

SPACE-BASED POSITIONING NAVIGATION & TIMING

NATIONAL EXECUTIVE COMMITTEE

Module 2

GPS Accuracy in an Urban & Suburban Environments (Census Data)

Knute A. Berstis, P.E. Senior Advisor National Coordination Office For Space Based PNT October 16, 2010

National Positioning, Navigation, and Timing (PNT) Architecture Study

- In 2006 the Assistant Secretary of Defense for Networks and Information Integration (ASD/NII) and the Under Secretary of Transportation for Policy (UST/P) sponsored a National Positioning, Navigation, and Timing (PNT) Architecture Study to "provide more effective and efficient PNT capabilities focused on the 2025 time frame..." 1
- Several NOAA organizations, including the National Geodetic Survey (NGS), participated on the Architecture Development Team (ADT) and are, additionally, members of the Architecture Transition Team (ATT).
- The PNT Joint Capabilities Document (JCD) identified a number of validated gaps in capability which are projected to exist in the 2025 timeframe.

1 National Positioning, Navigation, and Timing Architecture Study, Final Report, September 2008---This Document Is Cleared For Public Release

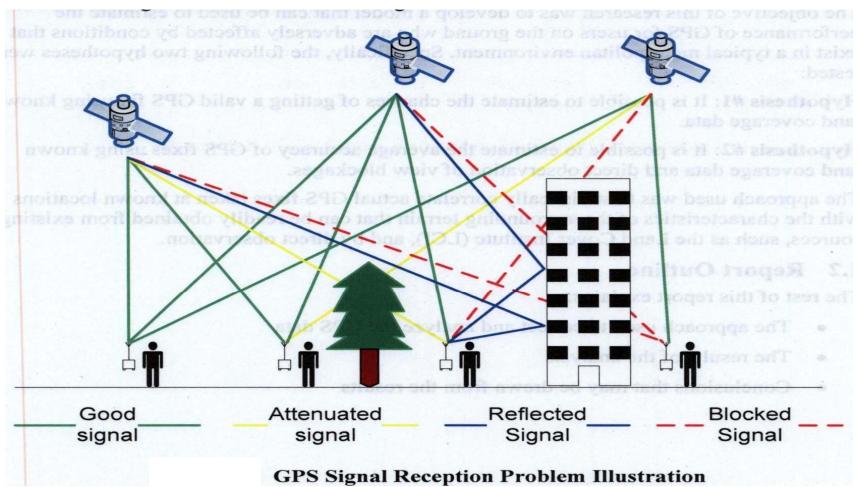
National Positioning, Navigation, and Timing (PNT) Architecture Study

- The team identified 7 gaps and the key gap related to this presentation was:
- Assured and real-time PNT in physically impeded environments.1
- The large data set gathered (approximately 106 Million data points) during the Census Address Canvassing can provide a very good assessment of what are the PNT capabilities of GPS in a partially impeded physical environment in the 2009 time frame.

Caveats:

- Data is Title 13 data.
- Statistical data analysis procedures must be negotiated and approved by the Census Bureau.

1 National Positioning, Navigation, and Timing Architecture Study, Final Report, September 2008---This Document Is Cleared For Public Release


