

Air Force Research Laboratories PNT and GPS Space Segment Investment Portfolio and Science & Technology Investments

30 October 2014

Colonel David Goldstein Director

Space Vehicles Directorate

Air Force Research Laboratory

Integrity **★** Service **★** Excellence

Space Vehicles Directorate Vision and Mission

Our Vision

Be indispensable to our nation in improving AF and DoD space capabilities

Our Mission Stay One Step Ahead in Space

Heritage Providing Mission-Critical Capabilities

Heritage **Employing Innovative Concepts & Ops**

AFRL at a Glance

Distribution A: Approved for Public Release

Distribution D - Subject to Cover Page Limitations

World Class Facilities AFRL/Space Vehicles Directorate

Fabrication and Testing Capabilities

Aerospace Engineering Facility

Unique Test Equipment

Existing Facilities – 55 Bldgs

- 402,000 Sq Ft Kirtland AFB, NM
- 36,000 Sq Ft Holloman AFB, NM
- 31,000 Sq Ft HAARP, Alaska
- 24,000 Sq Ft Sunspot

EO/IR Facilities

IRREL characterizes Focal Plane Arravs

Space Electronics Facilities

Nuclear Radiation Simulation Lab

Calibration Lab

Imaging Spectroscopy

Cold Atom Lab

Spacecraft Integration Facility

Ionospheric research

Balloon operations

Solar observations

Comprehensive integration & test facilities for small, experimental satellites or spacecraft components

AFRL PNT and GPS Space Segment Investment Portfolio

- AFRL is investigating science and technology options for future GPS spacecraft
- Increasing flexibility
- Reducing spacecraft cost
- Exploring new signal options
- Developing components for reduced payload cost, size, weight, and power
- Manufacturable atomic clocks
- AFRL is developing inertial components for GPS-denied navigation
- Cold atom inertial navigation systems

Developmental Optical Clock

Science and Technology for GPS Spacecraft

 AFRL has funded a portfolio of projects supporting next generation GPS spacecraft

Technologies	Capabilities	
High efficiency GaN amplifiers	Lower-SWaP spacecraft OR	
On-orbit Reprogrammable Digital	higher power signals	
Waveform Generators	Increased signal flexibility after	
New antenna concepts	launch	
Supporting electronics	Lower cost OR increased	
Algorithms and new signal combining methods	Lapability payload	
	Increased signal strength	
Satellite bus technologies for lower SWaP/ increased resiliency	Information assurance designed- in from the start	
Advanced cyber technology	*SWaP = Size, Weight, and Power	

Advanced L-Band Amplifier Technology for GPS

<u>Objective:</u>

- Design, fabricate, and characterize performance of advanced L-band power amplifier engineering development units
 - Space qualifiable/suitable for GPS

	Threshold	Objective
Increased η (%)	45%	60%
Increased Power (W RF _{out})	250	400

Payoff:

- Lower S/C power required for same signal strength
 - Less mass/cost for power system
- Reduces waste heat for same signal strength
 - Enables denser layout, decreases thermal subsystem requirement
- Increased signal strength for anti-jam
- Decrease part count in boxes

Acquisition Status:

- Three, 36-month contracts awarded
 - in June 2014
 - Ball, \$2.1M
 - Boeing, \$4.5M
 - Northrop Grumman, \$1M

On-Orbit Reprogrammable Digital Waveform Generator Project

Develop & Demonstrate TRL 5+ technology to digitally produce GPS Signals

Payoff / Benefits

- Reprogrammable on orbit
 - Enables on-orbit up-dates/additions to waveforms
 - Enables shifting of power between modulations.
 - Enables pre-correction of signals
- Improves performance
 - Increased position/time accuracy
- Reduces part count, complexity, & expense
- Reduces mass & power consumption
- Reduces payload integration risk and schedule

Functions of an L1 band On-Orbit Reprogrammable Digital Waveform Generator

Status & Projected Schedule:

- ~\$31M over 3 years
- BAA release expected December 2014
- Expect multiple contract awards

