

U.S. GPS Policy and Constellation Status

5th International Satellite Navigation Forum

Moscow, Russia

June 1-2, 2011

Ray E. Clore

Senior Advisor for GNSS Issues Office of Space and Advanced Technology U.S. Department of State

- U.S. National Space Policy
- International Cooperation Activities
- GPS Constellation Status Update
- U.S. Wide Area Augmentation System (WAAS)

- Since 2006, various domestic and international developments have changed the opportunities, challenges, and threats facing the U.S., including its space capabilities
- New opportunities for international cooperation; evolving/maturing commercial capabilities and options
 - More space actors, increased debris, need for enhanced transparency and stability
- The U.S. National Space Policy accounts for those changes and reflects the integral role space plays in U.S. economic, national, and homeland security
- Continuity of fundamental policy precepts
- Every President since President Eisenhower has issued a space policy

Space-Based PNT Guideline: Maintain leadership in the service, provision, and use of GNSS

- Provide civil GPS services, free of direct user charges
 - Available on a continuous, worldwide basis
 - Maintain constellation consistent with published performance standards and interface specifications
 - Non-U.S. PNT services may be used to complement services from GPS
- Encourage global compatibility and interoperability with GPS
- Promote transparency in civil service provision
- Enable market access to industry
- Support international activities to detect and mitigate harmful interference

- Global Constellations
 - GPS (24+)
 - GLONASS (30)
 - Galileo (27+3)
 - Compass (27+3 IGSO + 5 GEO)
- Regional Constellations
 - QZSS (3)
 - IRNSS (7)

- Satellite-Based Augmentations
 - WAAS (3)
 - MSAS (2)
 - EGNOS (3)
 - GAGAN (2)
 - SDCM (2)

U.S. Objectives in Working with Other GNSS Service Providers

- Ensure **compatibility** ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
 - Radio frequency compatibility
 - Spectral separation between M-code and other signals
- Achieve **interoperability** ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service or signal

– Primary focus on the common L1C and L5 signals

• Promote fair competition in the global marketplace

Pursue through Bilateral and Multilateral Cooperation

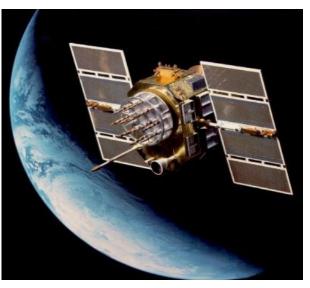
- U.S.-Russia Joint Statement issued December 2004
 - Working Groups: compatibility/interoperability, search/rescue
- **U.S.-China** operator-to-operator coordination under ITU auspices is complete
 - Bilateral Meetings in 2007, 2008, 2009, 2010
- U.S.-India Joint Statement on GNSS Cooperation 2007
 - Technical Meetings focused on GPS-India Regional Navigation Satellite System (IRNSS) compatibility and interoperability held in 2008 and 2009
 - Continuation of ITU compatibility coordination is pending

Bilateral Cooperation (continued)

- **U.S.-EU** GPS-Galileo Cooperation Agreement signed in June 2004
 - Four working groups set up under the Agreement
- U.S.-Japan Joint Statement on GPS Cooperation 1998
 - Quasi Zenith Satellite System (QZSS) designed to be fully compatible and highly interoperable with GPS
 - Bilateral agreements set up QZSS monitoring stations in Hawaii and Guam
- **U.S.-Australia** Joint Delegation Statement on Cooperation in the Civil Use of GPS in 2007
 - Bilateral meeting in Washington, D.C., Oct. 26-27, 2010
 - GNSS and applications included in expanded space cooperation, as discussed in October 27, 2010 Joint Announcement

International Committee on Global Navigation Satellite Systems (ICG)

