

"Long-Term Future of GPS"

Institute of Navigation (ION) San Diego, CA 28 January 2008

> Col Mark Crews, USAF Chief Engineer

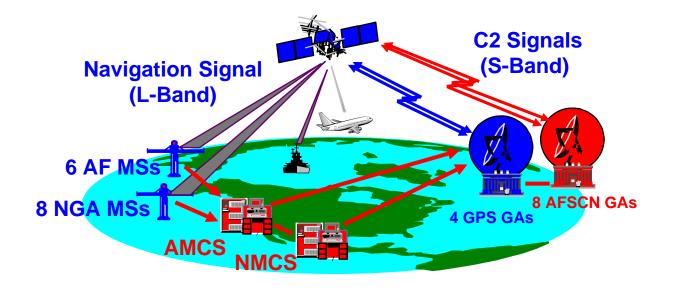
> > GPS Wing Los Angeles AFB, CA

+1-310-653-3873 mark.crews@losangeles.af.mil

• Present/near-term future:

– New GPS control segment & constellation performance

• Mid-term future:


- Next generation control segment (OCX) & Block III SVs

• Long-term future:

- Beyond GPS-III
- Role of GPS in future system-of-systems

- Transitioned to the new AEP OCS (10-14 Sep 07)
- IIR-17(M) launched (17 Oct 07) by new launch system
 - Replaced previous Command and Control System (CCS)

Flawless transition of robust monitor & control network

30 Healthy Satellites Baseline Constellation: 24

- 13 Block IIA satellites
- 12 Block IIR satellites
- 5 Block IIR-M satellites
 - 3 additional IIR-M satellites to launch
- Since Dec 93, U.S. DoD met/exceeded GPS service performance commitments
 - SPS & PPS Performance Standards
- U.S. DoD committed to improving GPS service

GPS Launch Update

Most Recent Launch

- IIR-18(M) 5th modernized SV
 - Launched Wednesday, 20 Dec 07
 - SVN 57, PRN 29, slot C1
 - Set healthy on 2 Jan 08

Next Launches

- IIR-19(M) Mar 08
- IIR-20(M) Jun 08
 - L5 demo payload
- IIR-21(M) Sep 08
- IIF-1 launch in 2009

GPS Block IIF Program

Program Description

12 Satellites Boeing – Seal Beach, California 2 Rubidium + 1 Cesium clock 12 year design life Launch options: Atlas V or Delta IV SPS signals: L1C/A, L2C, L5 PPS signals: L1-L2P(Y), L1-L2M

Program Status

SV1 TVAC1 test successful - Dec 07

SV1 launch Atlas V SV2 launch Delta IV

Present/near-term future:

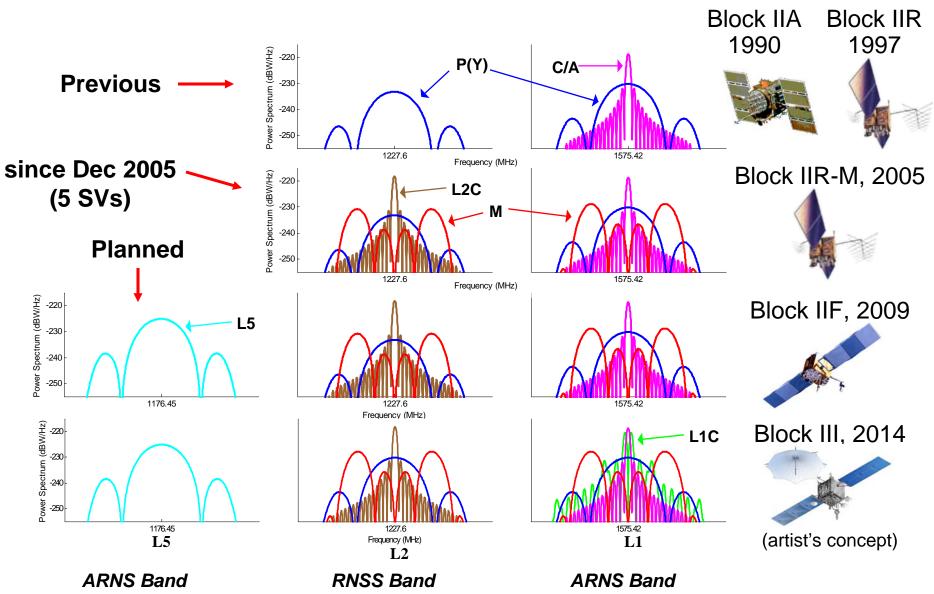
- New GPS control segment & constellation performance

