SPACE-BASED POSITIONING NAVIGATION & TIMING

NATIONAL COORDINATION OFFICE

U.S. Space-Based Positioning, Navigation and Timing (PNT)

11th Meeting of the International Committee on Global Navigation Satellite Systems (ICG-11) Sochi, Russia

7 November 2016

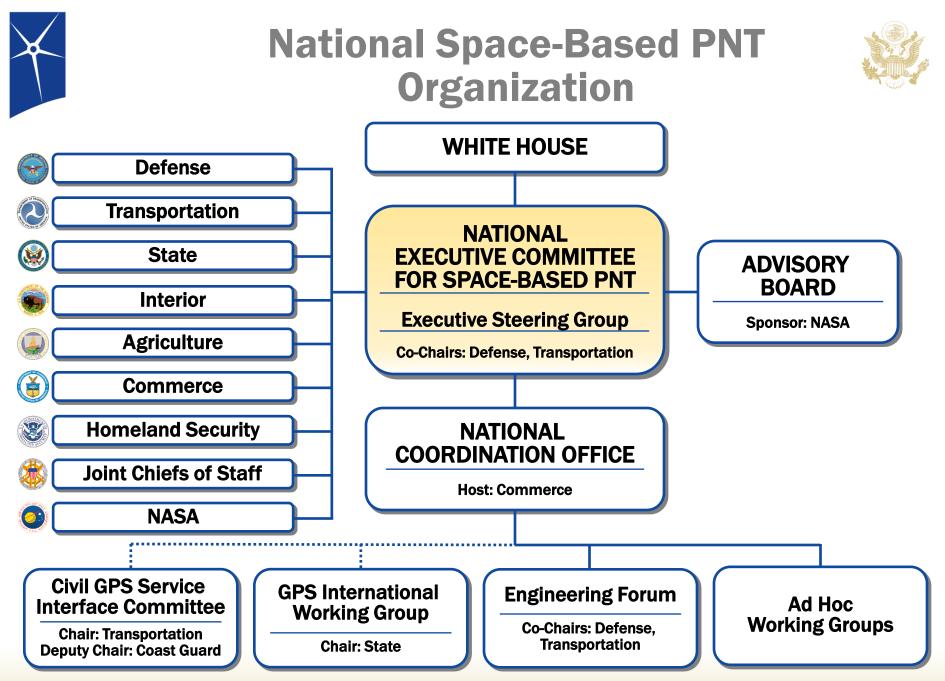
Ken Alexander, Senior Advisor on behalf of Harold W. Martin III, Director National Coordination Office

GPS Enables and Enhances Life Everyday

Applications include:

- Aviation
- Agriculture
- Search & rescue
- Surveying & mapping
- Trucking & shipping
- Fishing & boating

- Scientific
- Timing
- Tracking
- Exploration
- Offshore drilling
- Military


GPS provides Worldwide Utility

U.S. Policy Promotes Civilian GPS Use

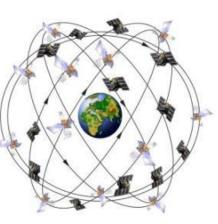
- Continuous, worldwide, free of direct user fees
- Encourage compatibility and interoperability with foreign GNSS services and promote transparency in civil service provisioning
- Operate and maintain GPS constellation to satisfy civil and national security needs
- Foreign PNT services may be used to augment and strengthen the resiliency of GPS
- Invest in domestic capabilities and support international activities to: detect, mitigate and increase resiliency to harmful interference

Space-Based PNT Policy Guidance: Maintain Ieadership in the service, provision, and use of GNSS

PNT Executive Committee (EXCOM) Strategic Focus Areas

EXCOM Strategic Focus Areas Include:

- GPS Sustainment and Modernization
- International Cooperation
- Spectrum Management
- Critical Infrastructure
- PNT Resilience
- Complementary PNT
- Outreach and Education



GPS Overview

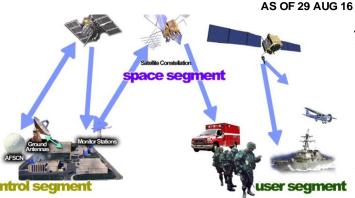
Civil Cooperation

- 1+ Billion civil & commercial users worldwide
- Search and Rescue
- Civil Signals
 - L1 C/A (Original Signal)
 - L2C (2nd Civil Signal)
 - L5 (Aviation Safety of Life)
 - L1C (International)

