

Advanced GPS Technologies (AGT)

1 May 2015

Kevin Slimak Program Manager Space Vehicles Directorate Air Force Research Laboratory

Integrity **★** Service **★** Excellence

Briefing Purpose: Inform Partnership Council about AFRL technology investments to improve affordability and performance of the GPS Space Segment

<u>Summary</u>

- Working in close partnership with the GPS SPO to develop advanced technology options for future satellites
- Focus is on technologies with greatest payoff for our warfighters and the system
 - We're finding problems/risks now and solving/reducing them to minimize "technology discovery" during system development

Exploring/opening paths to the future!

2

AFRL Investments Supporting GPS Space Segment

- AFRL is investigating science and technology **options** for future GPS spacecraft (PNT Payloads and satellites)
 - To provide timely and cost-effective maturation of new technologies
 - Requirements pull (responding directly to identified AFSPC needs)
 - Tech Push
 - To enable
 - Improved performance
 - Reduced size, weight, power, and cost
 - Increased flexibility and resilience
 - Improved manufacturability
 - New concepts, architectures, and/or capabilities

GPS III

Developmental Optical Clock

Science and Technology for GPS Spacecraft

 AFRL has funded a portfolio of projects supporting next generation GPS spacecraft

\mathbf{U}	•	
	Technologies	Capabilities
	High efficiency GaN amplifiers On-orbit Reprogrammable Digital Waveform Generators New antenna concepts	Lower-SWaP spacecraft OR higher power signals Increased signal flexibility after launch
	Supporting electronics Algorithms and new signal combining methods	Lower cost OR increased capability payload Increased signal strength
	Satellite bus technologies for lower SWaP/ increased resiliency	Information assurance designed in from the start
	Advanced cyber technology	

Advanced L-Band Amplifier Technology for GPS

<u>Objective:</u>

- Design, fabricate, and characterize performance of advanced L-band power amplifier engineering development units
 - Space qualifiable/suitable for GPS

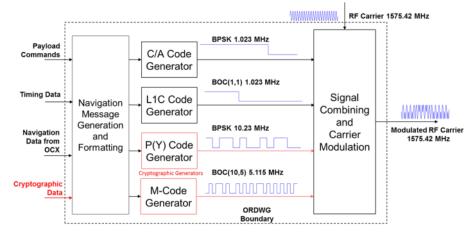
	Threshold	Objective
Increased η (%)	45%	60%
Increased Power (W RF _{out})	250	400

Payoff:

- Lower S/C power required for same signal strength
 - Less mass/cost for power system
- Reduces waste heat for same signal strength
 - Enables denser layout, decreases thermal subsystem requirement
- Increased signal strength for anti-jam
- Decrease part count in boxes

Acquisition Status:

- •Three contracts awarded in June 2014
 - Ball, \$2.1M
 - Boeing, \$4.5M
 - Northrop Grumman, \$1M


On-Orbit Reprogrammable Digital Waveform Generator Project

Develop & Demonstrate TRL 5+ technology to digitally produce GPS Signals

Payoff / Benefits

- Reprogrammable on orbit
 - Enables on-orbit up-dates/additions to waveforms
 - Enables shifting of power between modulations.
 - Enables pre-correction of signals
- Improves performance
 - Increased position/time accuracy
- Reduces part count, complexity, & expense
- Reduces mass & power consumption
- Reduces payload integration risk and schedule

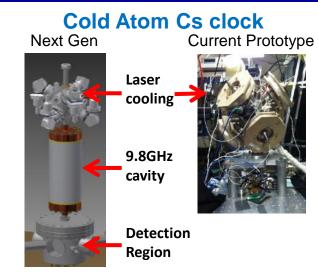
Functions of an L1 band On-Orbit Reprogrammable Digital Waveform Generator

Status & Projected Schedule:

- ~\$31M over 3 years
- BAA released April 2015
- Expect multiple contract awards

Advanced Clock Technologies for GPS Spacecraft

Goal: Develop manufacturable, highly-stable timing for GPS satellites


- Cold atom atomic clock (cesium)
 - –Leverage clocks used by NIST & USNO develop low SWAP, space-compatible version
 - -Addressing manufacturability and reliability
 - -Expect 5X performance headroom over GPS III clocks
 - -Status:
 - Built/ tested more-manufacturable microwave cavity
 - Laser system build in progress

Vapor cell optical clock (rubidium)

- -Similar to current GPS clocks, except lamp and OCXO are replaced with manufacturable telecom lasers & Rb vapor cell
- -Effort began in 2013:
 - Demonstrated 3X performance over GPS III clocks for times less than a few seconds
 - Working to extend useful time and developing packaging options

Distribution A

Optical Rb Clock

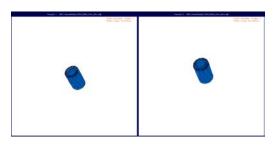
Oscillator replaced with COTS probe laser and frequency comb

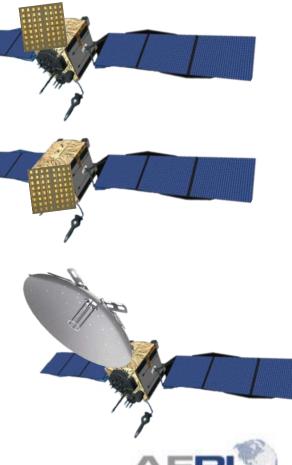
Rb cell Detector Optical freq. doubler

GPS Military High Gain Antenna

Developing Options for Ground Testing

1) Deployable phased array

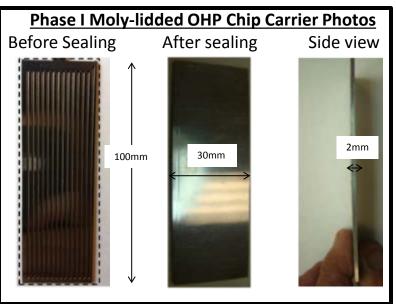

- Low profile element
- High efficiency phase shifters at each element
- Leverages legacy payload amplifier and diplexer
- Heritage deployment mechanism

