

GPS Constellation, Modernization Plans and Policy

Col Robert M. Hessin

Deputy Director, National Coordination Office United States of America

USTTI Seminar

Washington, D.C. November 10, 2011

Overview

Introduction

- Global Positioning System
- Modernization Plans
- U.S. Policy

GPS enables a diverse array of applications

GPS in Disaster Relief

- Introduction
- Global Positioning System
- Modernization Plans
- U.S. Policy

- Baseline 24+3 satellite constellation in medium earth orbit
- Global coverage, 24 hours a day, all weather conditions
- Satellites broadcast precise time and orbit information on L-band radio frequencies
- Two types of signals:
 - Standard (free of direct user fees)
 - Precise (U.S. and Allied military)
- Three segments:
 - Space
 - Ground control
 - User equipment

30 Operational Satellites (Baseline Constellation: 24+3)

- 10 Block IIA
- 12 Block IIR
- 7 Block IIR-M
 - Transmitting new second civil signal
 - 1 GPS IIR-M in on-orbit testing
- 2 Block IIF
- Global GPS civil service performance commitment met continuously since December 1993

Standard Positioning Service (SPS) Signal-in-Space Performance

System accuracy exceeds published standard

• The International Astronautical Federation bestowed its 60th Anniversary Award to the U.S. GPS program at a ceremony held October 4, 2011 in Cape Town, South Africa.

Awarded for "Benefits to Humanity"

- Introduction
- Global Positioning System
- Modernization Plans
- U.S. Policy

GPS Modernization Program

Increasing System Capabilities

Increasing User Benefit

Block IIA/IIR

Basic GPS

- Standard Service
 - Single frequency (L1)
 - Coarse acquisition (C/A) code navigation
- Precise Service
 - Y-Code (L1Y & L2Y)
 - Y-Code navigation

Block IIR-M, IIF

IIR-M – Basic GPS capability plus

- 2nd civil signal (L2C)
- M-Code (L1M & L2M)
- IIF IIR-M capability plus
- 3rd civil signal (L5)
- 2 Rb + 1 Cs Clocks
- 12 year design life

Block III

- Backward compatibility
- 4th civil signal (L1C)
- 4x better User Range Error than IIF
- Increased availability
- Increased integrity
- 15 year design life

Benefits existing professional receivers

Second Civil Signal (L2C)

- Designed to meet commercial needs
 - Higher accuracy via ionospheric correction
 - Expected to generate over \$5 billion in user productivity benefits
- Available since 2005 w/o data message
 - Currently transmitted from 7 IIR-Ms and 2 IIFs
- On 24 satellites by 2016

Increases accuracy for consumers

Supports miniaturization, possible indoor use

Third Civil Signal (L5)

- Designed to meet demanding requirements for transport safety
 - Uses highly protected Aeronautical Radionavigation Service (ARNS) band
- May also enable global, sub-meter level accuracy using new techniques
- Opportunity for international interoperability
- On-orbit broadcast 10 Apr 2009 on IIR-20(M)
 - Secured ITU frequency filing
- 24 satellites by 2018

Fourth Civil Signal (L1C)

Under trees

Inside cities

- Designed with international partners for interoperability
- Modernized civil signal at L1 frequency
 - More robust navigation across a broad range of user applications
 - Improved performance in challenged tracking environments
 - Original signal retained for backward compatibility
- Launches with GPS III in 2014
- On 24 satellites by ~2021

- GPS Modernization -Semi-codeless Transition

- GPS receivers attain very high accuracy by using "codeless" or "semi-codeless" techniques that exploit the encrypted military GPS signals without actually decoding them
 - Techniques will no longer be necessary once the new civil GPS signals are fully operational
- U.S. Government published a notice for users to transition to GPS civil-coded signals by 31 December 2020
 - Provided time for an orderly and systematic transition
 - Based on launch schedule and projected budget
- U.S. Government led community-wide collaboration on this transition plan
- U.S. is committed to continually improving GPS services as users complete a timely transition to dual-coded civil GPS equipment

- Introduction
- Global Positioning System
- Modernization Plans
- U.S. Policy

U.S. Policy History

- 1978: First GPS satellite launched
- 1983: U.S. President offers free civilian access to GPS
- 1996: U.S. policy establishes joint civil/military GPS management
- 1997: U.S. Congress passes law that civil GPS shall be provided free of direct user fees
- 2000: U.S. President set Selective Availability to "Zero"
- 2004: U.S. President issues Space-Based PNT Policy
- 2007: Selective Availability removed from GPS III satellites
- 2010: U.S. President issues new National Space Policy

- Provide continuous worldwide access for peaceful uses, free of direct user charges
- Encourage compatibility and interoperability with foreign GNSS services
- Operate and maintain constellation to satisfy civil and national security needs
 - Foreign PNT may be used to strengthen resiliency
- Invest in domestic capabilities and support international activities to detect, mitigate and increase resiliency to harmful interference

U.S. Objectives in Working with Other GNSS Service Providers

- Ensure compatibility ability of U.S. and non-U.S. spacebased PNT services to be used separately or together without interfering with each individual service or signal
 - Radio frequency compatibility
 - Spectral separation between M-code and other signals
- Achieve interoperability ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service or signal
 - Primary focus on the common L1C and L5 signals

Pursue through Bi-lateral and Multi-lateral Cooperation

National Space-Based PNT Organization

- GPS use is more prevalent and diverse than ever
 - Reliance on has grown among critical sectors
- GPS performance is better than ever and will continue to improve
 - New civil GPS signal available now
 - Many additional upgrades scheduled
- U.S. policy encourages worldwide use of civil GPS and augmentations
 - Stable, consistent policy bedrock of GPS success
 - Foreign PNT may be used to strengthen resiliency

For Additional Information...

GPS.gov

Contact Information

U.S. National Coordination Office Space-Based Positioning, Navigation and Timing 1401 Constitution Ave, N.W. Washington, D.C. 20230-0001

Ph: (202) 482-5809 Robert.Hessin@pnt.gov

This presentation and other GPS information: www.pnt.gov

Backup

NATIONAL COORDINATION OFFICE FOR SPACE-BASED POSITIONING, NAVIGATION & TIMING

U.S. Space-Based PNT Policy

<u>Maintain and Enhance Space-Based Positioning, Navigation, and Timing Systems</u>. The United States must maintain its leadership in the service, provision, and use of global navigation satellite systems (GNSS). To this end, the United States shall:

Provide continuous worldwide access, for peaceful civil uses, to the Global Positioning System (GPS) and its government-provided augmentations, free of direct user charges
Engage with foreign GNSS providers to encourage compatibility and interoperability, promote transparency in civil service provision, and enable market access for U.S. industry
Operate and maintain the GPS constellation to satisfy civil and national security needs, consistent with published performance standards and interface specifications. Foreign positioning, navigation, and timing (PNT) services may be used to augment and strengthen the resiliency of GPS
Invest in domestic capabilities and support international activities to detect, mitigate, and increase resiliency to harmful interference to GPS, and identify and implement, as necessary and appropriate, redundant and back-up systems or approaches for critical infrastructure, key resources, and mission-essential functions