<u>Spectrum</u>

- World Radio Conference
- International
- Telecommunication Union
- Bilateral Agreements
- Adjacent Band Compatibility

Department of Transportation


Federal Aviation Administration

Department of Homeland Security

U.S. Coast Guard

37 Satellites / 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age	Oldest
GPS IIR	12	14.7	19.1
GPS IIR-M	7	9.1	10.9
GPS IIF	12	2.6	6.3
Constellation	31	8.7	19.1

Department of Defense

- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOMS
- GPS Partnership Council

Maintenance/Security

- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Semi-Annually
- -ICWG: Worldwide Involvement
- Update GPS.gov Webpage
- Load Operational Software on over 970,000 SAASM Receivers
- Distribute PRNs for the World – 120 for US and 90 for GNSS

International Cooperation

- GNSS
 - -Europe Galileo
 - -China Beidou
 - -Russia GLONASS
 - –Japan QZSS
 - –India IRNSS
- 57 Authorized Allied Users
 - 25+ Years of Cooperation

Constellation Snapshot

Four Generations of Operational Satellites

- Block IIA 5 Residual
 - 7.5 year design life
 - Launched 1990 to 1997

Block IIR - 12 Operational

- 7.5 year design life (oldest operational satellite is 19 years old)
- Launched 1997 to 2004

• Block IIR-M - 7 Operational, 1 Residual

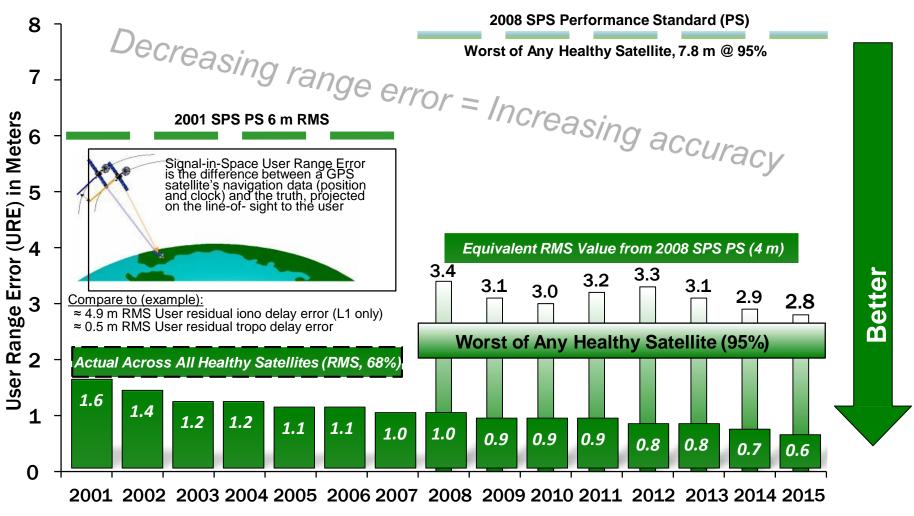
- 7.5 year design life
- Launched 2005 to 2009
- Added 2nd civil navigation signal (L2C)

Block IIF - 12 Operational

- 12 year design life
- Launched 2010 to 2016
- Added 3rd civil navigation signal (L5)
- * Current as of 28 Oct 16