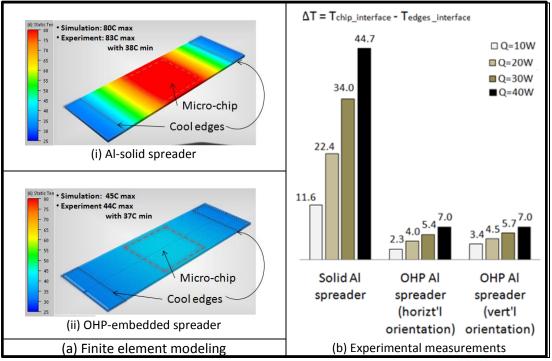

2) Electronically steerable Earth deck array

- Features construction modularity and high efficiency
- Minimum S/V mass impact
- Eliminates triplexer and high gain amplifier
- Replaces legacy Earth coverage array

3) Deployable reflector with phased array feed

- Modular 3-step construction
- Minimum assembly tooling
- Passive deployment
 mechanisms
- Compact composite shell folding scheme




Oscillating Heat Pipe (OHP) Based Chip Carrier

Technical Benefits and Commercialization Potential

- Durable, coefficient of thermal expansion matched die attach
- Ultra-high thermal conductivity
- Ideal for high-power/high-flux thermal management
- Manufacturable in a variety of materials, fluids, sizes


Distribution A

Array Technologies - ROSA

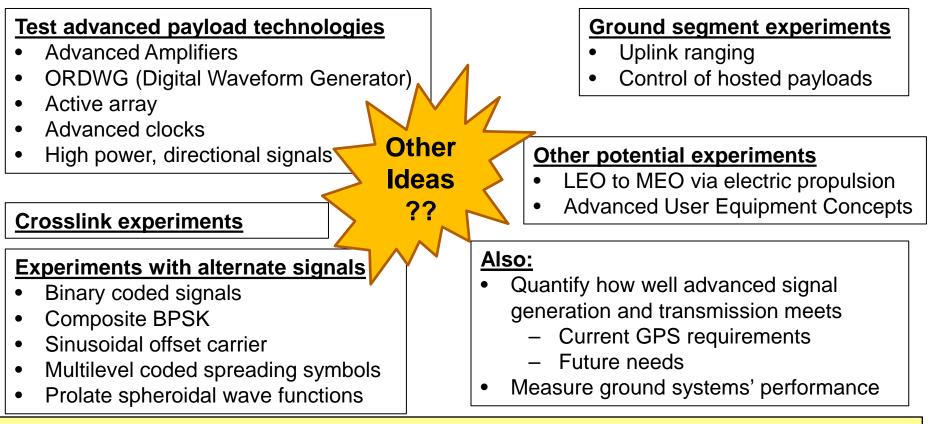
High specific power / lightweight, compact stowage volume and user-friendly profile, broad re-configurability, high strength / stiffness, reliable elastic deployment with no motors or complex mechanisms, modular construction, broad scale-ability, high TRL, affordable / low cost

GPS-Focused SBIR Thrust 14.1 Summary

Title	Ph 1 Awards	Ph 2 Awards
Power Aware GPS User Equipment	2	\uparrow
Secure Time Delivery to Military GPS Receivers Using Existing Wireless Networks	4	
M-Code External Augmentation System	0	Not solicited
GPS Receiver Cryptography Key Delivery Leveraging NSA Key Management Infrastructure	3	
Selective Availability Anti-Spoofing Module (SAASM) Compliant GPS Receiver for GEO	2	Not solicited
GaN Technology for L-Band Power Amplification	4	
Advanced Space Antenna for GPS	4	- Si
L-Band Wide Bandwidth Multiplexer	4	Cess
Radiation-Hardened, Non-Volatile Memory	4	pro
On Orbit Reprogrammable Waveform Generator	6	. <u> </u>
Compact Precision Atomic Clock	2	ing
Optical System for Clocks and Stable Oscillators	5	Contracting
GPS PNT Flexible Satellite	3	ntr
PNT, Comm, Architecture, Mission Design	5	Ŭ
Disruptive Military Navigation Architectures	11	
Alternative Control Architecture for Residual GPS IIA Spacecraft	0	
Total	59	20

User Equipment | Payload Components

Architecture Ground System



11

Clocks

GPS technology ideas under consideration:

Goal: Solidify a GPS experiment concept for consideration as AFRL's next space flight experiment (~2020-2022)

12

Distribution A

Colonel Goldstein Wants YOU!

- GPS PNT Payload Technology development is a relatively new area for AFRL
- But we plan to make it a long term, core competency
- To that end, we are looking for a few good men/ women who want to explore new GPS PNT Payload technologies and concepts with us!

Interested? Contact me after the briefing or.....

- Kevin Slimak, I.slimak@us.af.mil, 505-846-1925
- Misty Crown, misty.crown@us.af.mil, 505-853-2558
- Tom Roberts, thomas.roberts.6@us.af.mil, 505-846-7039

- AFRL is funding a portfolio of science and technology efforts to provide **options** for future GPS spacecraft
 - Working in close partnership with the GPS SPO
- The goal of these efforts is to provide options for:
 - Smaller, less costly space vehicles
 - Performance improvements at affordable cost
 - Flexibility in future spacecraft

14