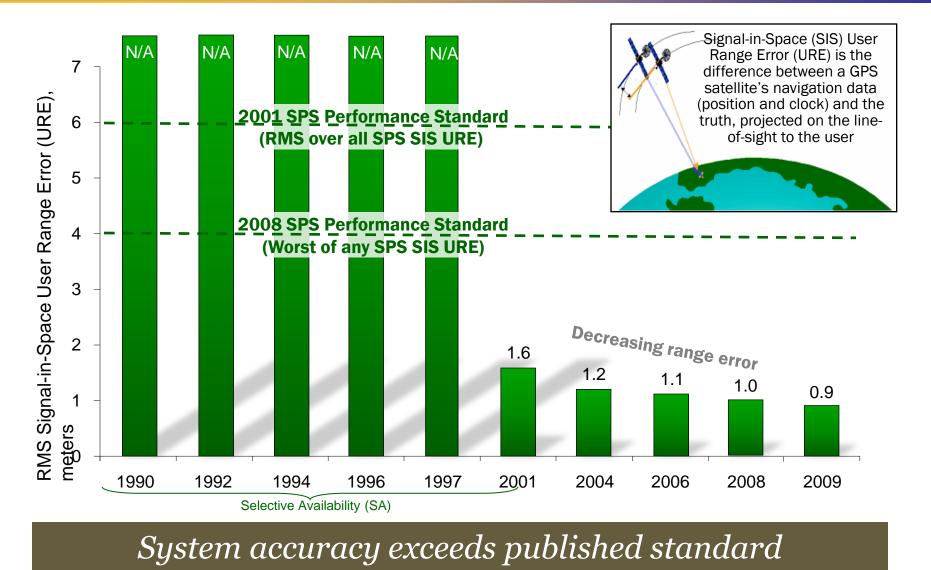
- Emerged from 3rd UN Conference on the Exploration and Peaceful Uses of Outer Space July 1999
 - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
 - Encourage compatibility and interoperability among global and regional systems
 - Met annually since 2006
- Members include:
 - **GNSS Providers** China, EU, India, Japan, Russia, United States
 - Other interested Member States of the United Nations
 - International organizations/associations


ICG Providers Forum

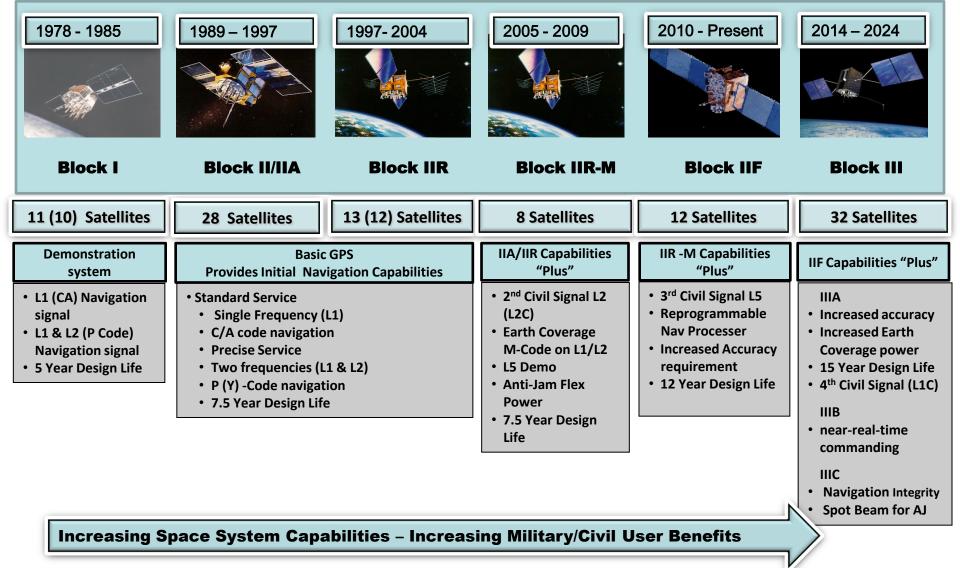
- Six space segment providers listed previously are members
- Purpose:
 - Focused discussions on compatibility and interoperability, encouraging development of complimentary systems
 - Exchange detailed information on systems & service provision plans
 - Exchange views on ICG work plan and activities
- Providers have agreed that all GNSS signals and services must be compatible and open signals and services should also be interoperable to the maximum extent possible
 - Working definition of **compatibility** includes respect for spectral separation between each system's authorized service signals and other systems' signals
 - Interoperability definition addresses signal, geodetic reference frame realization, and system time steerage considerations

