FAA WAAS Update

- Presented by: Deborah Lawrence, FAA Manager of Navigation Programs
- Presented to: Munich Satellite Navigation Summit
- Date: March 2015

Federal Aviation Administration

Topics

- WAAS Program Status
- WAAS Performance
- User Segment Update

Wide Area Augmentation System

38 Reference Stations

3 Master Stations 6 Ground Earth Stations

3 Geostationary Satellite Links

2 Operational Control Centers

WAAS Development Phases

Phase I: IOC (July 2003) Completed

- Included Development of a robust safety architecture
- Included establishment of WAAS expert panel to evaluate potential integrity threats

Phase II: Full LPV (FLP) (2003 – 2008) Completed

- Completed a Safety Risk Management Decision (SRMD) to support LPV-200 (VAL of 35m)
- Expanded WAAS coverage to Mexico and Canada while modifying the System to address observed lonospheric threats

Phase III: Full LPV-200 Performance (2009 – 2013)

- Completed System updates to improve performance during moderate ionospheric activity
- Supported continuous monitoring of system data that contributes to continued integrity assurance
- Began transition of Second Level Engineering from contractor based to organic FAA capability
- Phase IV: Dual Frequency (L1,L5) Operations (2014 2044)
 - Includes the transition from use of L2 to L5 in WAAS reference stations
 - Infrastructure modifications to support future L1/L5 user capability
 - Support sustainment of WAAS GEOs

WAAS Phase IV Ground Segment Development

WAAS Phase IV Dual Frequency Operations

- Original WAAS plan was to enter DF phase in 2014 with a completion date by 2019
 - New dual frequency L1/L5 service needed to further improve WAAS availability and continuity
- Due to the changes to the GPS L5 launch schedule, the WAAS Program Office reassessed its DF integration schedule, dividing it into two segments
 - Segment 1 (5-7 year effort)
 - Develop infrastructure improvements to enable use of L5
 - G-III Reference Receiver Integration, Communications Infrastructure Upgrade, Safety Computer Integration
 - The Federal Aviation Administration awarded the Wide Area Augmentation System (WAAS) Dual Frequency Operations (DFO) Segment 1 contract to Raytheon Company on September 26, 2014
 - Segment 2 (5-7 year effort)
 - Implementation of L1/L5 user capability (follows L5 FOC)
 - Algorithm updates to use L5 and implement dual frequency service
 - Dual Frequency Messaging
- Program re-baseline approved by FAA's Joint Resource Council (JRC), May 2014
- 'Sunset' of L2 P(Y) compels WAAS to use another signal to maintain current service
 - Change required independent of decision on whether to implement a dual frequency service
- GEO sustainment planned for rest of WAAS service life
 - Maintain minimum of dual coverage over WAAS service area
 - GEO Sustainment currently planned until 2044

Federal Register Notice

L1/L2 Sunset

- In 2008 the Office of Space Commercialization produced a Federal Register Notice detailing the U.S. Government's plan to no longer guarantee L2 P(Y) phase relationship necessary for codeless and semi-codeless use beyond 12/31/2020.
- FAA interest to maintain semi-codeless technique for two years following 24 L5 satellites on orbit to provide transition time
- Will review 2014 FRP language

GEO Activities

Current WAAS GEO satellites

- Intelsat Galaxy XV (CRW)
- Anik F1R (CRE)
- Inmarsat I4F3 (AMR) *
- * AMR is a non-ranging satellite

GEO 5/6 Acquisition

- Contract awarded September 2012
- Eutelsat 117 West B (Satmex-9) satellite will host the WAAS GEO 5 Satellite Payload
 - Orbital slot (116.8° West) will provide full coverage
 - Scheduled for operations by Oct 2017
- GEO 6 Satellite opportunities currently under investigation

G-III Comm Integration

Test Bed Operational

- Shadow system became operational December 9, 2014
- To be completed by May 2015
- G-III Software Integration Completed March 2015
- Cutover of Network 1 and Network 2
 CORE Comm
 - Scheduled to be completed August, 2015
- Cutover of First WRS site (ZLA) projected operational September 2015
 - All WRS sites cutover by July 2016

