}	Y-Axis Polar Motion Value at Reference Time.	21*	2-20		arc-seconds
PM_Y ^{††††}	Y-Axis Polar Motion Drift at Reference Time.	15*	2-21		arc-seconds/day
∆UTGPS ^{†††}	UT1-GPS Difference at Reference Time.	31*	2-23		seconds
∆UTGPS ^{†††}	Rate of UT1-GPS Difference at Reference Time.	19*	2-25		seconds/day

Table 30-VII. Earth Orientation Parameters

* Parameters so indicated are two's complement, with the sign bit (+ or -) occupying the MSB;

** See Figure 30-5 for complete bit allocation in Message Type 32;

*** Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

[†] Represents the predicted angular displacement of instantaneous Celestial Intermediate Pole with respect to semi-minor axis of the reference ellipsoid along Greenwich meridian.

^{††} Represents the predicted angular displacement of instantaneous Celestial Intermediate Pole with respect to semi-minor axis of the reference ellipsoid on a line directed 90° west of Greenwich meridian.

the Already account for zonal, diurnal, and semi-diurnal tides and should not be further applied by the user.

**** Already account for diurnal and semi-diurnal tides and should not be further applied by the user.

IS200-1619 :

Section Number :

30.3.3.5.1.1.0-6

WAS :

Table 30-VIII. Application of EOP Parameters

Redlines :

Table 30-VIII. Application of EOP ParametersEOPs

IS :

Table 30-VIII. Application of EOPs

IS200-623 :

Section Number :

30.3.3.5.1.1.0-7

WAS :

Table 30-VIII. Application of EOP Parameters

Element/Equation	Description
$UT1 = UTC + \Delta UT1 + \Delta UT1 \ (t - t_{EOP}) *$	Compute Universal Time at time t
$x_{p} = PM _ X + PM \stackrel{\bullet}{X} (t - t_{EOP}) *$	Polar Motion in the x-axis
$y_p = PM Y + PM Y (t - t_{EOP}) *$	Polar Motion in the y-axis
*t is GPS system time at time of transmission, i.e., GP	S time corrected for transit time (range/speed of light).

*t is GPS system time at time of transmission, i.e., GPS time corrected for transit time (range/speed of light). Furthermore, the quantity (t-t_{EOP}) shall be the actual total time difference between the time t and the epoch time t_{EOP} , and must account for beginning or end of week crossovers. That is, if (t-t_{EOP}) is greater than 302,400 seconds, subtract 604,800 seconds from (t-t_{EOP}). If (t-t_{EOP}) is less than -302,400 seconds, add 604,800 seconds to (t-t_{EOP}).

Table 30-VIII. Application of EOP Parameters

Element/Equation		Description		
$\underline{t_{diff} = (t - t_{EOP} + 604800(WN - WN_{ot}))}$	[seconds]	Compute difference between GPS time and EOP reference time		
$UT1 = \frac{UTCt}{t_{\text{EOP}} * \Delta UTGPS} + \frac{604800 * WN + \Delta UT1 \Delta UTGPS}{t_{\text{EOP}} * \Delta UTGPS * t_{\text{diff}} / 86400} + \frac{\delta UT1 \Delta UTGPS}{\delta UTGPS * t_{\text{diff}} / 86400}$	[seconds]	Compute Universal Time <u>UT1</u> at <u>GPS</u> time-t		
$x_p = PM_X + \frac{PM_X(t - t_{EOP})*PM_X*t_{diff}/86400}{PM_X*t_{diff}/86400}$	[arc-seconds]	Polar Motion in the x-axis		
$y_p = PM_Y + \frac{PM_X(t-t_{EOP})*PM_Y*t_{diff}/86400}{PM_Y*t_{diff}/86400}$	[arc-seconds]	Polar Motion in the y-axis		
*t-is GPS system time at time of transmission, i.e., GPS time c	orrected for transit tim	e (range/speed of light).		
- Furthermore, the quantity (t t _{EOP}) shall be the actual total time of	lifference between the	time t and the epoch time t_{EOP} , and must		
account for beginning or end of week crossovers. That is, if (t	t _{EOP}) is greater than 30	2,400 seconds, subtract 604,800 seconds		
from (t-t _{EOP}). If (t-t _{EOP}) is less than -302,400 seconds, add 604,	800 seconds to (t-t _{EOP})	-		
GPS system time (t) is expressed in seconds since start of current	GPS week, and WN i	s the current week number expressed		
in number of weeks since GPS epoch.				
The divisor 86400 converts rates per day to rates per second.				

IS :

Table 30-VIII. Application of EOP Parameters

Element/Equation	Description					
$t_{diff} = (t - t_{EOP} + 604800(WN - WN_{ot}))$	[seconds]	Compute difference between GPS time and EOP reference time				
$UT1 = t + 604800*WN + \Delta UTGPS + \Delta \mathbf{U}TGPS*t_{diff}/86400$	[seconds]	Compute UT1 at GPS time				
$x_p = PM_X + P \mathbf{\dot{M}}_X * t_{diff} / 86400$	[arc-seconds]	Polar Motion in the x-axis				
$y_p = PM_Y + PM_Y * t_{diff} / 86400$	[arc-seconds]	Polar Motion in the y-axis				
GPS system time (t) is expressed in seconds since start of current G	GPS week, and WN i	s the current week number expressed				
in number of weeks since GPS epoch.	in number of weeks since GPS epoch.					
The divisor 86400 converts rates per day to rates per second.						

IS200-1672 :

Section Number :

30.3.3.5.1.1.0-8, after IS200-623 (see previous):

WAS :

N/A

Redlines : <INSERTED OBJECT>

IS :

When calculating UT1, x_p , and y_p in Table 30-VIII, the week number for t_{EOP} is equal to the WN_{ot} value in Message Type 33 when both criteria are met:

- t_{EOP} in Message Type 32 is equal to the t_{ot} in Message Type 33
- t_{op} in Message Type 32 is equal to the t_{op} in Message Type 33

If both criteria are not met, the data between the two message types may be inconsistent with each other and should not be used in the calculations in Table 30-VIII.