TSPS

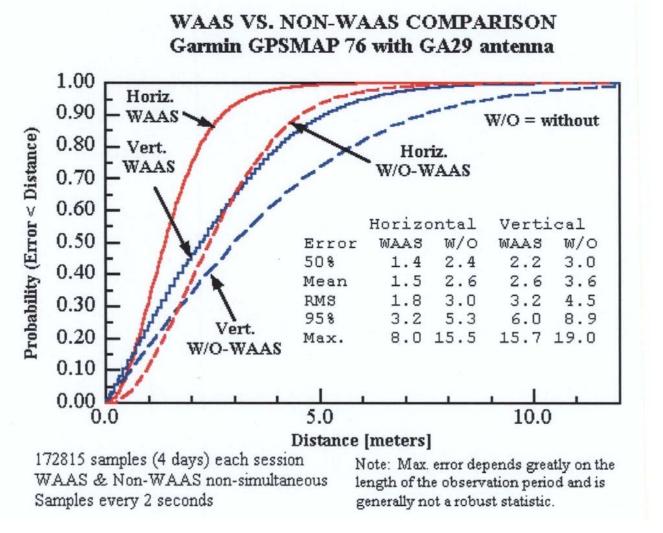
10/16/10

3

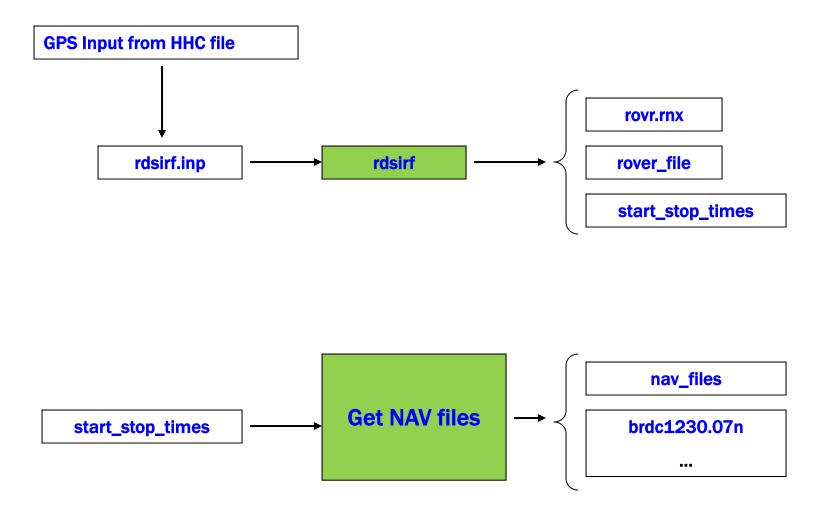
Bohne, Paul F. & Nobile, Marc P. MITRE Technical Report MTR070200, "Average GPS signal Availability Estimation", pp. 1-1, September 2007.

