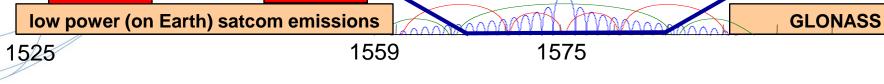
Performance Impacts of the LightSquared ATC Reference Stations on High Precision GPS Receivers

Institute of Navigation
International Technical Meeting
January 30 - February 1, 2012

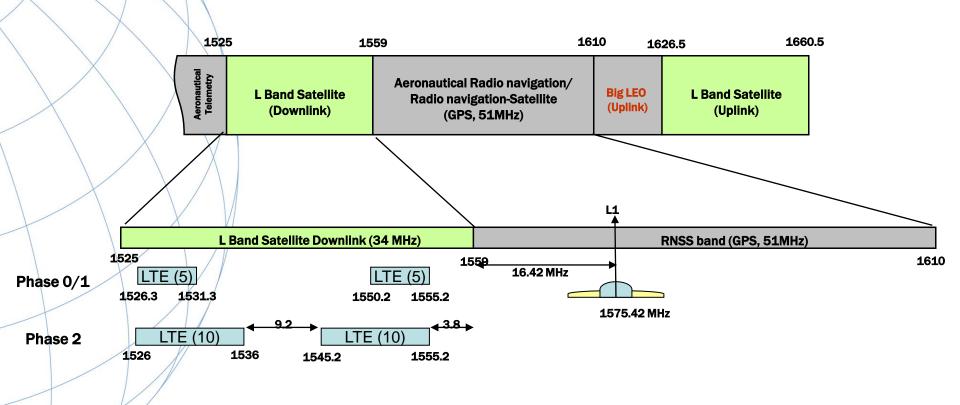
Knute Berstis, Gerald Mader, Neil Weston, William Stone, Gregory DeAngelo and Frank Marion NOAA / National Geodetic Survey



Presentation Overview

- LightSquared Background & Spectrum Plans
- NOAA Live Sky Summary Test Results
- NOAA Anechoic Chamber Test Results
- Present Status

Who is LightSquared?


- New Telecom company formed Mid 2010
 - Formerly SkyTerra and before that Mobile Satellite Ventures
- Company formed to create a nationwide 4G LTE (Long Term Evolution) open wireless broadband network
- First wholesale-only broadband network
- Intends to provide coverage to 92% of USA by 2015
- Key Asset
 - Mobile Satellite Service / Ancillary Terrestrial Component license for 1525–1559 MHz; 1626.5-1660.5 MHz