• Mid-term future:

Next generation control segment (OCX) & Block III SVs

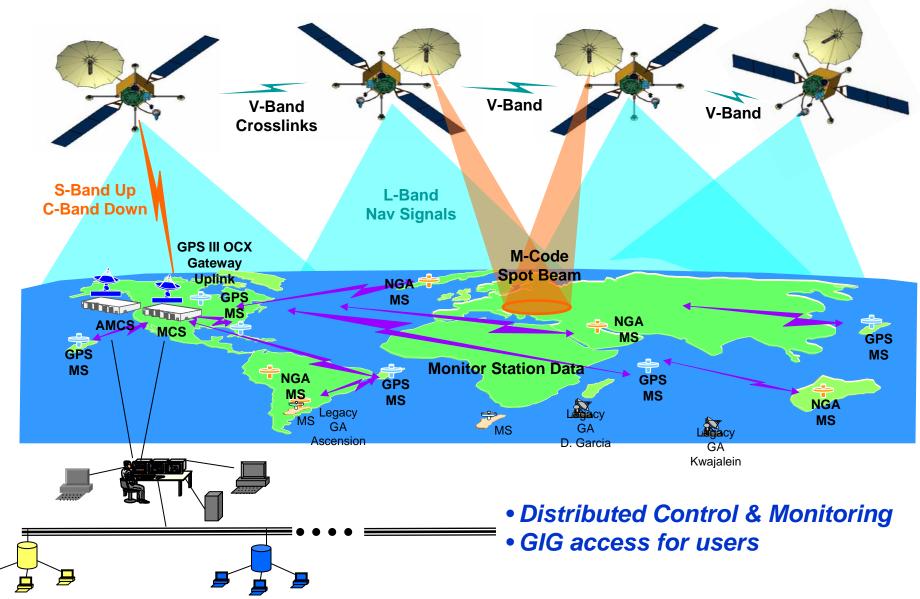
• Long-term future:

- Beyond GPS-III
- Role of GPS in future system-of-systems


GPS Modernization

Space Segment			
Block IIA/IIR • Basic GPS • C/A civil signal (L1C/A) • Std Pos. Service • Precise Pos. Service L1 & L2 P(Y) nav • NDS	Block IIR-M • 2nd civil signal (L2C) • M-Code signals (L1M, L2M) • Flex A/J power (+7dB)	Block IIF •3rd civil signal (L5)	 Block III Increased accuracy Increased A/J power (up to 20 dB) Signal integrity Search and Rescue Common signal with Galileo (L1C)
Control Segment			
Legacy OCS • TT&C • L1 & L2 monitoring	<u>AEP</u> • IIR-M IIF TT&C • WAGE, AII, LADO • SAASM • New MCS/AMCS	OCX V1 • New Architecture • Signal Monitoring	

GPS modernization process looks ahead beyond 2020


GPS Modernization – Spectrum

- L1C will have the following benefits compared to L1 C/A:
 - Separate pilot carrier without data (75% of L1C power)
 - Pilot carrier provides 4.8 dB better code & carrier tracking threshold
 - Advanced FEC 1.4 dB better data demodulation threshold
 - More precise message structure (as with L2C and L5)
 - Longer PRN codes (better correlation performance)
 - Min L1C power specified to be 1.5 dB higher than C/A
- EU & US teams designed new MBOC signal
 - GPS TMBOC: BOC(1,1) chips time-multiplexed with BOC(6,1) chips
 - Provides more code transitions to enhance multipath mitigation
- L1C <u>draft</u> specification, IS-GPS-800, available (<u>http://www.navcen.uscg.gov/gps/modernization/default.htm</u>)
 - Final approval is expected soon
 - Wait for approved version before committing to silicon