Block IIA Satellite – Designed & Built by Rockwell International

Block IIR/IIR-M Satellite – Designed 8 Built by Lockheed Martin



Block IIF Satellite – Designed & Built by Boeing

Standard Positioning Service (SPS) Signal-in-Space Performance

System accuracy substantially exceeds published standard

GPS Signal in Space Performance Scoreboard

GPS SIGNAL IN SPACE (SIS) PERFORMANCE (CM)*

* RMS across all healthy satellites

SPSPS08 Section

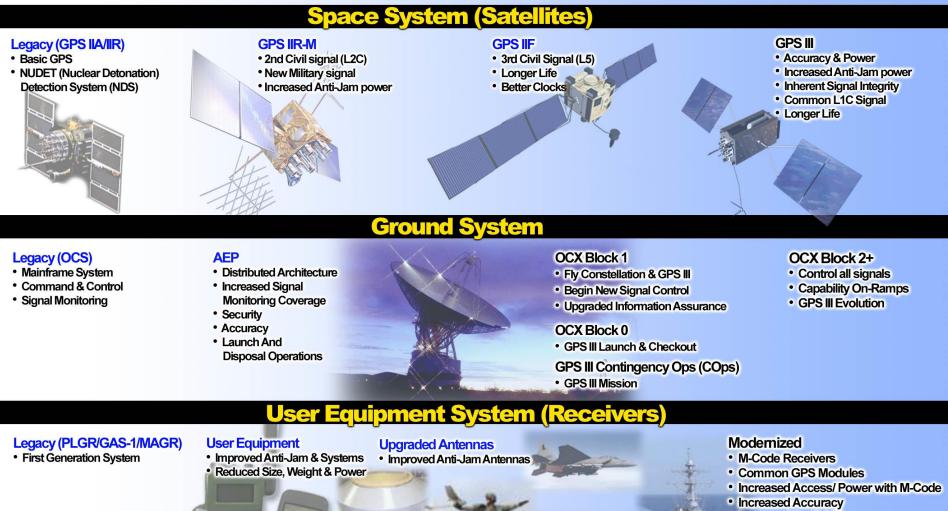
2013 Status

v+

×+

v+

Table 2.1: Summary of SPS PS Metrics Examined for 2013


SPS PS Metric

 2013 report now available on gps.gov < 7.8 m 95% Global average URE during normal operations over all AODs 3.4.1 SIS URE < 6.0 m 95% Global average URE during normal operations http://www.gps.gov/systems/gps/performance/ at zero AOD Accuracy < 12.8 m 95% Global average URE during normal operations at any AOD • This report measures GPS performance < 30 m 99.94% Global average URE during normal operations against GPS SPS Performance Standard < 30 m 99.79% Worst case single point average URE during</p> normal operations 3.5.1 SIS $\leq 1X10^{-5}$ Probability over any hour of exceeding the NTE Instantaneous URE tolerance without a timely alert Integrity 3.6.1 SIS Continuity -> 0.9998 Probability over any hour of not losing the SPS Unscheduled Failure SIS availability from the slot due to unscheduled interrup-Interruptions tion ≥ 0.957 Probability that (a.) a slot in the baseline 24-slot will be occupied by a satellite broadcasting a healthy SPS Official U.S. Government information about the 3.7.1 SIS Per-Slot Search SIS, or (b.) a slot in the expanded configuration will be Global Positioning System (GPS) and related topics Availability occupied by a pair of satellites each broadcasting a healthy Skip meny Home SIS What's New Multimedia Systems Applications Governance Support > 0.98 Probability that at least 21 slots out of the 24 slots 3.7.2 SIS Constellation will be occupied by a satellite (or pair of satellites for ex-Home » Systems » GPS » Performance Availability panded slots) broadcasting a healthy SIS > 0.99999 Probability that at least 20 slots out of the 24 slots will be occupied by a satellite (or pair of satellites for SYSTEMS: **GPS** Performance expanded slots) broadcasting a healthy SIS GPS Overview > 0.95 Probability that the constellation will have at least 3.7.3 Operational 24 operational satellites regardless of whether those opera-Space Segment Satellite Counts he U.S. government is committed to providing GPS to the tional satellites are located in slots or not Control Segment Accuracy civilian community at the performance levels specified in 3.8.1 PDOP > 98% Global PDOP of 6 or less Performance the GPS Standard Positioning Service (SPS) Performance Availability > 88% Worst site PDOP of 6 or less Our GPS Accuracy page Standard (PS). VIEW DOCUMENT + > 99% Horizontal, average location Accuracy provides more information 3.8.2 Position Service > 99% Vertical, average location Modernization about real-world GPS The following study, commissioned by the Air Force, confirms that, > 90% Horizontal, worst-case location Availability performance. GO THERE 🔿 "in 2013 all of the SPS PS assertions examined were met or Augmentation > 90% Vertical, worst-case location Systems exceeded." The assertions evaluated include those associated with < 9 m 95% Horizontal, global average the accuracy, integrity, continuity, and availability of the GPS Technical 3.8.3 Position < 15 m 95% Vertical, global average signal-in-space and the position performance standards. Documentation Accuracy < 17 m 95% Horizontal, worst site < 37 m 95% Vertical, worst site An Analysis of Global Positioning System (GPS) Standard TAKE ACTION: Positioning System (SPS) Performance for 2013 (2.5 MB PDF) ✓+ - Met or Exceeded Bookmark this