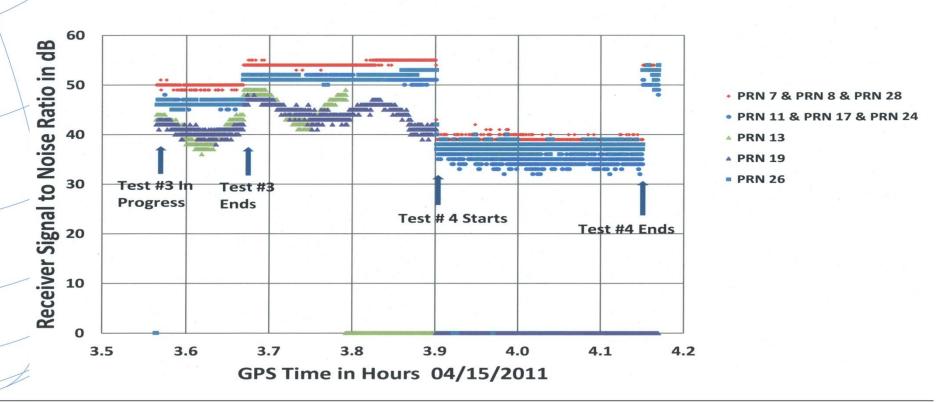
1610

Original LightSquared Spectrum Plan

NOAA / NGS Configuration For Live Sky Tests at Holloman AFB, April 15, 2011

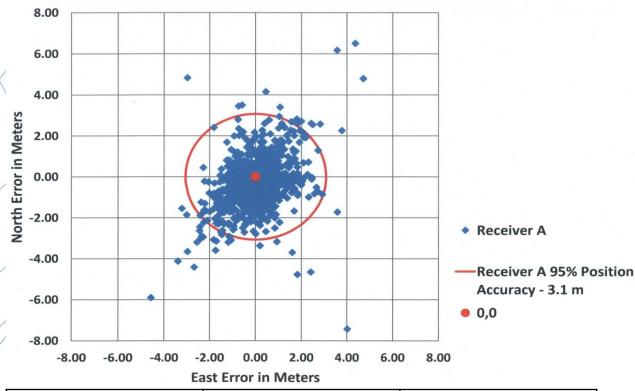
- Four high precision geodetic / survey GPS receivers connected through an eight way splitter to a geodetic antenna using magnetic mounts on the vehicle roof
- Another antenna similarly mounted was connected to a single survey receiver with the manufacturer recommended geodetic antenna
- Due to high wind conditions on April 15th, the LightSquared Ancillary Terrestrial Component (ATC) reference station could only be raised to 32 ft (9.8 m) instead of the 100 ft (30.48 m) specified operational height
- The NOAA vehicle was approximately positioned 315 m from the LightSquared transmitter for Tests #2, Test #3, and Test #4

Live Sky Tests w/ NGS Vehicle @ 315 m From LightSquared ATC Transmitter


Test #2 – 5 Mhz – High	Event time (GPS)	Transmitted Power	
Band- Full Power		EIRP –Total (dBm)	
Start Test	2:39:00	54.1	
Added + 3dB to each port	2:42:00	57.1	
End Test	3:09:00	57.1	
Test #3 – 5 Mhz – Low			
Band – Full Power			
Start Test	3:25:00	57.2	
End/Test	3:40:00	57.2	
Test #4 – 10 Mhz – Low			
Band – Full Power			
Start Test	3:54:00	57.2	
End Test	4:09:00	57.2	

High Precision Receiver Performance with LightSquared Lower 10MHz Signal

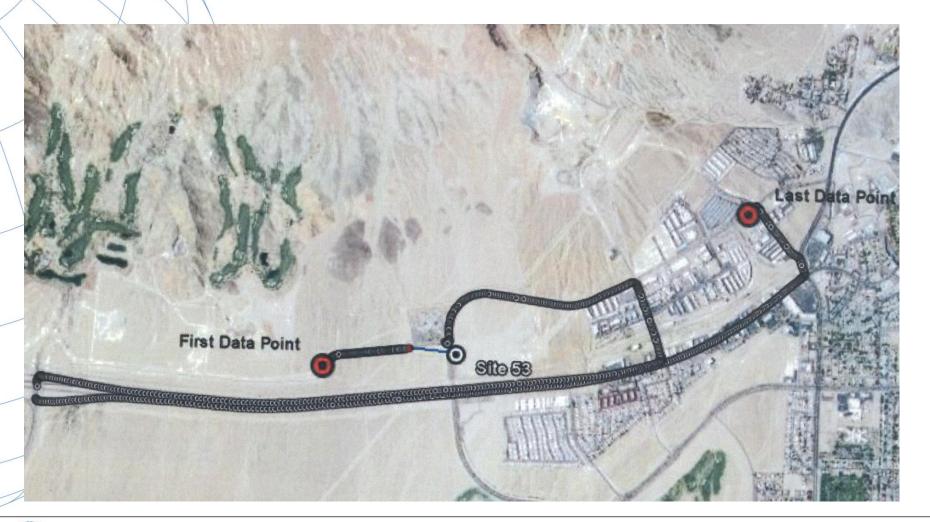
	Receiver ID Code	Receiver Performance
	Receiver H07007B/A-ant	No SNR degradation or tracking loss
/	Receiver H07007A/C-ant	SNRs for all PRNs tracked decreased 11 dB at beginning of test and dropped another 4 dB at the end of test
/ //	Receiver H80708/B-ant. (in 4 seconds) Receiver H92053/B-ant. (in 6 seconds) Receiver H91389/B-ant. (in 22 seconds)	less than 4 PRNs tracked – no position solution for remainder of test


Receiver H07007A C/N0 (Signal-to-Noise Ratio) During Tests #3 and #4

Receiver H07007A with Geodetic Antenna C L1 C/A PRN 7, 8, 11, 13, 17, 19, 24, 26 & 28 NOAA Vehicle Approximately 315 m from LightSquared ATC Reference Station (Tower at 9.8 m Elevation)