GPS III Block-Based Space Segment Features

• Operational Control Segment (OCX)

- Enables modernized messaging (CNAV, CNAV-2, MNAV)
- Controls larger (>32 SVs), more capable GPS constellation
- Monitors all GPS signals
- Air Force Space Command (AFSPC) is standing up a Community of Interest (COI) to implement net-centric operations using OCX
 - GPS COI is a forum for users to recommend the data and services that should accessible from the global information grid (GIG)
 - Organizations interested in participating in the COI should contact Robin Booker, AFSPC, at <u>Robin.Booker.Ctr@peterson.af.mil</u>

• Two development contracts awarded – 21 Nov 07

– Northrop-Grumman & Raytheon

Current & Forecast GPS Accuracy Depends on User Range Error (URE)

"User Range Error" will continue to dramatically improve

Present/near-term future:

- New GPS control segment & constellation performance

• Mid-term future:

- Next generation control segment (OCX) & Block III SVs

• Long-term future:

- Beyond GPS-III
- Role of GPS in future system-of-systems

Increasing number of GNSS service providers

Global Navigation Satellite Systems (GNSS)

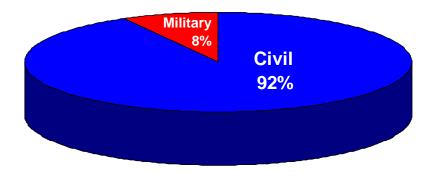
- GPS, GLONASS, GALILEO, QZSS, COMPASS
- Increased GNSS augmentation services

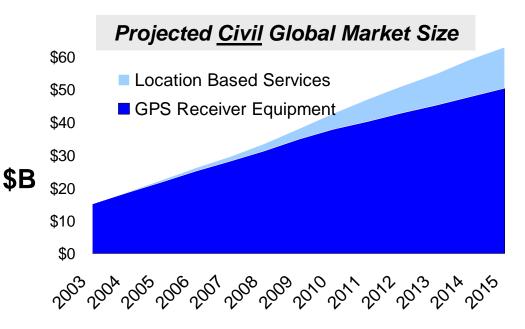
Widespread civil uses

- Automobile, aviation, maritime, railroad, etc.
- Search and rescue
- Surveying and mapping
- Tracking services: cell phones, freight, etc,
- Surveying, mapping, agriculture

Trends in civil

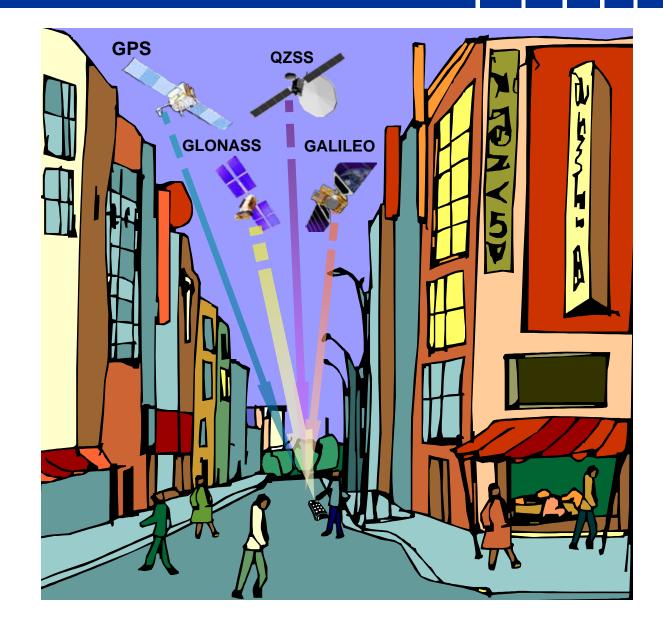
- Banking and finance
- Offshore drilling
- Fishing, boating, and general recreation
- Growing expectations from mass-market users
 - More affordable, lower power receivers
 - Greater positioning accuracy (meters to sub-meter ranges)
 - Better availability in impaired environments





