U.S. GPS Policy, Programs & International Cooperation Activities

中国卫星导航学术年会

David A. Turner Deputy Director

Office of Space and Advanced Technology Bureau of Oceans, Environment and Science U.S. Department of State

May 18, 2011

Overview

U.S. Space-Based PNT Policy

 GPS & Augmentation Programs Status

International Cooperation Activities

U.S. National Space Policy

Space-Based PNT Guideline: Maintain leadership in the service, provision, and use of GNSS

- Provide civil GPS services, free of direct user charges
 - Available on a continuous, worldwide basis
 - Maintain constellation consistent with published performance standards and interface specifications
 - Foreign PNT services may be used to complement services from GPS
- Encourage global compatibility and interoperability with GPS
- Promote transparency in civil service provision
- Enable market access to industry
- Support international activities to detect and mitigate harmful interference

Plenary Session I

U.S. Space-Based PNT Organization Structure

U.S. Policy Promotes Global Use of GPS Technology

- No direct user fees for civil GPS services
 - Provided on a continuous, worldwide basis
- Open, public signal structures for all civil services
 - Promotes equal access for user equipment manufacturing, applications development, and valueadded services
 - Encourages open, market-driven competition
- Global compatibility and interoperability with GPS
- Service improvements for civil, commercial, and scientific users worldwide
- Protection of radionavigation spectrum from disruption and interference