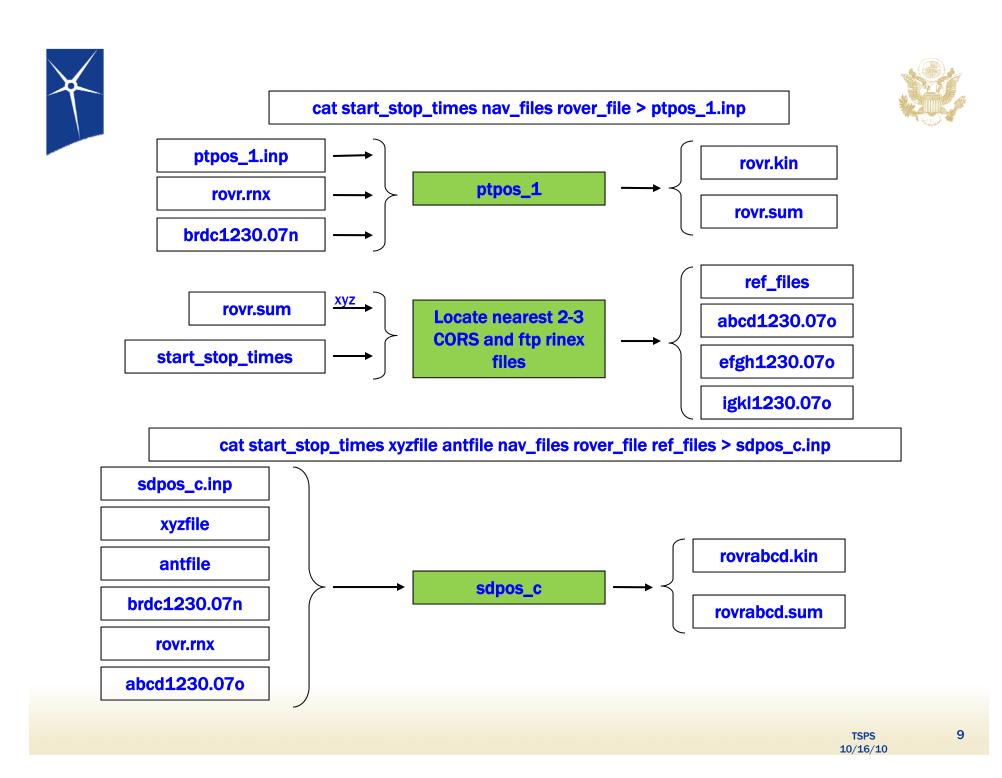
Address Canvassing

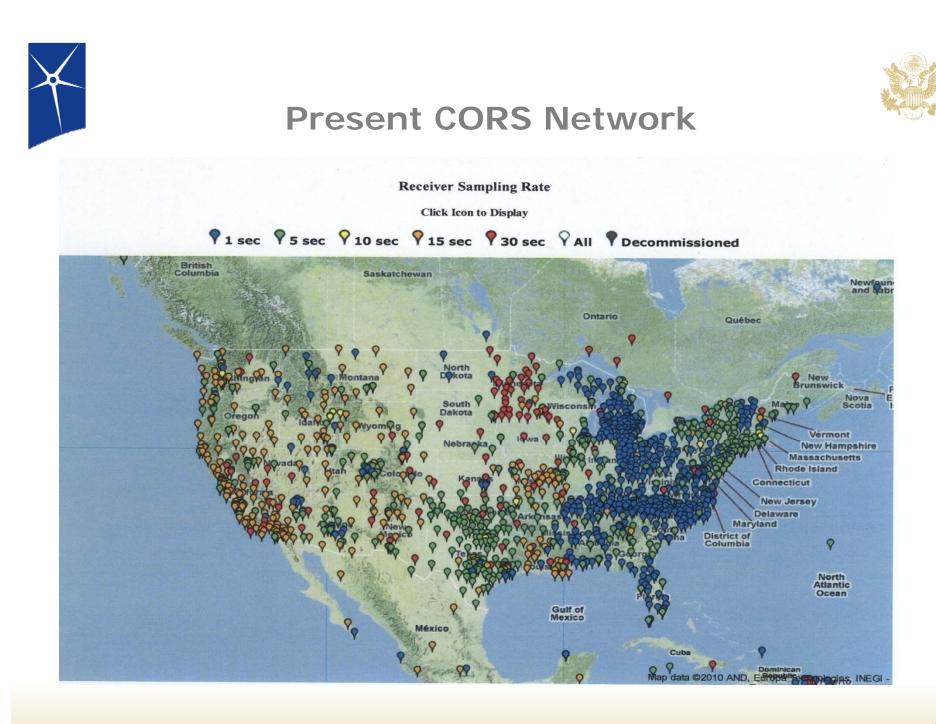
- The Census Bureau used Hand Held Computers (HHCs) to capture GPS structure points for every housing unit during its Address Canvassing field operation
 - The Address Canvassing operation supported the 2010 Census
 - Address Canvassing was the first nationwide collection of housing unit structure points using GPS technology to be conducted by the Census Bureau
 - Field collection occurred in spring 2009
 - The HHC had Wide Area Augmentation System (WAAS) capability to increase point position accuracy to 3 meters or less in an unobstructed environment



