

Improving the GPS L1 Signal

GPS III Offers the Opportunity

U.S. Department of the Interior U.S. Geological Survey

Introducing

Estimated Signal Availability

First L1C Modernization Question

Where To Fit a New L1 Signal ?

Must "Fit" Between M and C/A Codes

U.S. AIR FORCE

6

Such As BOC(1,1) (OK for M and for C/A)

What's a BOC ?

- BOC = Binary Offset Carrier
- The code is modulated by a square wave
- M code is a BOC(10,5)
 - 5 MHz code modulated with a 10 MHz square wave
- BOC(1,1)
 - I MHz code modulated with a 1 MHz square wave

Two U.S. Signal Spectrum Candidates

Galileo Signal Decision

http://europa.eu.int/rapid/start/cgi/guestfr.ksh?p_action.gettxt=gt&doc=IP/04/264|0|RAPID&Ig=EN&display=

Loyola de Palacio welcomes the outcome of EU/US discussions on GALILEO

The United States and the European Commission, joined by the European Union Member States, held a successful round of negotiations in Brussels on 24-25 February 2004. The delegations built upon progress made in The Hague and in Washington and were able to reach agreement on most of the overall principles of GPS/Galileo cooperation.

 Adoption of a common baseline signal structure for their respective open services (the future GPS intends to use a BOC 1,1 signal whereas the Galileo open service intends to use a fully compatible optimized version of the same signal which guarantees an high-level of performance).

Autocorrelation Functions (Absolute Value)

Multipath Defined

Narrow Correlator Multipath Error

Multipath Performance

- With multipath mitigation, there is no effective difference in multipath error
 - Requires wide bandwidth receiver processing
- Without multipath mitigation, higher code clock rates do reduce multipath error
 - However, short delay multipath generally causes more trouble and affects all signal options
 - Local reflections tend to be stronger
 - Phase change tends to be much slower, so filtering is less effective (carrier-aided code smoothing)

GPS III Power Control Thinking

First L1C Modernization Question

Triple Minimum C/A Power (4.77 dB)

Advantages

- Simple improvement
- Increase minimum C/A power by 4.77 dB
- No receiver change to benefit
- Helps all C/A users, one launch at a time

(Also could hurt) -

Disadvantages

- Raises C/A noise floor 1.8 dB
- Net is 4.8 1.8 = 3.0 dB (x3 yields x2 effectiveness)
- Data also only 3 dB better
- Retains <u>fixed</u> data format
- Unimproved crosscorrelation (Increased strong-to-weak signal correlation may force receiver software updates if not a receiver replacement)
- Not a "competitive" signal

New L1C Signal Improvements

- Twice the minimum C/A signal power
- Longer codes (10,230 chips minimum)
 - Eliminate cross-satellite correlation interference
 - Reduce effect of narrowband interference
- Message improvements
 - Higher resolution, reduced error rate, more flexible
- Data-less signal component
 - Pilot carrier improves tracking threshold
 - Better for high precision phase measurements
- Increase signal bandwidth (code clock rate)
 - Added interference protection, less code noise

Next L1C Modernization Questions

L1C Modulation Choices

- Choice will be made by the Government and must balance between interference to legacy C/A users and national security
- BOC(1,1) seems to be the best compromise
- BOC(5,1) is better for interference but risks tracking the wrong autocorrelation peak and forces a wide receiver bandwidth
- Longer codes solve the C/A crosscorrelation problem (strong signal interference with weak signals)

BOC(5,1) Considerations

- Adjacent correlation peaks only 0.9 dB down
 - What is the risk of tracking the wrong peak?
- But, the peaks are 30 meters apart
- Methods exist to convert signal to BPSK(1)
 - Techniques defined by C. Cahn and by P. Ward
 - Convert double sidebands to center frequency
 - No ambiguity in tracking BPSK(1) result
 - If <15 m error, can then track BOC(5,1) center peak</p>
 - Steeper autocorrelation function, more code transitions
- Requires 3x bandwidth of BOC(1,1) receiver
- Multipath mitigation also is less effective

Data Structure Improvements

- A modern signal would share message structure improvements with L2C and L5
- Forward Error Correction (FEC) improves data threshold by 5 dB
- High <u>resolution</u> ephemeris (1 cm)
- Compact almanac (7 satellites in one message block)
- Staggered almanac timing speeds collection
- Message will define the satellite

100 bps Data Rate or Faster

Advantages

- Permits additional messages
 - **Integrity data?**
 - **Differential corrections?**
- What new messages would you want?

Disadvantages

- **Requires more signal power** to receive any message
- 100 bps requires 4 times more signal power than 25 bps (6 dB)
- Signal must be 6 dB above tracking threshold to obtain messages
 - Autonomous, not assisted, tracking threshold

25 bps Data Rate

Advantages

- Messages can be acquired at the autonomous signal tracking threshold (not Assisted GPS threshold)
- Especially helps in poor signal conditions such as in a forest, on a tree-lined road, indoors, or with interference
- In a tough environment can be the difference between working and not working

Disadvantages

 Requires twice as long to obtain messages compared with 50 bps

Clock & Ephemeris in:

- 18 to 24 sec at 50 bps
- 36 to 48 sec at 25 bps
- Time To First Fix (TTFF) can be 24 seconds longer than with 50 bps (traditional rate)

Choose One After Each Diamond

Questionnaire Page 1

L1C Questionnaire

Comments:

Questionnaire Page 2

Application Specific Questions

Name:			

Title/Position Organization _

	Your Prim	nary Expertise		ן ר		Applications
	Professional & Scientific	Commercial	Consumer		1.	
Land						
Sea						
Air						
Space						
				-		
E	Expected Num	ber of Users in	2005			
	Professional & Scientific	Commercial	Consumer			
Land						
Sea						
Air						
Space						
				-		
E	Expected Num	ber of Users in	2020			
	Professional & Scientific	Commercial	Consumer			
Land						
Sea						
Air						
Space						

Importance									
	Best	Worst							
Parameter	Desired	Acceptable	Importance						
Accuracy									
TTFF									
Availability									
Continuity									
Integrity									
Robustness									