Post Processed Pseudorange and Carrier Phase Accuracy with LightSquared Transmitter On

Receiver H07007A / Antenna C - Position Error During LightSquared Transmitter Test #4 (10 Mhz Low Band 57.2 dBm)


	95% Predicted	95% Measured		
	Position Accuracy	Position Accuracy		
Receiver H07007A/C-ant.	2 cm.	1.2 cm		
Test site #1		Test # 4 (898 Data Points)		


TWG Live Sky Tests in Las Vegas

- NOAA / NGS and several law enforcement agencies were the only federal organizations participating in the Lightsquared sponsored Live Sky Testing
 - Law enforcement agencies conducted an operational test of their equipment
 - ♦ NOAA /NGS conducted a more detailed evaluation of percent of tracking loss for each receiver during LightSquared transmissions and tracking loss ranges from the LightSquared ATC reference station for each receiver

Typical East –West NOAA / NGS Vehicle Test Track May 19 -20, 2011

High Percentage Tracking Loss - GPS Receiver H33451 - Resume Tracking @ 3753 m. from the LightSquared Transmitter

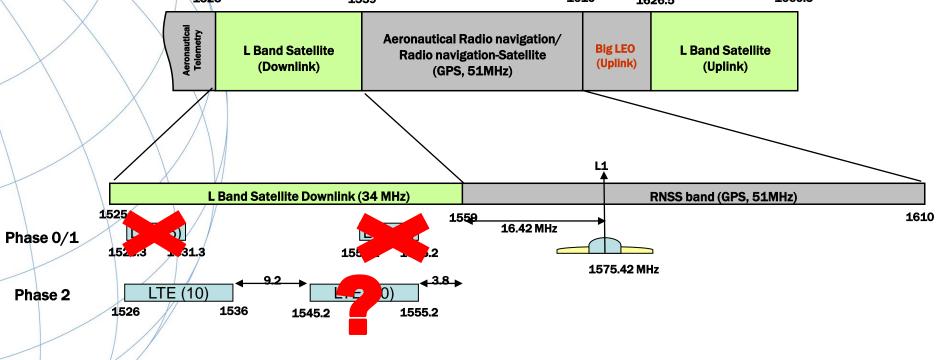
East – West Maximum GPS Receiver Tracking Loss Distances

Receiver ID	Tracking Loss Range -	Tracking Loss Range -		
	East	West		
H07007 w/ Antenna 2	1101 m.	1339 m.		
H41591 w/ Antenna 5	1025 m.	1303 m. 775 m.		
H80708 w/ Antenna 5	No Tracking Loss			
H33451 w/ Antenna 5	1125 m.	3753 m.		
H84576 w/ Antenna 5	<u>2012 m.</u>	<u>3995 m.</u>		

May 19, 2011 – 5 MHz Upper Band

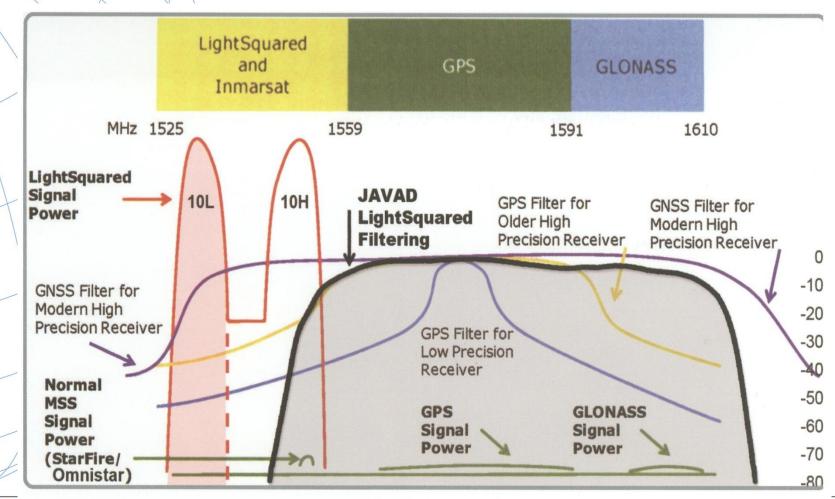
Receiver ID	Tracking Loss Range -	Tracking Loss Range - West 362 m. 2981 m. 3133 m. 3151 m.		
	East			
H07007 w/ Antenna 5	520 m.			
H41591 w/ Antenna 1	1868 m.			
H33451 w/ Antenna 1	1886 m.			
H84576 w/ Antenna 1	2015 m.			
H47596 w/ Antenna 1	1153 m.	2094 m.		
H91389 w/ Antenna 1	<u>2027 m.</u>	2119 m.		