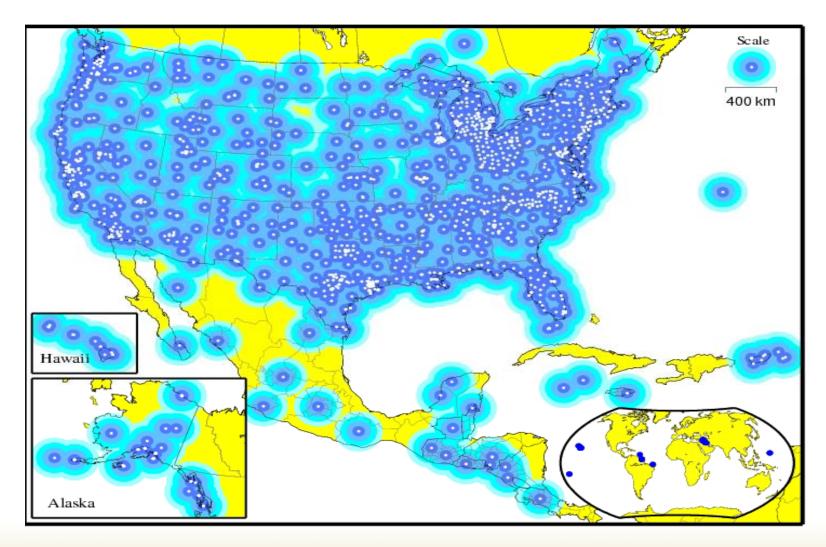
- For this historical undertaking the Census Bureau has partnered with NOAA's National Geodetic Survey (NGS) to extend the 3 meter accuracy coverage by post processing HHC data with Continuously Operating Reference Stations (CORS).
- NGS customized post processing software for Census Bureau.
- The NGS provided software has been installed on Census Bureau computers.
- The Census Bureau completed post-processing the housing unit structure points in January 2010.

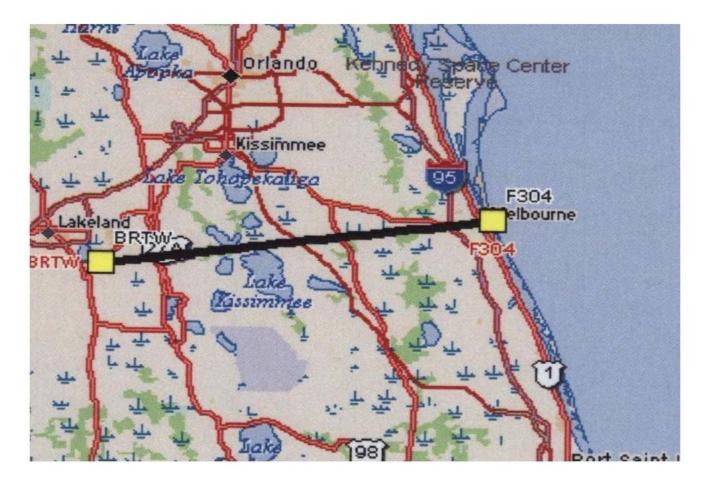



[1] Wilson, David L. *GPS WAAS Accuracy.* <u>http://users.erols.com/dlwilson/gpswaas.htm</u>