Advanced Clock Technologies for GPS Spacecraft

Goal: Develop manufacturable, highly-stable timing for GPS satellites

- Cold atom atomic clock (cesium)
 - -Leverage clocks used by NIST & USNO develop low SWAP, space-compatible version
 - -Addressing manufacturability and reliability
 - -Expect 5X performance headroom over GPS III clocks
 - -Status:
 - Built/ tested more-manufacturable microwave cavity
 - Laser system build in progress
- Vapor cell optical clock (rubidium)
 - -Similar to current GPS clocks, except lamp and OCXO are replaced with manufacturable telecom lasers & Rb vapor cell
 - –Effort began in 2013:
 - Demonstrated 3X performance over GPS III clocks for times less than a few seconds
 - Working to extend useful time and developing packaging options

Optical Rb Clock

Oscillator replaced with COTS probe laser and frequency comb

Rb cell

11

59 Small Business Innovative Research Contracts Awarded in 2014

Торіс	Group	Title
AF141-099	User Equipment (11 awards)	Power Aware GPS User Equipment
AF141-100		Secure Time Delivery Military GPS receivers in Challenged RF Environments Using Existing Wireless Infrastructure
AF141-102		M-Code External Augmentation System
AF141-111		GPS Receiver Cryptography Key Delivery Leveraging NSA's Key Management Infrastructure (KMI)
AF141-113		Selective Availability Anti-Spoofing Module (SAASM) Compliant GPS Receiver for GEO
AF141-125	Spacecraft	GaN Technology for GPS L-Band Power Amplification
AF141-243		Advanced Space Antenna for GPS
AF141-245	Components	L-Band Wide Bandwidth High Performance Diplexer, Triplexer, & Quadruplexer
AF141-250	(23 awards)	64MB+ Radiation-Hardened, Non-Volatile Memory for Space
AF141-251		On-Orbit Reprogrammable Digital Waveform Generator for GPS
AF141-110	Atomic Clocks	Compact Precision Atomic Clock
AF141-126	(7 awards)	Optical System for Precision Atomic Clocks and Stable Oscillators
AF141-122	PNT	GPS PNT Flexible Satellite
AF141-252	Architectures	Positioning, Navigating, Timing, Communications, Architecture, Mission Design
AF141-253	(18 awards)	Disruptive Military Navigation Architectures

Research Projects

Prof. Mark L. Psiaki, NRC Senior Research Associate*

M code subintervals

w/zero-padding for FFT-

based cross-correlation

*on sabbatical leave from Cornell University's Sibley School of Mech. & Aero. Engr. during 2014-2015 academic year

A. FFT-based direct acquisition of GPS M-code Raw RF data to

- N/[2log₂(N)] acceleration of t search, speed-up factor 300-1000 with practical N
- Respect practical N limit without limiting coherent accumulation interval
- Target TTFF ~ 100 sec with 2 sec warm-start timing uncertainty, significant J/S
- Test offline & on MITRE GNSSTA SWRX

B. GPS spoofing/meaconing detection & recovery

- Exploit unique spoofed signal features (e.g., identical directions of arrival, code distortion/multiple peaks)
- Develop/analyze precise detection statistics

M code of full coherent correlate w/M code

integ. interval

Re-acquire true signals using long coherent integration

Developing a Concept for an AFRL Space Flight Experiment

GPS technology ideas under consideration:

Goal: Solidify a GPS experiment concept for consideration as AFRL's next space flight experiment (~2016-2020)

Cold Atom Inertial Navigation Systems (INS)

- Developing Cold Atom INS for GPS-denied navigation
 - Chip Based Cold-Atom INS
 - Chip used to control atoms from outside vacuum system
 - Very high accuracy
 - Small form factor
 - Free-space cold atom INS (with AOSense)
 - Operation in 0-1 g environment
 - Improving laser systems for cold atom devices
 - Develop robust, maintaince-free laser system
 - Develop laser diodes and optics into small form factor
 - Package into monolithic integrated structure
- Basic research effort on continuously replenished Bose-Einstein Condensate (BEC)
 - Distill thermal atoms into BEC using quantum stimulated scattering
 - Use atom-chip structures to transport atoms continuously to BEC

Atom chip attaches to top of vacuum system

Laser-cooled atoms at 100 µKelvin, just below atom chip

AFRL-designed atom chip

BEC achieved in-house 2014

- AFRL has funded a portfolio of science and technology efforts to provide options for future GPS spacecraft
- The goal of these efforts is to provide options for:
 - Flexibility in future spacecraft
 - Smaller, less costly space vehicles
 - Performance improvements at affordable cost
- Cold atom technologies show promise for GPSdenied navigation