May 20, 2011 5 MHz Upper & Lower Band

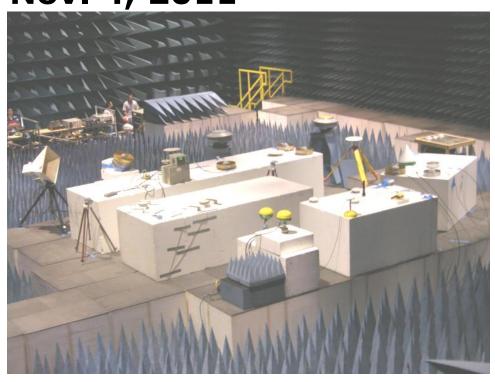

LightSquared & Federal Working Groups Completed Activities

- TWG Final report filed with the FCC June 30
 - LightSquared also filed a modified deployment plan on the same date as the TWG report
- NPEF Final Report public version filed with the FCC on July 06
- RTCA report focusing on aviation receivers available to the public on the FCC website

LightSquared Modified Spectrum Plan

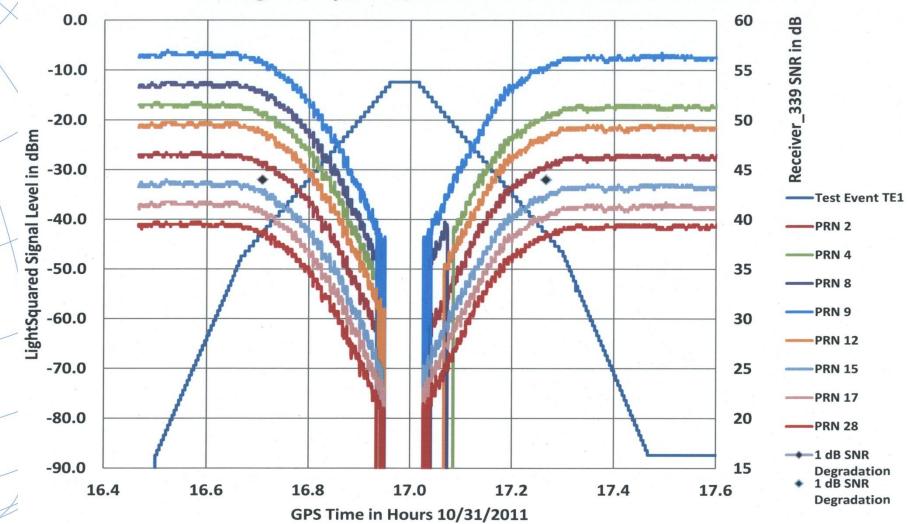

- LightSquared will commence terrestrial commercial operations only on the lower 10 MHz portion of its spectrum
 - They will coordinate and share the cost of underwriting a workable solution with GPS manufacturers of legacy precision measurement devices that may be at risk
 - ❖ A filter solution for the Lower 10 MHz band has been developed by Javad, Topcon, Hemisphere, Partron America and PCTEL in partnership with LightSquared for high precision receivers

Current LightSquared Spectrum Plan End Spectrum State Undefined 1525 1559 1610 1626.5 1660.5