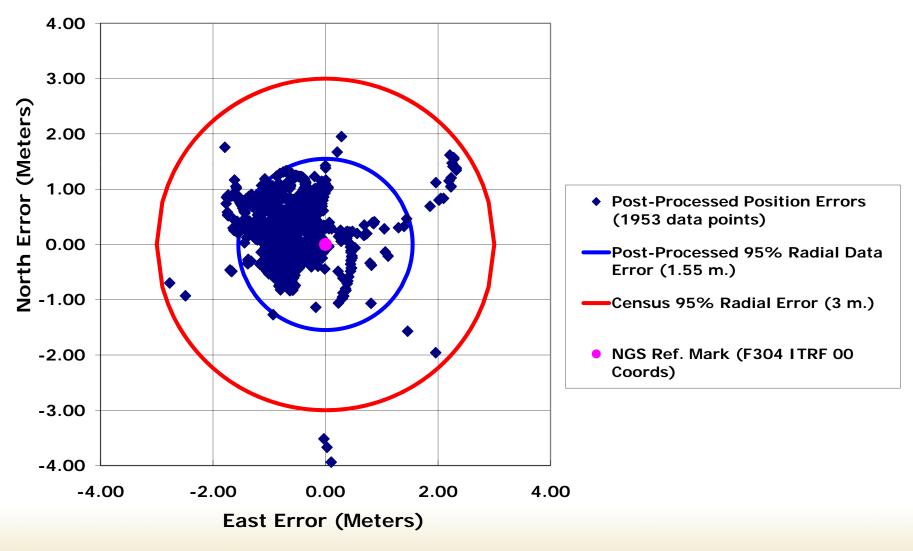


NGS Post Processing Block Diagram



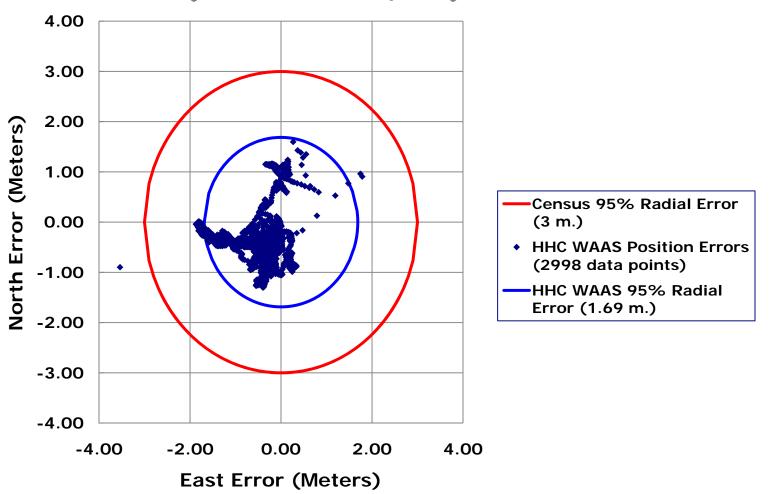

CORS Network Coverage with Reference Station Range of 200Kms

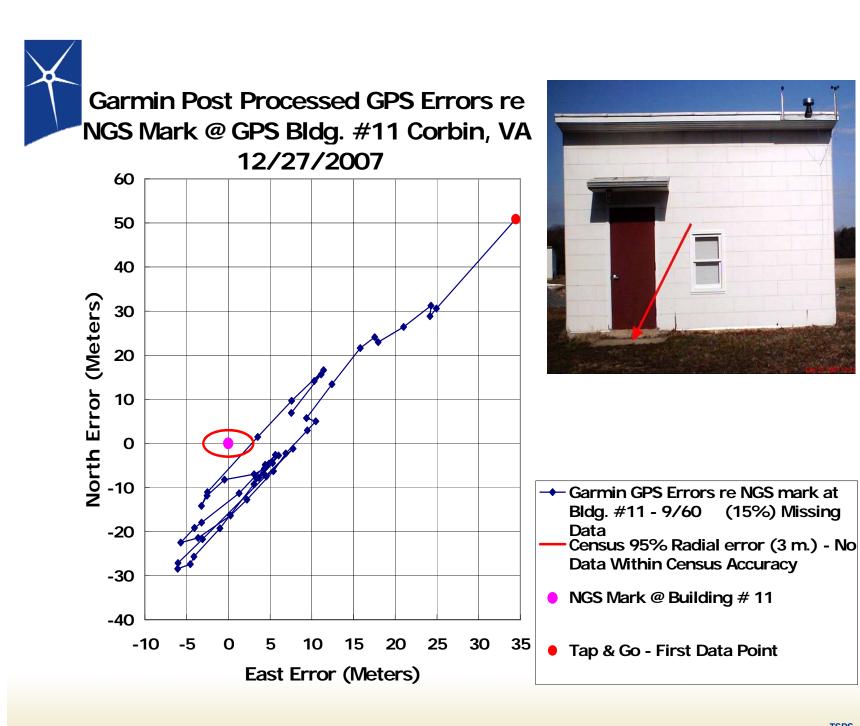
HHC Evaluation Unit Testing in Melbourne, FL 10/17/2006