GPS Modernization

- Increased Anti-Tamper/ Anti- Spoof
- Increased Acquisition in Jamming
- Increased Availability

GPS IIF

8 Launches in 24 Months – Most aggressive GPS launch schedule since 1993

GPS III

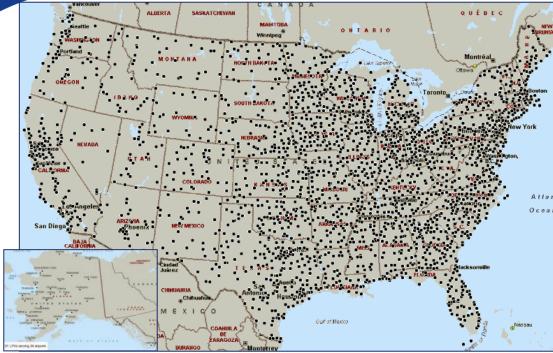
GPS III is the newest block of GPS satellites

- 4 civil signals: L1 C/A, L1C, L2C, L5
 - First satellites to broadcast common L1C signal
- 4 military signals: L1/L2 P(Y), L1/L2M
- 3 improved Rubidium atomic clocks
- SV01-SV10 on contract
 - Resolved technical challenges with payload
 - SV9-10 same requirements baseline as SV01-08
- Current Status
 - SV01 In Testing Flow
 - Baseline thermal vacuum testing completed 23 Dec 15
 - Electromagnetic Interference (EMI) test completed 14 May 16
 - SV02/03 In Assembly and Integration
 - SV04 thru 08 in box level assembly

GPS III SV01 Available For Launch Dec 2016

Ground Segment Status

- Current system Operational Control Segment (OCS)
 - Flying GPS constellation using Architecture Evolution Plan (AEP) and Launch and Early Orbit, Anomaly, and Disposal Operations (LADO) software capabilities
 - Increasing Cyber security enhancements
- Next Generation Operational Control System (OCX)
 - Modernized command and control system
 - Modern civil signal monitoring and improved PNT performance
 - Robust cyber security infrastructure
 - OCX currently in integration and test
 - Block 0 supports launch and checkout for GPS III
 - Block 1 supports transition from current control segment
 - Block 2 enables new capabilities including civil signal performance monitoring capability



Coordinated Universal Time Offset (UTCO) Anomaly

- GPS Mission Control Segment uploaded incorrect UTCO parameters to a portion of the GPS constellation
 - Occurred 25 26 Jan for ~14 hour window; 15 SVs affected
 - Once identified and confirmed, fix was uploaded to all affected satellites within 1.5 hours
- GPS Program Office and Ops Squadron implemented software update to resolve core upload issue
- GPS Program Office also exploring:
 - Potential addition of "resilience considerations for handling GPS data" to SPS PS
 - Increased UTCO parameter monitoring and additional options
 - Follow-on software update to provide additional protections against UTCO issues
- ION paper on UCTO Anomaly impacts to receivers posted at gps.gov http://www.gps.gov/systems/gps/performance/

Procedures and Users Depending on WAAS

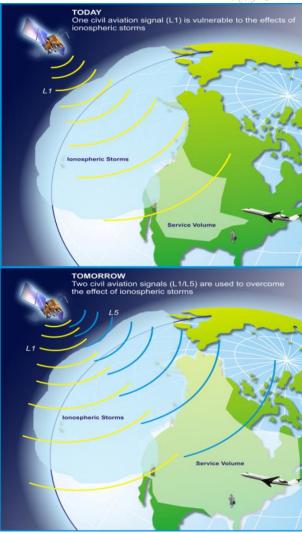
Users

- Over 91,000 WAAS/SBAS equipped aircraft
- All aircraft classes served in all phases of flight
- WAAS/SBAS is enabling technology for FAA NextGen
- Automatic Dependent Surveillance Broadcast (ADS-B)
- Performance Based Navigation (PBN)

Approach Procedures

- 4,343 WAAS Procedures published (as of Oct 2016)
- -3,722 Localizer Precision Vertical (LPV) procedures

-621 LP procedures



WAAS Phase IV Dual Frequency Operations

Objective: Obtain Dual-Frequency Multi-Constellation (DFMC) Service

Phase IV Segment 1: Infrastructure improvements and technical refresh to support current system and enable future DF operations

