GPS Augmentation Systems Status

Leo Eldredge, GNSS Group Federal Aviation Administration (FAA) September 2009

FAA GPS Augmentation Programs

WAAS Architecture

38 Reference Stations

3 Master Stations

4 Ground Earth Stations

2 Geostationary Satellite Links

2 Operational Control Centers

GEO Satellite Coverage Plot

Localizer Performance Vertical (LPV)

Global SBAS Coverage

Airports with WAAS Supported Instrument Approaches with Vertical Guidance

WAAS Enterprise Schedule

Local Area Augmentation System (LAAS)

- Precision Approach For CAT- I, II, III
- Multiple Runway Coverage At An Airport
- 3D RNP Procedures (RTA), CDAs
- Navigation for Closely Spaced Parallels
- Super Density
 Operations

GBAS Pathway Forward

- Cat-I System Design Approval at Memphis Complete
- Cat-III Validation by 2010
- Cat-III Final Investment Decision by 2012

LAAS/GBAS International Efforts

Future Considerations

Galileo (EU)

COMPASS

GLONASS

GPS

Two Civil Frequencies

- The ionosphere creates the largest source of uncertainty affecting today's use of GPS for aviation
- When GPS L5 becomes widely available it will be possible for the user receivers to directly remove the ionosphere delay errors
- However, the two frequency combination amplifies the effects of other error sources
 - More satellites tend to reduce the magnitude of the errors

WAAS Dual Frequency User Potential (No "RDM Constraint")

Current International Signal Plans

Interoperability of Integrity

- Interoperability should be a goal not just for GNSS signals, but for integrity provision as well
 - Augmentation systems already internationally coordinated
- Different service providers may select different design choices and offer different assurances
 - However, it is important to establish a common understanding of GNSS performance characteristics and their relationship to provision of integrity
 - Cooperation and transparency are essential
- Combining signals from multiple interoperable constellations can improve performance and availability
 - Presents opportunity for a truly international solution
 - Not necessarily dependent on any single service provider
 - Seamless global coverage

GNSS Integrity Requirements

- Assure good nominal signal accuracy
 - On order 1 m ranging accuracy
- Assure good availability of signals
 - Assure most satellites working most of the time
- Assure good continuity of signals
 - Less than 10⁻⁵/hour probability of unexpected outages
- Assure low integrity fault rates
 - On order 10⁻⁵/SV/Hour
- Perform a fault modes and effects analysis
 - Understand and make transparent potential faults and their effects
 - Assure that multiple satellites do not have consistent errors at the same time
 - Assure limited duration outages (e.g., an hour) of unexpected faults

ARAIM Results for 30 SVs & URA = .5 m

ARAIM currently predicated upon a user update rate of ~ 1hour

Summary

- WAAS currently providing service to aviation in the U.S. National Airspace System
- LAAS system design approval for Category-I completing in September
- LAAS activity to continue to Category-II/III
- Dual Frequency GNSS Offers Significant Potential for Aviation

RNP and ADS-B (RAD) Enabled with GNSS PNT

	Navigation (≥ 99.0% Availability)		Surveillance (<u>></u> 99.9% Availability)			Positioning		
	Accuracy (95%)	Containment (10 ⁻⁷)	Separation	NACp (95%)	NIC (10 ⁻⁷)	GNSS PNT (99.0 – 99.999%)		T 9%)
En Route	*10 nm	20 nm	5 nm	0.1 nm (7)	1 nm (5)			\setminus /
	*4 nm	8 nm				GPS		
	*2 nm	4 nm						
Terminal	*1 nm	2 nm		0.05 nm (8)	0.6 nm (6)	SBAS		
LNAV	*0.3 nm	0.6 nm	3 nm					
RNP (AR)	*0.1 nm	**0.1 nm	2.5 nm DPA	0.05 nm (8)	0.2 nm (7)			
LPV	16m/4m	40m/50m	2.5 nm	0.05 nm (8)	0.2 nm (7)			
LPV-200	16m/4m	40m/35m	DPA					
GLS Cat-I	16m/4m	40m/10m	2.0 nm	121 m (8)	0.2 nm (7)	GBAS		
GLS Cat-III	16m/2m	40m/10m	IPA					

*Operational requirements are defined for total system accuracy, which is dominated by fight technical error. Position accuracy for these operations is negligible.

** Containment for RNP AR is specified as a total system requirement; value representative of current approvals.

Dependent Parallel Approach (DPA) Independent Parallel Approach (IPA) Surveillance Integrity Level (SIL) Navigation Integrity Category (NIC) Navigation Accuracy Category for Position (NACp)