 GPS receiver market is predominantly civilian 2004 GPS Market Segments

• GPS civil receiver market growth will be significant


Source: ABI 2005 "GPS World Markets", ABI 2004 "Location Based Services," Monitor Analysis

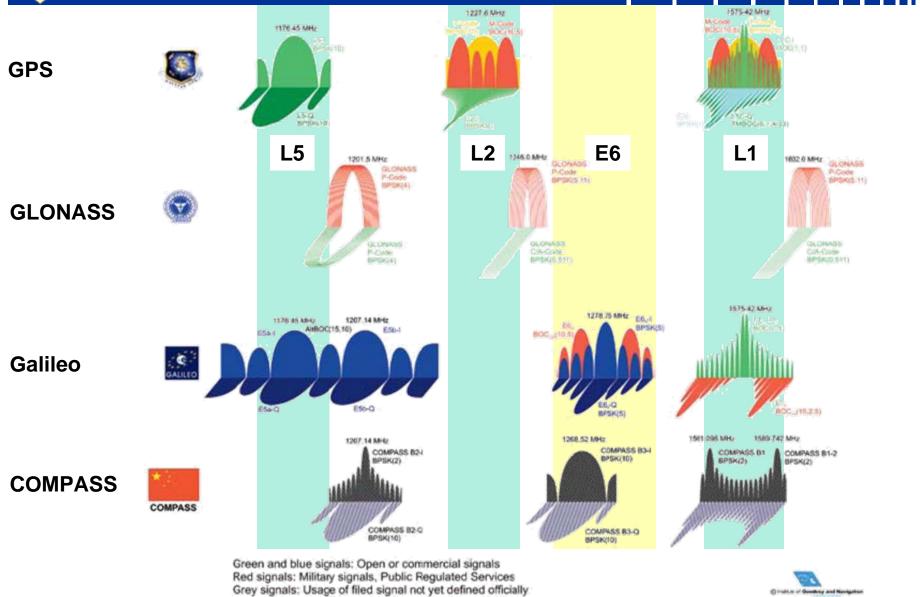
- Users will obtain better availability and accuracy by using multiple systems
- Low cost GNSS receivers are vital for mass market applications
 - GNSS signals should be highly interoperable
 - Implies common center frequencies & similar modulation (CDMA)
- GNSS service providers can work together to benefit users
 - Sustain radio frequency compatibility
 - One GNSS service doesn't unacceptably degrade another service
 - Modernize systems for best interoperability
 - Enable superior, combined GNSS navigation solutions

Users would benefit from greater GNSS interoperability

GNSS Interoperability: Seamless Navigation

Characteristic	Interoperability Benefit
Common carrier frequencies	Common antenna and receiver front end— lower power and cost; common carrier tracking for higher accuracy
Similar spreading modulation spectra	Lower cost; common-mode dispersive errors removed in navigation solution for higher accuracy; front-end filter will work for all signals; same analog-to-digital sample rate
Common time and reference frames, or broadcast offsets	Navigation solutions can more easily use measurements from different systems

