GLOBAL POSITIONING SYSTEMS DIRECTORATE

GLOBAL POSITIONING DIRECTONING SYSTEMS

Right

Any place

Any Time,

Global Positioning Systems Directorate

GPS Program Update to 8th Stanford PNT Symposium 30 Oct 2014

> Col Matt Smitham Deputy Director, GPS Directorate

Global Positioning Systems Directorate

SPACE AND MISSILE SYSTEMS CENTER

Mission:

Acquire, deliver and sustain reliable GPS capabilities to America's warfighters, our allies, and civil users

Col Bill Cooley

Deliver and Sustain Global Navigation and Timing Service

GPS Overview

Civil Cooperation

- 1+ Billion civil & commercial users
- Search and Rescue
- Civil Signals
- L2C (2nd Civil Signal)
- L5 (Safety of Life)
- L1C (International)

Spectrum

- World Radio Conference
- International
 Telecommunication Union
- Bilateral Agreements
- Adjacent Band Interference

Department of Transportation

Federal Aviation Administration

Department of Homeland Security

• U.S. Coast Guard

38 Satellites / 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age	Oldest
GPS IIA	5	20.5	23.9
GPS IIR	12	12.8	17.2
GPS IIR-M	7	7.2	9.1
GPS IIF	7	1.8	4.4
Constellation	31	10.3	23.9

SPACE AND MISSILE SYSTEMS CENTER

Department of Defense

- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOMS
- GPS Partnership Council

Maintenance/Security

- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Annually – ICWG: Worldwide Involvement
- Update www.GPS.gov Webpage
- Load Operational Software on over 1 million SAASM Receivers
- Distribute PRNs for the World
 Including 90 for GNSS

International Cooperation

- 57 Authorized Allied Users – 25+ Years of Cooperation
- GNSS
 - Russia GLONASS
 - Europe Galileo
 - China BeiDou
 - Japan QZSS
 - India IRNSS

GPS Signal-in-Space Performance

SPACE AND MISSILE SYSTEMS CENTER

Best performance 46.6 cm User Range Error (URE) 8 Jun 13; best weekly average 58.7 cm URE 18 Aug 14!

GPS Performance – Past 12 Months

- Newest block of GPS satellites
 - 4 civil and 4 military signals:
 L1 C/A, L1C, L2C, L5; L1/L2 P(Y), L1/L2M
 - First satellites to broadcast common L1C signal
 - Three improved Rubidium atomic clocks
- SV07/08 contract awarded 31 Mar 14
- Navigation payload panel began space environment testing at Lockheed Martin's Colorado facility Sep 2014
- GPS III Non-Flight Satellite Testbed accomplished launch processing at Cape Canaveral; reduced risk for integration & test and launch processing
- GPS III SV01 available for launch starting 2016

Lockheed-Martin (Waterton, CO) - Prime

Ground Segment Status

- Current system Operational Control Segment (OCS)
 - Flying GPS constellation on Architecture Evolution Plan (AEP) and Launch & Early Orbit, Anomaly, and Disposal Operations (LADO) software systems
 - Cyber security enhancements in progress
- Next Generation Operational Control System (OCX)
 - Modernized command & control system with M-Code, modern civil, signal monitoring, info assurance infrastructure and improved PNT performance
 - OCX Block 0 supports launch & checkout for GPS III and is in integration & test; Raytheon (Aurora, CO) - Prime
 - OCX Block 1 supports transition from OCS in 2018
 - Successfully completed 3 GPS III launch exercises

Monitor Station

Ground Antenna

Now on The Air: Modernized Civil Signals

- The United States Air Force initiated continuous CNAV message broadcast (L2C & L5) on 28 Apr 14
- CNAV Data message uploaded twice a week; daily by Dec 2014
- Position accuracy not guaranteed during pre-operational deployment
 - L2C message currently set "healthy"
 - L5 message set "unhealthy" until sufficient monitoring capability established
- Expected Performance for users:
 - During first 24 hours after upload, CNAV performs as LNAV
 - Expect divergence between CNAV & LNAV as CNAV data ages until next CNAV upload

Effect of Upload Frequency on CNAV User Range Error

- Improved tools reduce age of data & CNAV User Ranging Error (URE)
- Initial, twice-a-week upload (Apr 2014) drives high CNAV URE

RMS URE Driven by Upload Latency & Integration with AEP

Challenge to the world-wide community: What are you seeing? How are you using these signals? Do these signals impact your use of codeless access?

Questions?

SPACE AND MISSILE SYSTEMS CENTER

For more information, please visit our homepage at www.gps.gov