GPS Constellation

- 31 space vehicles currently operational
 - 11 GPS IIA
 - 12 GPS IIR
 - 7 GPS IIR-M
 - 1 GPS IIF
- 3 additional satellites in residual status
- IIF SV-2 scheduled to launch by 14 July 2011
- IIIA SV-1 scheduled launch 2014
- Continuously assessing constellation health to determine launch need

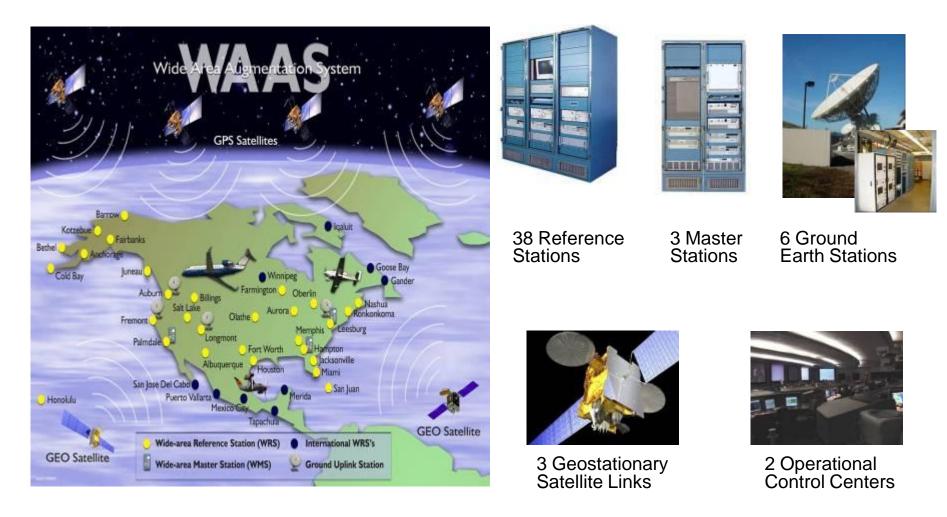


Global GPS service performance commitment met continuously since December 1993

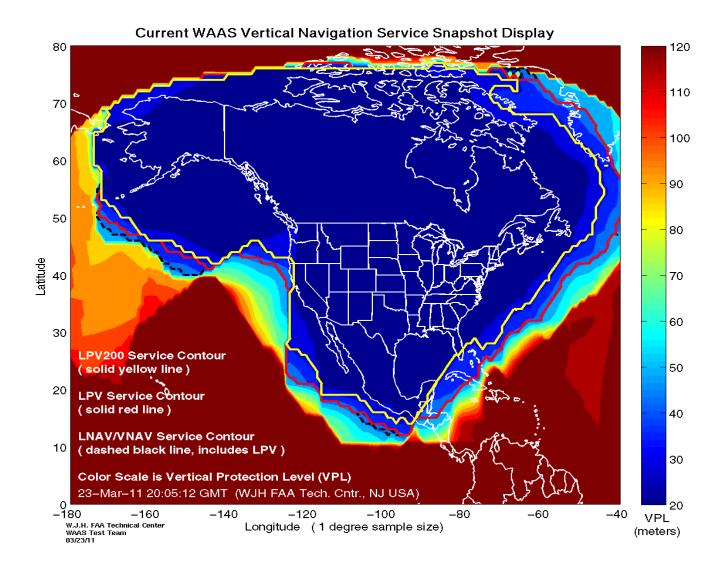

GPS SPS Signal in Space Performance

5th International Satellite Navigation Forum, Moscow, June 2011

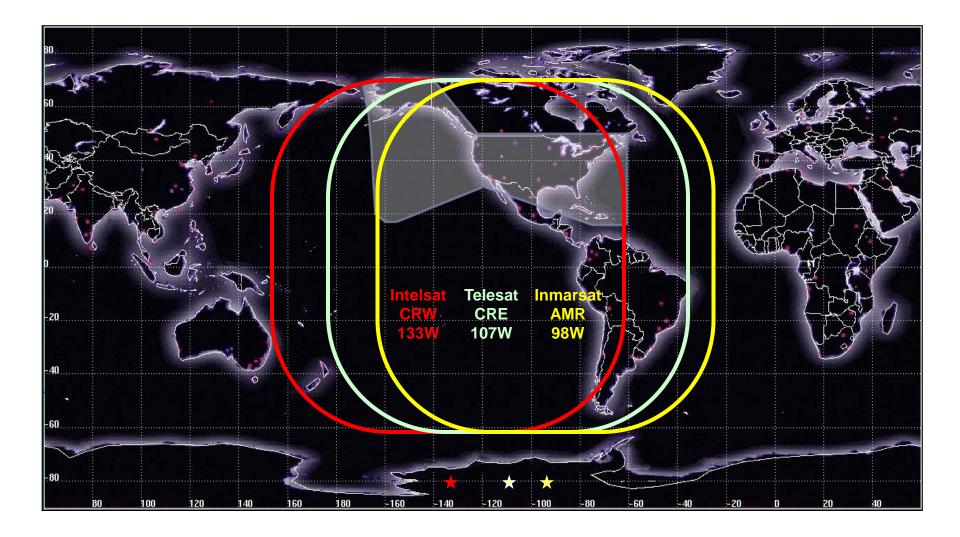
GPS Modernization Program


Advanced Control Segment (OCX)

- Architecture Evolution Plan (AEP)
 - Transitioned in 2007
 - Increased worldwide commanding capability
 - Increased capacity for monitoring of GPS signals
 - Modern distributed system replaced 1970s mainframes
- Next Generation Advanced Control Segment (OCX)
 - Controls more capable constellation, and monitors all GPS signals
 - \$1.5B contract awarded 25 February 2010
 - Capability delivered incrementally to reduce risk
 - Preliminary Design Review scheduled for June 2011
 - Full Capability by ~2016



Wide Area Augmentation System (WAAS) Architecture



Current WAAS Availability

Current WAAS Geo Coverage

WAAS Phased Upgrades

- Phase I: IOC (July 2003) Completed
 - Provided LNAV/VNAV/Limited LPV Capability
- Phase II: Full LPV (FLP) (2003 2008) Completed
 - Improved LPV availability in CONUS and Alaska
 - Expanded WAAS coverage to Mexico and Canada
- Phase III: Full LPV-200 Performance (2009 2013)
 - Software enhancements, hardware upgrades