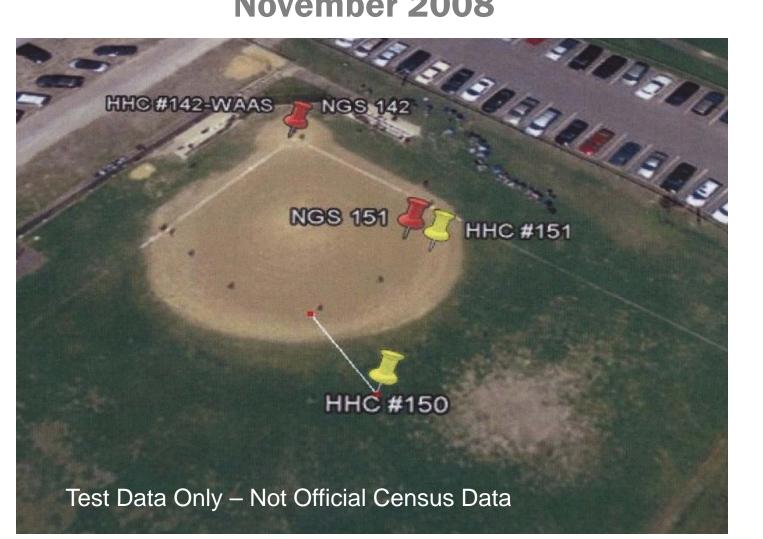
TSPS 12 10/16/10

Post-Processed Position Errors at NGS MARK F304 (Melbourne, FL) re CORS BRTW Ref. Station @ 120 Km.





HHC WAAS Position Errors at NGS F304 (Melbourne, FL) Ref. Mark


Post Processed with 120 Km Ref. Station	1.55 m. (95%) @ F304
WAAS @ F304	1.69 m. (95%)
WAAS @ 5062 (THRON)	1.50 m. (95%)
WAAS Post Processed with 120 Km Ref. Station	1.70 m. (95%) @ F304

Baseball Park Results November 2008

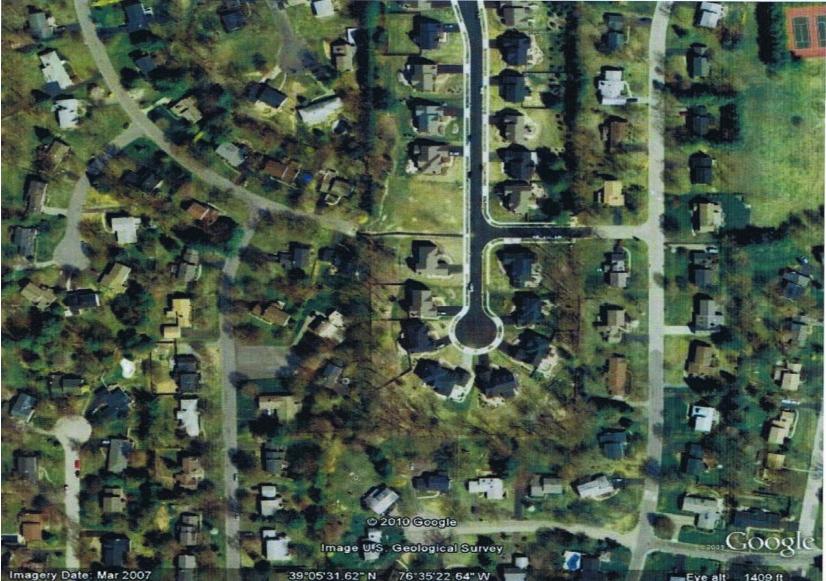
Table 2 Post Processed "Church II" Results

RMS (m.)	WAAS? Yes=2 No=1	East Error (m.)	North Error (m.)	Time HH/MM/S S	Data Point Desig.
25.5	1	2.09	-1.74	143343	H1
32.5	1	2.58	-0.46	143514	H2
35.7	1	5.82	-5.5	143914	Н5
18.2	1	1.85	-0.78	144015	H6
12.8	1	4.54	1.66	144111	H7
2.1	1	-3.5	5.3	144214	H8
3.5	1	2.19	-3.4	144325	Н9
13.1	1	-8.23	3.56	144431	H10
13.6	1	-3.9	1.33	144600	H11
16.2	1	-0.1	0.47	144709	H12
6.6	1	-9.91	7.3	144809	H13
47.9	1	-4.59	1.82	144908	H14
20	1	-22.17	6.93	145108	H15
20.7	1	-15.84	6.51	145206	H16

About 30% of Post Processed Data Within 3 m. of Map Spot

About 60% of Data Within 5 m. of Map Spot in a partially obstructed environment.