Overview

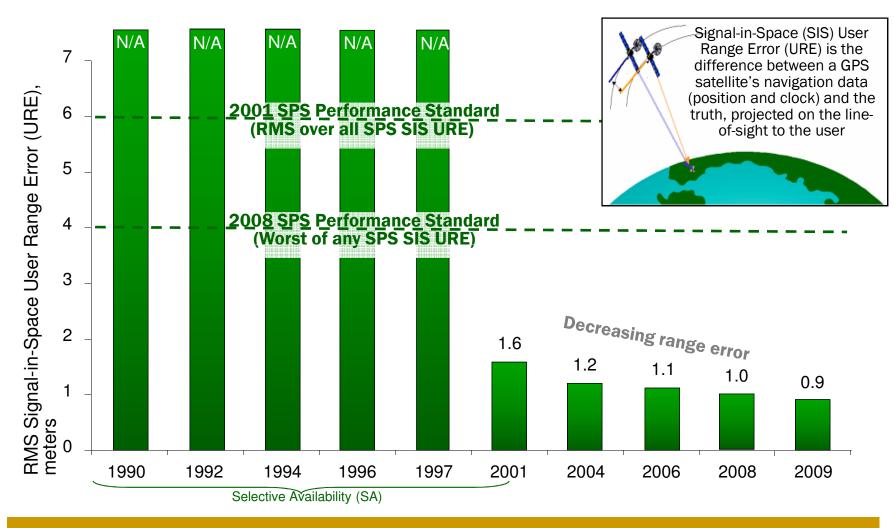
U.S. Space-Based PNT Policy

 GPS & Augmentation Programs Status

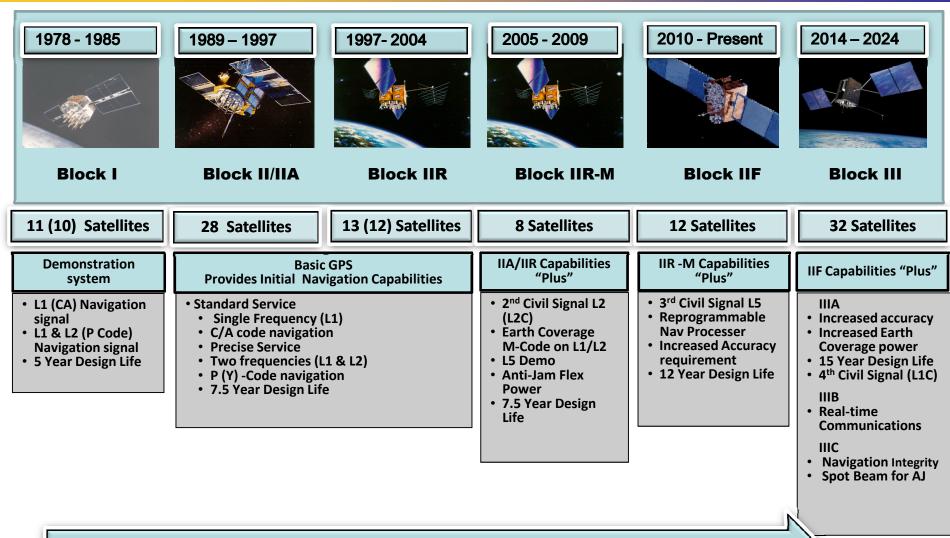
International Cooperation Activities

GPS Constellation

- 31 space vehicles currently operational
 - 11 GPS IIA
 - 12 GPS IIR
 - 7 GPS IIR-M
 - 1 GPS IIF
- 3 additional satellites in residual status
- IIF SV-2 scheduled to launch in July 2011
- IIIA SV-1 scheduled launch 2014
- Continuously assessing constellation health to determine launch need



Global GPS service performance commitment met continuously since December 1993


GPS SPS Signal in Space Performance

System accuracy exceeds published standard

GPS Modernization Program

Increasing Space System Capabilities – Increasing Military/Civil User Benefits

GPS Modernization — New Civil Signals

Second civil signal "L2C"

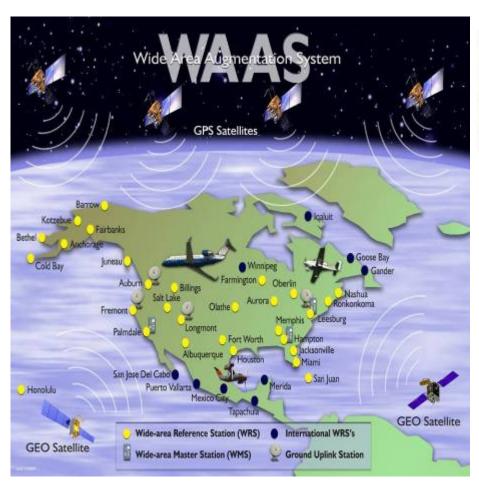
- Designed to meet commercial needs
- Higher accuracy through ionospheric correction
- Available since 2005 without data message
 - Currently, 7 IIR-Ms transmitting L2C
- Full capability: 24 satellites ~2016

Third civil signal "L5"

- Designed to meet demanding requirements for transportation safety-of-life
- Uses highly protected Aeronautical Radio Navigation Service (ARNS) band
- On orbit broadcast 10 APR 2009 on IIR-20(M) secured ITU frequency filing
- Full capability: 24 satellites ~2018

GPS Modernization — Fourth Civil Signal

Under Trees


Urban Canyons

Fourth civil signal "L1C"

- Designed with international partners for interoperability
- Modernized civil signal at L1 frequency
 - More robust navigation across a broad range of user applications
 - Improved performance in challenged tracking environments
 - Original signal retained for backward compatibility
- Specification developed in cooperation with industry recently completed
- Launches with GPS III in 2014
- On 24 satellites by ~2021