Javad Filter Response to Mitigate the Lower 10 MHz LightSquared Signal

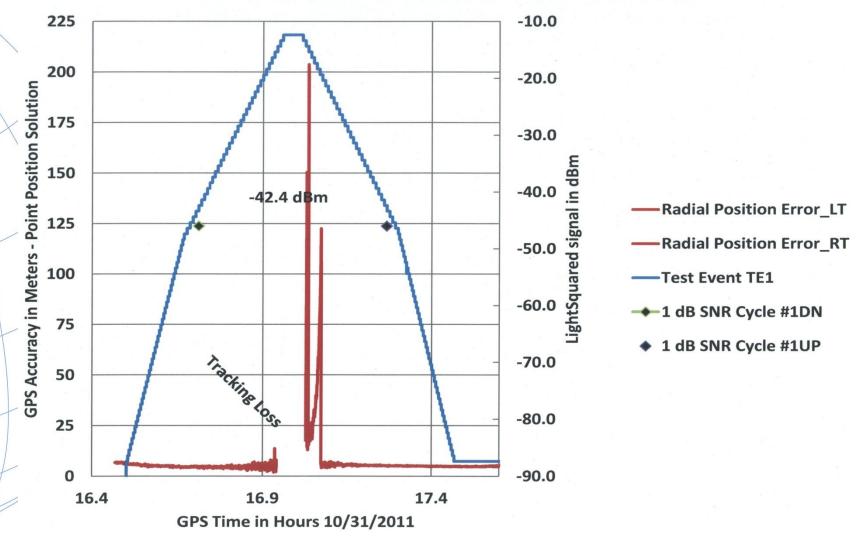
New NPEF Testing at WSMR Oct. 31 - Nov. 4, 2011

- Targeted Testing
 - Navigation/CellularDevices
 - Low 10 MHz
 - Handset (LSQ Cell Phone) simulation to be included
 - NOAA Participants
 - NOS / NGS 4 Precision survey /geodetic receivers
 - NOS / Office of Coast Survey 4 marine navigation receivers
 - NWS 3 general location / navigation receivers and 1 timing receiver

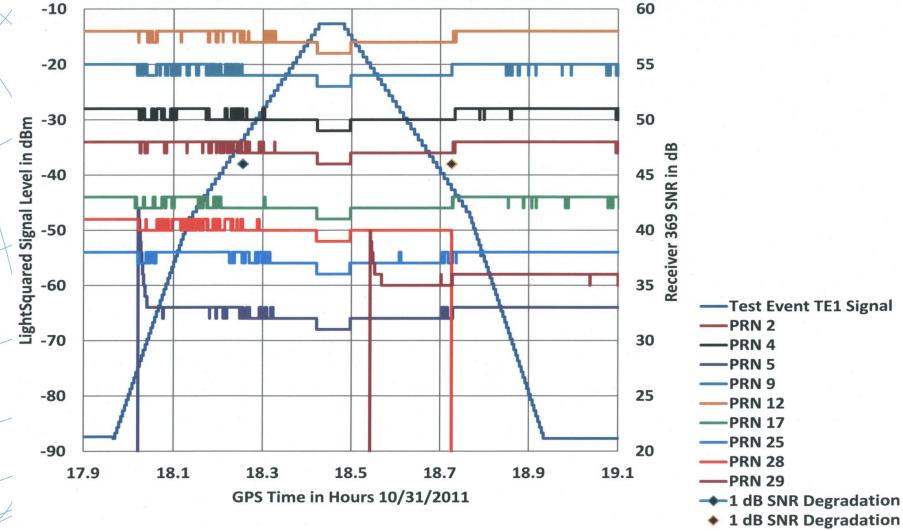

NPEF Testing at WSMR Oct. 31 - Nov. 4, 2011

- Testing focused on General Navigation / Location receivers and Cellular Devices
- 37 other receivers (including high precision receivers) were also tested
- NGS objective in participating in the White Sands Missile Range (WSMR) testing was to:
 - Test the best and worst performing receiver with a legacy "robust" antenna from the Live Sky tests (Holloman, April 2011 and Las Vegas, May 2011)
 - CORS management requested another receiver be added to the test suite
 - A Javad receiver from the NGS CORS Foundation network was also added with the possibility of testing a modified JAVAD antenna to mitigate the LightSquared lower 10 MHz signal
 - A total of six receivers were tested (four different manufacturers and two spares)