- First Data Set from Harris with SiRF Chip Set Message ID-28 Enabled
 - Test Data Only Not Official Census Data
- 5 Test Address Canvassing Residential Areas, a Parking Lot and a Baseball Park
- 400 Data Points were Post Processed; Post Processed Points used as Data Quality Indicator for Map Spot Data
- Parking Lot 2 of 3 Post Processed Points within 3 Meters. All Map Spots Were WAAS Corrected


Maryland Residential Area Test Results 11/20 & 11/21/2008

- 11/20 16% of Map Spot Data Within 3 m. of Post Processed Data; 36% Within 5 m.
- 11/20 WAAS Corrections on 25% of Data (200 Data Points)
- 11/21 14% of Map Spot Data Within 3 m. of Post Processed Data; 31% Within 5 m.
- 11/21 WAAS Corrections on 18% of Data (196 Data Points)

Imagery of Maryland Suburbs Where Initial Tests Were conducted

Results from NGS Post-Processing Software

TOTAL OUTPUT	75,715,492	% of TOTAL
Acceptable Solutions / Data Meets Census Requirements	60,454,515	79.84%
Unacceptable Solutions / Data Requirements Not Met	12,449,324	16.44%
No Solution for Raw GPS or Post Processed Data	2,811,653	3.71%

POTENTIAL SOLUTIONS

DISTANCE (m) RAW to PP	Number of MSPs	% of MSPs	AVG DISTANCE RAW to PP	AVG RMS RAW to PP
0 - 5.0	32,661,843	54.03%	2.70	1.70
5.0 - 10.0	16,269,070	26.91%	7.06	2.02
10.0 - 15.0	6,036,542	9.99%	12.13	2.18
15.0 - 20.0	2,620,523	4.33%	17.18	2.25
Greater than 20.0	2,866,537	4.74%		

EU – US Working Group C Study

EU-US Cooperation on Satellite Navigation

Working Group C

COMBINED PERFORMANCES FOR OPEN GPS/GALILEO RECEIVERS

Final version

July 19, 2010

TSPS 24 10/16/10

- Population data obtained from the Center for International Earth Science Information Network at Columbia University.
- Cities exceeding a half million people were selected.
- Total of 5173 sites used to produce separate statistics in open sky and urban sites.
- Mask angles of 15 and 30 degrees used in addition to multipath models in urban sites.
- GPS and GALILEO (Walker 27/3/1) constellations of 24 and 27 satellites respectively were considered.
- Future GPS-III, Galileo and combined GPS-III/Galileo signals considered.

1 Combined Performances for Open GPS/GALILEO Receivers, EU-US Cooperation on Satellite Navigation, Working Group C, July 19, 2010

Half-Sky Study Global Statistics of Mean HPE for Average Solar Cycle

HPE

		SF: BOC(1,1)	SF: MBOC	DF: MBOC- BPSK10
	HPE	Open Sky	Open Sky	Open Sky
	%ge pdop • 10 & nsat • 4	63.16%	63.16%	63.16%
	mean	9.39	7.68	4.08
GPS	stdev	1.94	2.08	
	RMS	9.59	7.96	4.12
	Median	9.33	7.77	3.96
	95th	12.59	11.03	5.11
	%ge pdop • 10 & nsat • 4	78.57%	78.57%	78.57%
	mean	10.48	9.09	6.11
Galileo	stdev	2.18	2.17	1.02
	RMS	10.70	9.35	6.20
	Median	10.42	9.01	6.25
	95th	14.17	12.81	7.47
	%ge pdop • 10 & nsat • 4	98.92%	98.92%	98.92%
	mean	6.11	5.28	3.22
GPS &	stdev	1.30	1.36	
Galileo	RMS	6.24	5.45	3.27
	Median	6.05	5.31	3.18
	95th	8.34	7.58	4.10