WAAS Phase IV Investigations

Dual-Frequency Multi-constellation Capability

- International Focus is on taking advantage of other GPS like constellations
 - International Civil Aviation Organization (ICAO) Navigation Systems Panel (NSP) has developed work plan that supports development of future standards for use of other Global Navigation Satellite Systems (GNSS)
- User Equipment Standards for Dual-Frequency Operations
 - Minimum Operation Performance Standards (MOPS) for Dual-frequency GPS currently looking to obtain stakeholder involvement
 - FAA working with Interoperability Working Group (IWG) on definition document that provides the basis for interface design and MOPS development for L1/L5 and multi-constellation
 - RTCA is amending SC-159 Terms of Reference (ToR) to include MOPS work on GPS/GLONASS, GPS/SBAS DF and enabling Multi-Constellation (MC), GPS/GBAS DF

Advanced RAIM (ARAIM)

- Avionics-centric approach to dual-frequency multi-constellation
- US/EU technical group finalizing concept definition the 3rd Milestone of their work plan
 - Milestone 3 will address stakeholder input to the concept and proposed architecture alternatives
 - It will also include a road map outlining a path toward requirements development, validation and implementation inline with current industry avionics development plans

WAAS Coverage

2008 Coverage - Full LPV 200 Coverage in CONUS (2 Satellites) 2013 Coverage - Full LPV 200 Coverage in CONUS (3 Satellites)

Airports with WAAS LPV/LP Instrument Approaches

WAAS STC Aircraft December 2014 (Estimate)

Garmin – 73,184 aircraft

- GA Aircraft (See FAA Garmin Approved Model List (AML)). Most GA Part 23 aircraft.
- GTN series Lear 35/35A, 36/36A,24 Phenom300 with G-3000

Universal Avionics – 2,380 aircraft

122 fixed wing and 12 helicopter types and models

RockwellCollins – 1,930 aircraft

- 39 Types and models
- Latest Aircraft Embraer Legacy 500

Honeywell /CMC Electronics) – 921 aircraft

22 types and models

Avidyne – 238 aircraft

- 6 types and models (Cirrus SR 20 & 22, Piper Matrix & Mirage, Piper Saratoga NX, and EA-500)
- IFD 540 WAAS LPV (STC complete July 2014 AML STC approved for over 1,000 aircraft makes and models)

Genesys Aerosystems (Chelton) – 247 aircraft

 Bell-407 & 412, Cessna 501, 550, Piper PA-42, Beechcraft C-90&A, EurocopterAS-350, AgustaAW109SP, Beechcraft T-34B, Kawsaka

Innovative Solutions & Support (IS&S) – 200 aircraft

- Eclipse 550/500
- Boeing 737-400 (pending)

Thales – 5 aircraft

- Airbus A300-600ST (Beluga)
- Airbus A400M (Military)
- Airbus A350XWB pending

TOTAL Estimated WAAS LPV Equipped Aircraft – 79,105

Questions

GNSS Enables PBN and ADS-B

	Navigation (<u>></u> 99.0% Availability)		igation Availability)	Surveillance (<u>></u> 99.9% Availability)			Positioning	
		Accuracy (95%)	Containment (10 ⁻⁷)	Separation	NACp (95%)	NIC (10 ⁻⁷)	GNSS PI (99.0 – 99.9	NT 99%)
	En Route	*10 nm	20 nm	5 nm	185.2m (7)	1 nm (5)		
APNT		*4 nm	8 nm				GPS	
		*2 nm	4 nm					
	Terminal	*1 nm	2 nm		92.6m (8)	0.6 nm (6)	DME	
	LNAV	*0.3 nm	0.6 nm	3 nm			Only GAP	
	RNP (AR)	*0.1 nm	**0.1 nm	2.5 nm DPA	92.6m (8)	0.2 nm (7)	SBAS	
	LPV	16m/4m	40m/50m	2.5 nm	92.6m	0.2 nm		
	LPV-200	16m/4m	40m/35m	DPA	(8)	(7)		
	GLS Cat-I	16m/4m	40m/10m	2.0 nm	92.6 m (8)	0.2 nm (7)	GBAS	
	GLS Cat-III	16m/2m	40m/10m	IPA				

* Operational requirements are defined for total system accuracy, which is dominated by fight technical error. Position accuracy for these operations is negligible.