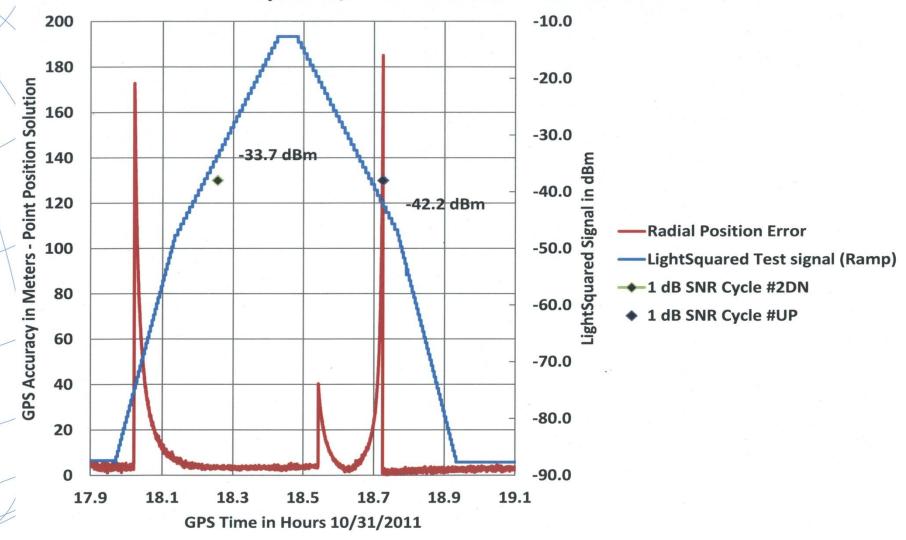
NOAA /NGS Configuration for the Lower 10 MHz at WSMR on Day One (10/31/2011) of Testing


- Five high precision geodetic / survey GPS receivers connected through an eight way splitter to a "robust" legacy geodetic antenna in the Anechoic Chamber
- A single survey receiver with the manufacturer recommended geodetic antenna at a different grid location in the chamber

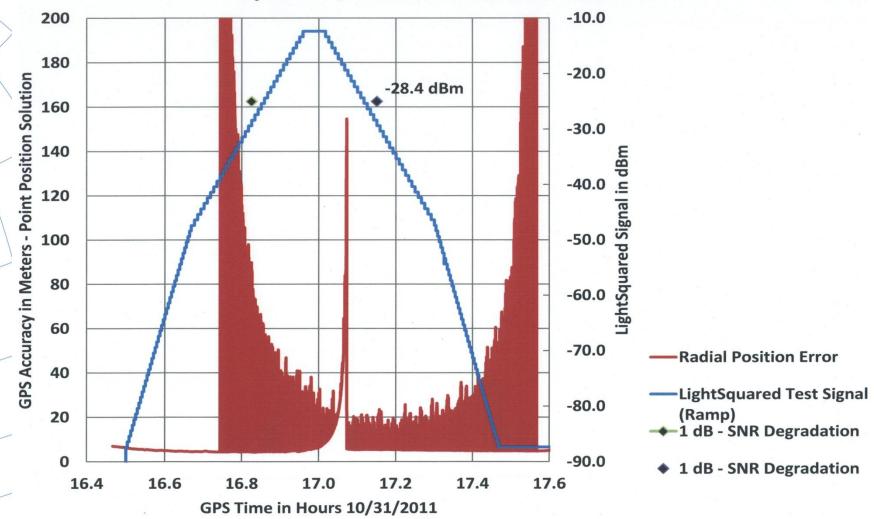
Receiver 339 / Ant. #369/ SNR Degradation / LightSquared Lower 10 MHz Signal / Cycle #1 / WSMR Anechoic Chamber Tests



Receiver 339 W/ #369 Geodetic Antenna / Radial Position Error / Test Event TE1 / Cycle #1 / WSMR Anechoic Chamber Tests



Receiver 369 / Ant. #369 / SNR Degradation / LightSquared Lower 10 MHz Signal / Test Event TE1 /Cycle # 2 / WSMR Anechoic Chamber Tests



Receiver 369 / Ant. # 369 / Radial Position Error / Test Event TE1 Cycle #2 / WSMR Anechoic Chamber Tests

Receiver 114 / Ant. # 369 / Radial Position Error / Test Event TE1 Cycle # 1 / WSMR Anechoic Chamber Tests