GPS + *WAAS* = *Successful Interoperability Example*

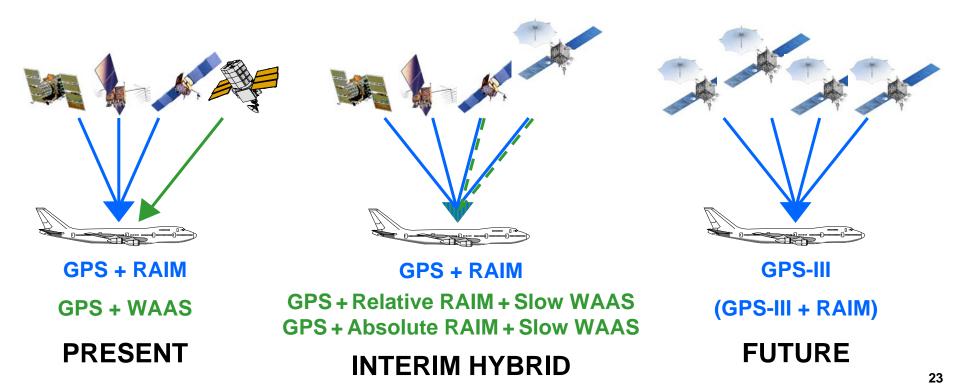

GPS & the System of Systems Evolution

• GPS has long been combined with other sensors & systems

- Inertial measurement unit (IMU), altimeter, speed, heading, clock, . . .
- Local area and wide area DGPS corrections
- GPS-GLONASS integrated receivers
- Assisted GPS (AGPS) aiding signals
- GPS has been the stable core of a PNT "system of systems"
- Opportunities are increasing for other combinations
 - Lower cost, better performing sensors, e.g., MEMS IMU
 - Integration with communication links
 - For aiding, ephemeris, or traffic information
 - Augment GPS navigation with terrestrial ranging signals
 - Other GNSS services
 - Galileo, QZSS, IRNSS, more interoperable GLONASS signals, etc.
- GPS Wing welcomes these combinations
 - GNSS international compatibility & interoperability working groups

Current GNSS Frequency Plans

Source: Hein, et. al, "Envisioning a Future GNSS System of Systems," Inside GNSS, Jan/Feb 07



Improvement Ideas Beyond GPS III – Space Vehicles (SVs)

- Eliminate the need to transmit clock corrections (A₀, A₁, A₂)
 - Ground steers SV clocks to GPS time
- Add interoperable civil signal at 1278.75 MHz
- Capability to broadcast messages from SVs
- Greater SV signal integrity
 - GPS Evolutionary Architecture System & ADS-B

Greater Signal-in-Space Integrity

- GNSS Evolutionary Architecture Study (GEAS)
 - FAA sponsored, aviation centric, WAAS related
- Some major findings:
 - GPS-III requirements provide enough integrity for aviation
 - May be feasible to transition from GPS+WAAS to GPS-III
 - Early transition via hybrid system appears possible

Improvement Ideas Beyond GPS III – Operational Control System (OCX+)

- Closer fusion of communications, navigation, & networks
 - Ground-based distribution of Nav data & corrections
 - Expand utility of "net-centric" service-oriented architecture
- OCX+ would post long-duration (e.g., 24 hour) NAV message data on the Internet at each update (~ 15 minute updates)
- Service providers get clock & ephemeris corrections and make this information available to users in appropriate format
 - For example, distribution by cell phone providers
 - Faster time to first fix by eliminating need to acquire NAV message from each satellite
 - Useful when driving in an urban environment
 - Significant improvement of GPS service
 - Improved accuracy for some applications
 - Source data for AGPS services

Improvement Ideas Beyond GPS III – User Equipment

Comm/Nav/Network Fusion

- Benefit in comm/nav user equipment integration
- Better accuracy, reduced time uncertainty, data stripping, network interference detection/location
- A variety of approaches to comm/nav integration exist today and should be studied further
- Additional investment and prototyping is required
- Chip Scale Atomic Clocks
- Software defined receiver

Success in GPS sustainment & modernization

- New capabilities delivering enhanced performance
- Developments on track to enhance space and control segments
- GPS is an excellent global navigation utility
 - Excellent cooperation with augmentation service providers
 - Improving interoperability/compatibility for GNSS
- GPS is boldly moving forward into the future
 - To remain the pre-eminent space-based PNT service
 - GPS will continue to lead the future GNSS system-of-systems