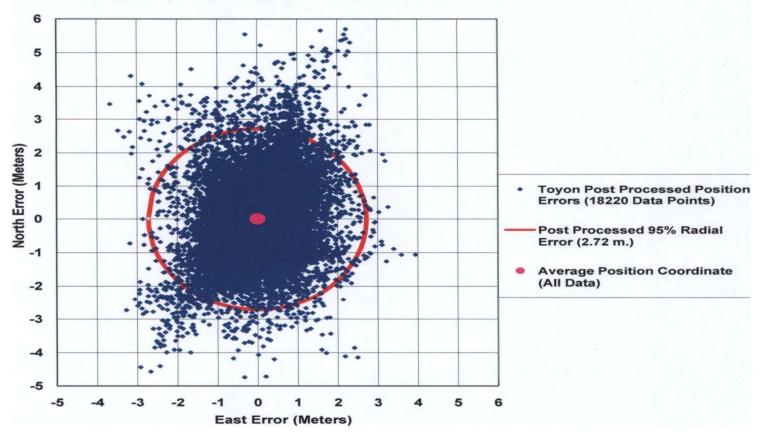
Urban Global Study (30 Deg.) Global Statistics of HPE for Peak Solar Cycle

HPE		BOC(1,1)	MBOC	Dual Frequency
		Urban	Urban	Urban
GPS	Availability [%]	57,28	57,28	57,28
	Mean [m]	11,19	6,43	7,26
	StDev [m]	0,93	0,69	0,90
	RMS [m]	11,23	6,47	7,32
	Median [m]	11,14	6,40	7,24
	95th perc. [m]	12,66	7,65	8,72
	Availability [%]	75,02	75,02	75,02
	Mean [m]	11,36	6,97	7,85
Galileo	StDev [m]	2,16	1,52	1,86
Bali	RMS [m]	11,56	7,13	8,07
-	Median [m]	11,31	6,68	7,52
	95th perc. [m]	15,93	10,03	11,57
GPS + Galileo	Availability [%]	98,93	98,93	
	Mean [m]	6,82	4,11	4,37
	StDev [m]	0,70	0,49	0,54
	RMS [m]	6,86	4,14	4,40
GPS	Median [m]	6,71	4,03	4,30
	95th perc. [m]	8,02	5,05	

Census Accuracy vs. EU-US Studies

	2 sigma (95%)	GPS and Galileo 2 sigma (95%)
GPS L1 C/A -Post Processed	15 - 20 m.	10.9 m. 30 Deg. Mask
Half Sky / GPS-III or Galileo	12.6 – 14.2 m.	8.3 m.
Urban 30 deg. Mask / GPS III-F or Galileo	12.7 – 15.9 m.	8.0 m.

Automated Map Spot Accuracy Analysis



Toyon Antenna Configuration # 1 (No Radome) in a Multipath Environment Goleta CA, June 23, 2008

Summary Test Conclusions

- NGS Post-Processing accuracy using CORS Reference stations was less than three meters (95%) in unobstructed environments.
- Three meter GPS accuracy may not be achievable at all map locations due to multipath and blocked signals; Census Bureau has a partnership in place to obtain the best possible GPS coordinates under these conditions.
- Post-processed coordinates minus map spot coordinates in partially obstructed environments less than five meters that meet the Census specification may range from 30% to 60% in a given address block from analysis of preliminary data.
- The Census Bureau and NGS are working together to ensure the highest quality of GPS collected data.

Next Steps

- Evaluate the effectiveness of post-processing of housing unit structure points captured using GPS technology in Address Canvassing.
 - Research ways to evaluate accuracy relative to specific housing structures.
 - Explore how to best evaluate housing structure accuracies under various conditions (i.e. with and without ground cover).
- Recommend possible improvements (both hardware, software, and new GPS signals) to improve coordinate accuracy data quality percentage.
 - Test automated spatial analysis capability offered by Sanborn.
 - Conduct R & D to configure a more robust handheld GPS unit for obstructed environments.