GPS WSMR Receiver Performance

Receiver ID	Antenna MR/ LR-	1 dB SNR	Test Day	Gl	PS Acci Event	•	Tracking Loss
	More/Less Avg.	Avg.		Events			
				7	Test Cy	cles	
				<u>1</u>	2	3	1
369	369-MR	-33.8	Day 1	1	3	1	No
202	369-MR	-14.7	Day 1	1	3	2	No
114	369-MR	-28.8	Day 1	2	3	3	No
339	369-MR	-42.3	Day 1	2	4	3	Cycle #1 Only
399	399- LR	-42.1	Day 1	3	3	3	No
219	369-MR	None	Day 3	2	2	2	No
234	369-MR	None	Day 3	2	2	2	No
246	399- LR	-25.2	Day 3	1	2	1	All Cycles
215	399- LR	-55.4	Day 3	2	2	0	All Cycles
231	399- LR	-41.9	Day 3	3	2	2	All Cycles

Anechoic Chamber Conclusions

- Preliminary Test Results indicate that the legacy "robust" antenna combined with a number of high precision receivers is not sufficient to mitigate the LightSquared lower 10 MHz signal
 - Significant degradation to point position accuracy during all cycles of the LightSquared ramp test signal
 - ❖ A filter solution developed specifically for the lower 10 MHz is required and needs to be independently tested
 - ➤ The Javad modified filter was not available for WSMR Anechoic Chamber testing last November

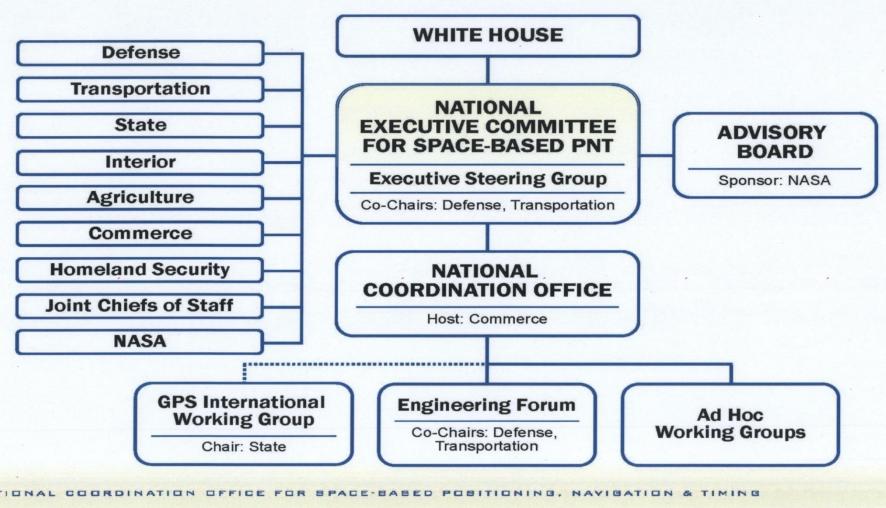
Present Status

- The NPEF test report focusing on General Location and Navigation devices is under review and will be released to the public shortly.
- Based on the test results for General Location and Navigation receivers and aviation analysis, the EXCOM has notified the NTIA that further testing is not warranted at this time.

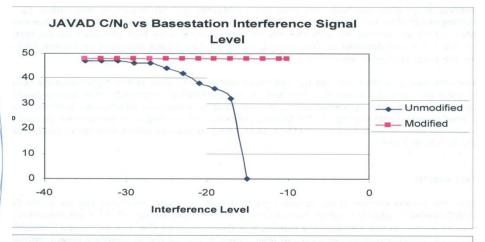
Questions?

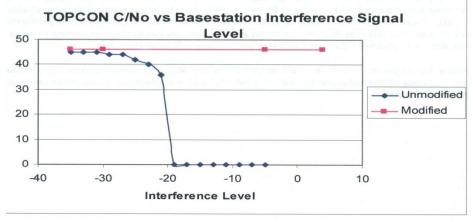
Knute Berstis

National Coordination Office for Space-Based PNT 1401 Constitution Ave, NW – Room 6822 Washington, DC 20230


Phone: (202) 482-2007

<u>Knute.Berstis@pnt.gov</u> <u>Knute.Berstis@noaa.gov</u>


Backup Slides


US Space-Based PNT Organization Structure

JAVAD & TOPCON Filter Results
Alcatel Lucent Bell Labs