- Five Releases
 - Release 1: Processor Upgrades by 2nd quarter 2017
 - Release 2: Cutover to GEO 5 by 2nd quarter 2018
 - Release 3: GIII Multicast Structure (including monitoring): cutover to complete by 2nd quarter 2018
 - Release 4: Corrections & Verification Safety Computer: validation and deployment cutover by end of 2018
 - Release 5: GEO Uplink System (GUS) Safety Computer upgrade kits for GEO 5 summer 2017; GEO 6 cutover Sept 2019
- Dual-Frequency Multi-constellation Capability (DFMC)
 - Avionics and Infrastructure development underway
 - Assisting with SBAS provider perspective on DFMC capabilities
- Advanced RAIM (ARAIM): developing avionics centric approach for use of multi-constellation GNSS
 - Focus on requirements for horizontal navigation (H-ARAIM)
- Phase IV Segments 2 & 3 Tasks & Activities in definition phase

2016 National Differential GPS Changes

- Transitioned from 83 to 46 sites on Aug 4, 2016
 - Eliminated inland coverage
 - Maintained majority of maritime coverage and shifted to single maritime coverage in most areas
- Public comments were adjudicated via Federal Register Notices
- Continuing to evaluate future DGPS need as other GPS augmentation systems mature
- Assessing potential CPNT use of DGPS
 infrastructure
- Evaluating future reductions and alternatives

Complementary PNT

- EXCOM reaffirmed need for PNT complement(s) to GPS
- Recent Activities:
 - Assessment update considered many factors policy to technology
 - U.S. coverage in event of GPS/GNSS outage (natural or man-made events)
 - Identified and assessed alternatives including a broad mix of terrestrial RF and autonomous PNT technologies
 - Federal Cooperative Research and Development Agreement with Industry
- Public stakeholder input obtained by Federal Register Notice
- Pending Federal Register Notice to identify Timing requirements
- Decision timeline supports FY18 investment decisions
- Pending Congressional action

Headlines: Space Bill Addresses PHT; D+5 Demonstrates Precision Timing

Information for Policymakers from the National Coordination Office for Space-Based Pasitioning, Navigation, and Timing (PNT)

Space Bill Addresses PNT

On April 14, Rep. Jim Bridenstine (R-OK) introduced the American Space Renaissance Act.

Section 103 of the bill is titled "Positioning, Navigation, and Timing, "According to the Congressman, the provision "Expresses a sense of Congress on the importance of positioning, navigation, and timing (PNT) for national security and economic prosperity. Requires the Secretary of Defense to provide a strategy to ensure DOP NT leverages the best available signals from

Section 104 cites the National Executive Committee for Space-Based PNT as a model for establishing a new National Executive Committee on Weather.

Learn more at GPS.gov

DHS Demonstrates Precision Timing Technology at NYSE

On April 20, DHS announced the successful demonstration of Enhanced LORAN (eLoran), a precision timing technology, for financial transactions at the New York Stock Exchange (NYSE). Recognizing the challenges of space-based signals and the importance of having multiple timing sources, eLoran is one technology being considered to provide a complementary timing solution to existing GPS technology.

Precise and synchronized timing of financial transactions is critical to markets worldwide and is mandated by regulation in the European Union and is increasingly required in the United States. Today, precision timing capabilities are provided primarily by GPS. However, GPS's space-based signals are lowpower and susceptible to possible disruptions. GPS signals are also difficult to receive indoors and in urban canyons.

The live demonstration at the NYSE was hosted by Juniper Networks, Harris Corporation, and UrsaNav, under a cooperative agreement with DH5. Over 60 industry and government representatives attended, including senior officials from DH5, DOT, DOD, Treasury, and DOE. The ensuing discussion highlighted the over-reliance upon GP5 for precise timing, the threat of a loss of civil GP5 services, possible impacts to the U.S. critical infrastructure and the economy, and a common interest in developing resilient timing solutions for our nation's critical infrastructure.

View press release at DHS.gov

Thank You

Stay in touch: www.gps.gov

- "GPS Bulletin" Newsletter published by NCO
- Anyone can subscribe or get back issues

Contact Information:

National Coordination Office for Space-Based PNT

1401 Constitution Ave, NW – Room 2518

Washington, DC 20230

Phone: (202) 482-5809

www.gps.gov

GPS: Accessible, Accurate, Interoperable