 - Steady state operations and maintenance
 - Transition to FAA performed 2nd level engineering support
 - Begin GPS L5 transition activities
- Phase IV: Dual Frequency (L1,L5) Operations (2014 2028)
 - Complete GPS L5 transition
 - Will significantly improve availability and continuity during severe solar activity
 - Steady state operations and maintenance
 - Will continue to support single frequency users

- Increased runway Access
- New precision approach services
- Reduced and simplified equipment on board aircraft
- Potential elimination of some ground-based navigation aids (NDB, VOR, ILS) can provide a cost saving to air navigation service provider
- More direct en route flight paths
 - Saves fuel, time and money

GPS/WAAS Aviation Performance

	GPS Standard	GPS Actual	WAAS LPV-200 Standard	WAAS Actual
Horizontal 95%	36 m	2.74 m	16 m	1.08 m
Vertical 95%	77 m	*3.89 m	4 m	1.26 m

* Use of GPS vertical not authorized for aviation without augmentation (SBAS or GBAS)

WAAS Performance evaluated based on a total of 1,761 million samples (or 20,389 user days)

- U.S. policy encourages worldwide use of civil GPS and augmentations
- International cooperation at all levels is a priority
- GPS continues to meet or exceed U.S. performance commitments to worldwide users
- WAAS upgrades/system improvements occurring in phases, increasing accuracy and cost savings

Office of Space and Advanced Technology OES/SAT, SA-23, Suite 410 U.S. Department of State Washington, D.C. 20006 +1.202.663.2400 (office) <u>clorere@state.gov</u>

http://www.state.gov/g/oes/sat/ http://www.gps.gov/ http://www.pnt.gov/