

Enabling Multi-Constellation Advanced Receiver Autonomous Integrity Monitoring (ARAIM)

Leo Eldredge GNSS Program Manager FAA Navigation Services

ARAIM Overview

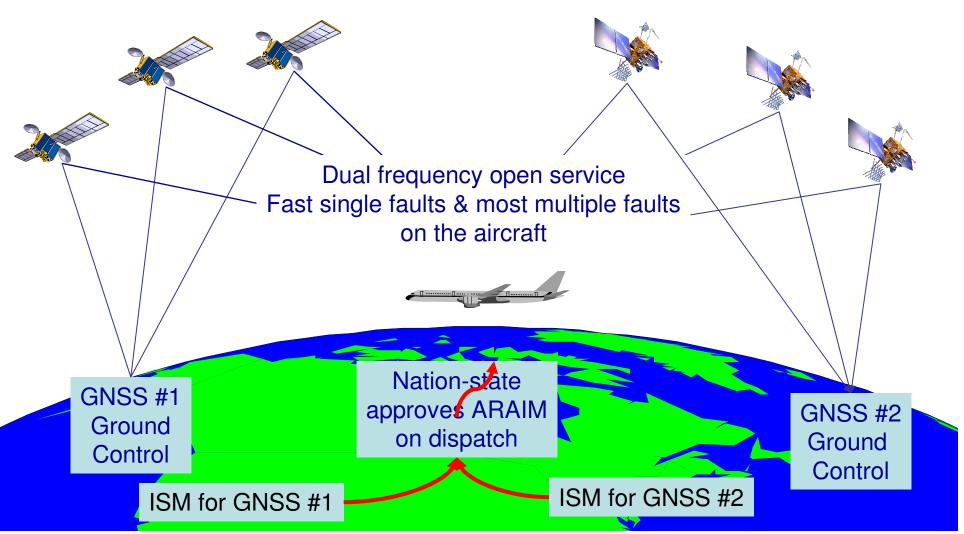


- GNSS Evolutionary Architecture Study (GEAS) Phase II Report Recommendations
 - Development of dual frequency SBAS
 - Development of architectures and algorithms for Advanced Receiver Autonomous Integrity Monitoring (ARAIM), based on
 - Dual frequency ARNS (L1 and L5) signals
 - At least two independent GNSS core constellations for civil aviation.
- GEAS determined ARAIM could enable worldwide LPV-200 performance, provided:
 - Measurement redundancy and geometric diversity was assured
 - Results based on assumed knowledge of specific "parameters" for the core GNSS constellations

ARAIM Results for 30 SVs & URA = .5 m

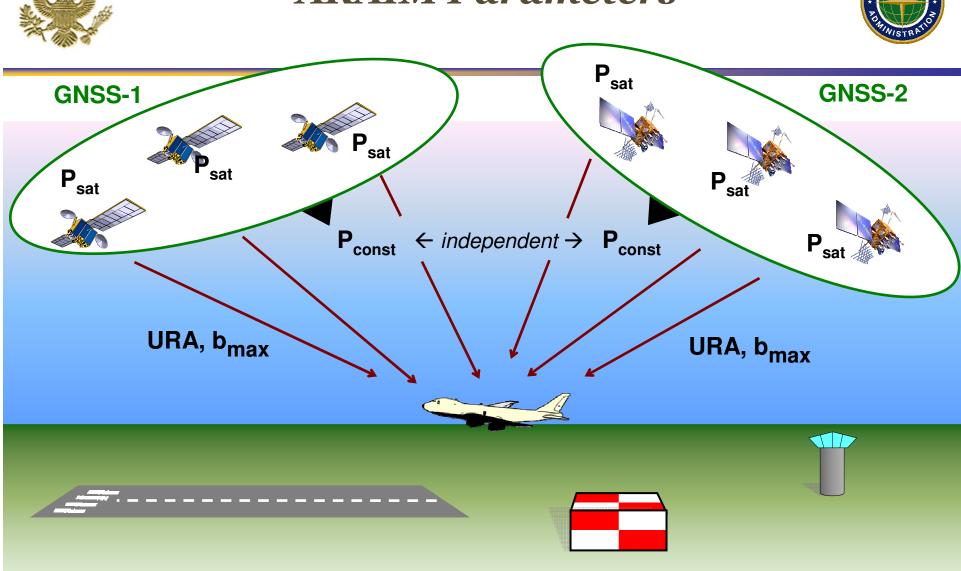
ARAIM currently predicated upon a user update rate of ~ 1hour

Performance Parameters for ARAIM



- ARAIM depends on GNSS specific constellation performance parameters:
 - 1. Bounding of fault-free clock and ephemeris error distributions
 - 2. Prior probability of SV faults
 - 3. Independence of faults between core constellations.
- ARAIM users receive an integrity support message (ISM)
 - GNSS service provider provides ISM to aviation users directly
 - ARAIM ISM generated by civil aviation authority with independent monitoring capability and broadcast to users

Integrity Support Message (ISM)



ARAIM Parameters

Example: Worldwide coverage results

less accuracy (URA)

Less constellation reliability

Less satellite reliability

P _{sat} /URA	.5 m	1 m	1.5m	2 m	3 m	3.5 m	4 m
10-5	100%	100%	100%	100%	100%	42.9%	3.4%
10-4	100%	100%	100%	100%	100%	0	0
10-3	100%	100%	100%	99.6%	6.6%	0	0

reliabile $P_{const} < 10^{-8}$

$$10^{-5}$$
 100%
 100%
 95.0%
 51.5%
 0
 0
 10^{-4}
 100%
 100%
 95.0%
 51.5%
 0
 0
 10^{-3}
 100%
 100%
 95.0%
 51.3%
 0
 0

$$P_{const} = 10^{-6}$$

$$P_{const} = 10^{-4}$$

GPS 27 + Galileo 27

 P_{sat} = Prob. of satellite fault

P_{const} = Prob.of constellation fault

 $b_{max} = 0.75 \text{ m}$

Parameters Needed From GNSS Provider

- User Range Accuracy → 'URA'
 - Standard deviation of the overbounding Normal distribution for clock and ephemeris errors
- Bias parameter \rightarrow ' \mathbf{b}_{max} '
 - May be needed to bound potential non-zero mean error distributions
- Fault state probability (fault-rate×time-to-notify) \rightarrow ' P_{sat} '
 - Needed for faults that <u>are</u> independent between satellites
- Probability of constellation-wide fault → 'P_{const}'
 - For multiple faults that are <u>not</u> independent between satellites
 - Example is Earth Orientation Parameter (EOP) fault undetected by GNSS ground system

Summary

- Four basic parameters are needed to enable ARAIM integrity:
 - URA and b_{max} to describe nominal performance of clock and ephemeris
 - Prior probability of satellite fault
 - Prior probability of constellation failure
- A common understanding of these parameters must be developed and agreed upon by the service providers for interoperability
- ISM is a mechanism to deliver these parameters to users
- Delivery of ISM could be from multiple sources
- GNSS service providers need to include these parameters in Performance Standards