Wide Area Augmentation System (WAAS) Architecture

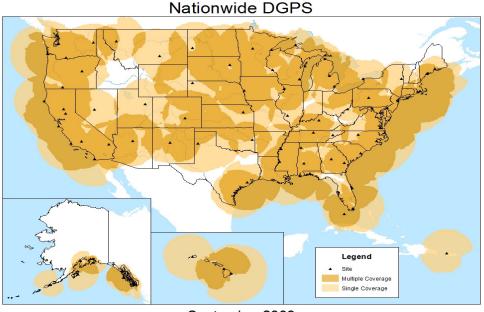
38 Reference Stations

3 Master Stations

4 Ground Earth Stations

2 Geostationary Satellite Links

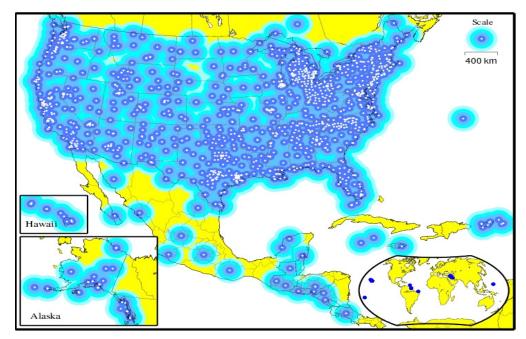
2 Operational Control Centers


WAAS Phased Upgrades

- Phase I: IOC (July 2003) Completed
 - Provided LNAV/VNAV/Limited LPV Capability
- Phase II: Full LPV (FLP) (2003 2008) Completed
 - Improved LPV availability in CONUS and Alaska
 - Expanded WAAS coverage to Mexico and Canada
- Phase III: Full LPV-200 Performance (2009 2013)
 - Software enhancements, hardware upgrades
 - Steady state operations and maintenance
 - Transition to FAA performed 2nd level engineering support
 - Begin GPS L5 transition activities
- Phase IV: Dual Frequency (L1,L5) Operations (2013 2028)
 - Complete GPS L5 transition
 - Will significantly improve availability and continuity during severe solar activity
 - Provide additional protection against GPS interference
 - Will continue to support single frequency users

Nationwide Differential GPS

- Expansion of maritime differential GPS (DGPS) network to cover terrestrial United States
- Built to international standard adopted in 50+ countries
- System Specifications:
 - Corrections broadcast at 285 and 325 kHz using Minimum shift Keying (MSK) modulation
 - Real-time differential GPS corrections provided in Radio Technical Commission for Maritime Services (RTCM) SC-104 format
 - No data encryption
 - Real-time differential corrections for mobile and static applications


September 2009

Single coverage over 92% of Continental United States (CONUS); double coverage over 65% of CONUS

National Continuously Operating Reference Stations (CORS)

- Enables highly accurate,
 3-D positioning
 - Centimeter-level precision
 - Tied to National Spatial Reference System
- 1,200+ sites operated by 200+ public, private, academic organizations

- NOAA's Online Positioning User Service (OPUS)
 automatically processes coordinates submitted via the
 web from around the world
- OPUS-RS (Rapid Static) declared operational in 2007
- NOAA considering support for real-time networks

Overview

U.S. Space-Based PNT Policy

 GPS & Augmentation Programs Status

 International Cooperation Activities

U.S. Objectives in Working with Other GNSS Service Providers

- Ensure compatibility ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
 - Radio frequency compatibility
 - Spectral separation between M-code and other signals
- Achieve interoperability ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service or signal
- Promote fair competition in the global marketplace

Pursue through Bilateral and Multilateral Cooperation

International Cooperation Venues

• Bilateral to include:

- Japan
- Europe
- Russia
- India
- China
- Others (Australia)
- Multilateral:
 - Asia Pacific Economic Cooperation
 - International Committee on GNSS

U.S. Bilateral Cooperation with China

- Operator-to-operator coordination under ITU auspices
 - Geneva, Switzerland June 2007
 - Xian, China May 2008
 - Geneva, Switzerland October 2008
 - Hainan, China December 2009
 - Coordination completed in Chengdu, China in September 2010
- U.S. is interested in engaging in further bilateral discussions with China on civil GNSS services and applications

International Committee on Global Navigation Satellite Systems (ICG)

- Emerged from 3rd UN Conference on the Exploration and Peaceful Uses of Outer Space July 1999
 - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
 - Encourage compatibility and interoperability among global and regional systems
- Members include:
 - GNSS Providers (U.S., EU, Russia, China, India, Japan)
 - Other Member States of the United Nations
 - International organizations/associations

Overview

U.S. Space-Based PNT Policy

 GPS & Augmentation Programs Status

International Cooperation Activities

- GPS performance is better than ever and will continue to improve
 - Augmentations enable even higher performance
 - New civil GPS signal available now
 - Many additional upgrades scheduled
- U.S. policy encourages worldwide use of civil GPS and augmentations
- International cooperation is a priority
 - In pursuit of systems Compatible and Interoperable with GPS

Contact Information

David A. Turner

Deputy Director
Space and Advanced Technology
U.S. Department of State

OES/SAT, SA-23, Suite 410 Washington, D.C. 20520 202.663.2397 (office) 202.320.1972 (mobile) TurnerDA@state.gov

http://www.state.gov/g/oes/sat/ http://gps.gov/international/