** Containment for RNP AR is specified as a total system requirement; value representative of current approvals.

Dependent Parallel Approach (DPA) Independent Parallel Approach (IPA) Surveillance Integrity Level (SIL) Navigation Integrity Category (NIC)

Navigation Accuracy Category for Position (NACp)

G-III Capabilities

- Satellite Tracking
 - 18 GPS, 8 SBAS
 - Upgradable for Galileo, COMPASS...with additional cards

Signal Tracking

- L1 C/A, L1C, L2P(Y), L2C and L5
 - L1C; track pilot, L1C for data demodulation
 - L2C; track CL, CM for data demodulation
 - L5; track Q5, I5 for data demodulation
 - L5 SBAS; configurable with default as track/demodulate with I5
- Non-standard codes
 - Loaded via data interface at startup
 - L1 C/A, L1C, L2CM and L5 loaded as memory codes
 - L2CL loaded as shift register value (same polynomial)

Live Satellite Tracking (L1 C/A, L2PY, L2C & L5)

Message Type 12 Overview (MT12)

- Message Type 12 (MT12) is a optional function standardized in Annex 10 (App. B, Section 3.5.7.6.1)
 - It is defined to carry UTC timing parameters
- Alternate Position Navigation and Timing (APNT) program considering MT 12 as potential timing reference in absence of GPS signal
 - WAAS could populate MT-12 with the GPS–UTC offset parameters with simple modification to the system
 - WAAS Network Time (WNT) offset from GPS time is well within 50 ns limit defined by Annex 10 (Ch. 3, Section 3.7.3.4.5)
- Timing reference accuracy for APNT user anticipated to be within 25 ns once implemented (to be validated)
 - Proposal to use beam forming techniques to maintain tracking of GEO signals during interference conditions

SBAS Network Time / UTC Message (MT-12)

GPS

- 8 parameters identical to GPS
- 4 for leap second
 - Converts GPS time to UTC
 - (15 sec, 16 sec on 1 July)
- 4 to correct bias and drift
 - Small, correction ~ 10 nsec
- WAAS MT-12 has additional information
 - GPS Time of Week (sec)
 - GPS Week Number (WN)
 - UTC Standard Identifier (ie USNO)
 - GLONASS indicator (whether data will be provided)
 - GLONASS offset data (optional) $dt_{utc} = dt_{LS} + A$

				<u></u>		
Subframe 4,Page				Message Type		
18				Field	Bit	
Field	Bit	LSB	Bias	AOWINT	32*	
A ₀	32*	2-30	Drift	A	24*	
A ₁	24*	2 ⁻⁵⁰	Leap Sec	dt	8*	
dt _{LS}	8*	1	Reference	t	g g	
t _{ot}	8	2 ¹²	Time Ref Week		0	
WN _t	8	1			0	
	8	1	Adjustment	VVIN _{LSF}	8	
	0		Day	DN	8	
DN	8	1	"Future" Lean Sec	dt _{LSF}	8	
dt _{ist}	8	1		GPS TOW	20	
WN from Subframe GPS Week				WN	10	
I				UTC Ident	3	
		GLONASS	1			
$A_0 + A_1^* (t_G)$	iPS-t _{ot} +6	GLONASS	71			
14						

N/AAS

12

Message Type 12				
Field	Bit	LSB		
A _{0WNT}	32*	2-30		
A _{1WNT}	24*	2 ⁻⁵⁰		
dt _{LS}	8*	1		
t _{Ot}	8	2 ¹²		
WN _t	8	1		
WN_{LSF}	8	1		
DN	8	1		
dt _{LSF}	8	1		
GPS TOW	20	1		
WN	10	1		
UTC Ident	3			
GLONASS	1			
GLONASS	71	TB D		

 $t_{utc} = t_{GPS} - dt_{utc}$ *two's complement, sign bit MSB

Questions

Munich Satellite Navigation Summit March 2015

Federal Aviation Administration