A Global Safety of Life Service from Multiple GNSS Constellations (e.g. GPS + Compass)

> For the Chinese Satellite Navigation Conference

Shanghai, May 2011 by Per Enge & Leo Eldredge

Work supported by the Federal Aviation Administration under CRDA 08-G-007.

This briefing is NOT intended to convey a US Government position; rather, it is provided to facilitate a working-level discussion and exchange of ideas.

Our Canoe

But Every Once in a While

GPS Faults Occur Three Times a Year *Rare Normals* Due to Space Weather

Today's Single Frequency Technology for Detection of GPS Faults

Positioning & Fault Detection			Navigation	Surveillance
			En Route	5 nm
GBAS detect	SBAS detect	RAIM detect 200 m in 2 seconds (28 sats)	Terminal & LNAV	3 nm
10 (28) m in 2 sec. vertical &	(28) m35 m in2 sec.6 secondsertical &vertical &brizontalhorizontal(22 sats)(22 sats)		RNP	Dependent parallel approaches
norizontai (23 sats)			LPV LPV-200	Independent parallel approaches
			Cat I & Cat II/III	Independent parallel approaches

Compared to RAIM, SBAS Provides More Performance With Fewer MEO Satellites

- Each GEO is roughly equivalent to 2 or 3 satellites.
- SBAS compares satellites to ground truth
- RAIM compares satellites to satellites

Coverage of Space Based Augmentation Systems (WAAS, EGNOS & MSAS, from Dr. T. Walter)

5/19/11

Utility of Dual Frequencies & Multiple Constellations

Positioning & Fault Detection		Navigation	Surveillance
		En Route	5 nm
Dual freq GBAS	Dual freq SBAS	Terminal & LNAV	3 nm
detect 10 m in 2 sec.	Research & Development on Multi-constellation	RNP	Dependent parallel approaches
(23 sats) Hardened	ned	LPV LPV-200	Independent parallel approaches
RFI		Cat I & Cat II/III	Independent parallel approaches

Dual Frequency Coverage (WAAS, EGNOS, MSAS, from Dr. T. Walter)

Dual Frequency, Dual GNSS, Expanded Networks (from Dr. T. Walter)

But it will cost \$200M to add the 2nd string of reference receivers to WAAS. (and what if we add the wrong string?)

Data capacity could also be an issue.

Dual Frequency Advanced RAIM With 27 GPS + 27 Other GNSS (from Dr. J. Blanch)

Robust to weak constellations ?

constellations.

Allow other

URA = 1m P_{sat} =10⁻³ P_{const} = 10⁻⁶

Receiver Autonomous Integrity Monitoring (RAIM) + Integrity Support Message (ISM)

ARAIM Challenge

5/19/11

Common cause for SV theo-range faults have been posited:

- Earth orientation parameters
- Bad clock rotates ephemeris
- Widespread URA optimism

14

Seeking Something Sublime

- Aviation wants to use the new GNSS
- Availability & continuity
- Aviation does not want the downside
 - if a GNSS constellation becomes weaker
 - if a GNSS constellation has a spate of faults
- Aviation does want the upside
 - if integrity performance improves
 - -e.g. clocks are added or URA reduced
 - e.g. GPS performance has improved dramatically in the last ten years
 - LPV-100 from space

ARAIM + SBAS Mixtures

	Air & ground responsibilities	Updat e rate	# SVs (?)	Risk (of proof)
I	ARAIM Ground: priors & URAs	hourly	27 + 27	High ! EOP + Level D
II	ARAIM + constellation cross check Ground: priors & URAs	hourly	30 + ?	Medium EOP common cause
Ш	ARAIM Ground: priors & URAs Ground: level B GNSS nav. messages	hourly	27 + 27	Low Must build a global network with level B
IV	Regional SBAS for primary GNSS ARAIM for secondary GNSS	real time	18 + 18?	Low, availability penalty for high URAs for secondary GNSS
V	Regional SBAS for primary Global civil network: priors & URAs	real time	15 + 15?	Low, availability credit from low URAs

I. Prove that multi-satellite navigation message faults cannot cause HMI since the last ISM.

II. Believe that multi-SV failures are independent from one constellation to another

III. Use SBAS monitoring network & ISM to replace the navigation message

IV. Use SBAS to monitor one constellation and use ARAIM to accept SVs from other constellations.

V. Need Global Network to Reduce the URAs

 P_{sat} = Prob. of satellite fault

 P_{const} = Prob.of constellation fault

b = 0.75 m

Summary:

Safety from Frequency & Geometric Diversity

- GPS + SBAS works
 - Over 70,000 aircraft installations
 - No known integrity failures
 - Hundreds of engineer-years to build
- Frequency diversity obviates iono storms & most RFI
- Multi-constellation requires something sublime
 - Geometric diversity from new GNSS
 - With 30 year equipment lifetimes, aviation cannot afford to be brittle.
 - Need elegant integration of SBAS and ARAIM