

Towards a GPS High Accuracy Service (GPS HAS) Based on GDGPS

Attila Komjathy, Group Supervisor and Larry Romans, GDGPS Chief Technologist

Near Earth Tracking Systems (335S) Group

Tracking Systems and Applications Section

Outline

- Motivation and objective
- Galileo HAS vs GPS HAS using GDGPS
 - GPS HAS advantages and challenges
- GDGPS capabilities relevant for GPS HAS
 - GNSS networks
 - GDGPS Operation Centers (GOCs)
 - Redundancy and robustness
 - GNSS POD accuracy, recent stats of UREs, orbit and clock errors
 - Current real-time PPP performance
- Concluding remarks

- Motivation: find an owner within the Government community to support and sustain GPS HAS capabilities using GDGPS as per PNT Subcommittee
- Objective: show the current technical capability that JPL brings to enhance GPS performance by adding High Accuracy Service (HAS) using GDGPS

Galileo High Accuracy Service (HAS)

Galileo HAS vs GPS HAS Using GDGPS

	Phase 1 Initial Service	Phase 2 Full Service	GPS HAS Using GDGPS
Coverage	EU+	Global	Global
Orbit corrections	Y	Y	Y
Clock corrections	Y	Y	Y
Code biases	Y	Y	Y
Phase biases	Y	Y	Y
Galileo corrected signals	E1, E5a, E5b, E5, E6	E1, E5a, E5b, E5, E6	E1,E5a,E5b (++)
GPS corrected signals	L1, L2C	L1, L2C, L5	L1W. L2W. L5Q (++)
Signal Quality indicator	N	Y	TBA
Horizontal accuracy requirement 95%	> 20 cm	20 cm	< 10 cm
Vertical accuracy requirement 95%	>40 cm	40 cm	< 20 cm
Convergence time requirement Global, no ionosphere (Service Level 1)	> 300 s	300 s	TBA
EU, ionosphere corrections (Service Level 2)	N/A	100 s	300 sec
Ground channel	Y	Y	Y
Ground reference stations	14 (GSS)	To be defined	100+
Max. sat. downlinks (448 bps)	20	To be defined	Ν
Authentication	N	Y	Possible
Phase Start	2022	2024+	Unplanned

++ supporting different signals at the same frequency via code biases

Fernandez-Hernandez et al., 2022

Potential GPS HAS with GDGPS vs GAL HAS

Potential GPS HAS Features

- **Global network** of GDGPS monitoring-stations available (100+ stations globally)
- Three independent GDGPS Operations Centers (GOCs). They are:
 - geographically separated,
 - redundant power supplies, and various ancillary devices,
 - computational redundancy, spares, and backup capabilities bring resiliency
- GDGPS is **technologically fully capable** of providing global high-accuracy corrections for a potential GPS HAS. A history of innovation and reliable service.
- Meets and exceeds accuracy requirements set for GAL HAS Phase 2 (horizontal 20 cm (95%) and vertical 40 cm (95%)
- Latency including internet distribution consistently measured approximately 6 sec May 4, 2022 This document has been reviewed and determined not to contain export controlled technical data.

Differences with Galileo HAS

- Ground-based distribution of solution, over internet and other land lines (vs 20 uplink stations for GAL HAS)
- No Signal-in-Space (SIS) planned for GPS
- **PPP convergence times** not systematically established yet

6 jpl.nasa.gov

Network of GDGPS-Processed GNSS Receivers

- GDGPS uses and supports NASA-owned JPL-operated GNSS receivers (GGN)
- Network also augmented by a smaller set of GDGPS-operated sites
- Publicly available IGS streaming data supplementing the global network

The available global tracking network undergoes continual review and upgrading.

Maintaining GDGPS Operations Centers (GOCs)

- Operational data processing is carried out in three independent GDGPS Operations Centers (GOCs) with separate ISPs.
- **Geographic separation** provides resiliency to single points of failure considering outages or natural hazards.

8

Resilience: Redundancy and Robustness

	0	perat	tional GNSS Filter	'S
GPS	DN	gps1dn		pod fast
	DN	gps2dn	dato i dri	pod fast
	ос	gnss7oc	detdlop	pod fast
		gnss8oc	Galdroc	pod fast
GPS+GLO	DN	gnss1dn	datd1dn i datd2dn	pod fast
		gnss2dn		pod fast
	ос	gnss10oc	datd1oc + datd2oc	pod fast
		gnss11oc		pod fast
GPS+BDS+QZS	DN	gnss3dn	datd1dn + datd2dn	pod fast
		gnss4dn		pod fast
	ос	gnss12oc	datd1oc + datd2oc	pod fast
		gnss13oc		pod fast
	DN	pod1dn	datd2dn + (datd2dn + datd1oc)(SSR)	pod fast
GPS+GAL		pod2dn	datd2dn	pod fast
	00	gnss14oc	datd2oc + (datd2oc + datd1dn)(SSR)	pod fast
		gnss15oc	datd2oc	pod fast
			Operational GNSS-SS	SR
	ос	dev10oc	datd2oc + datd1la	pod fast
GPS+BDS+GAL		gnss2oc	(dev/backup for dev10oc)	pod fast
	LA	pp1la	datd2la + datd1oc	pod fast
	DN	pp4dn	(will replace pp1la for ops)	pod fast
			Biases	
GPS,BDS,GAL	LA	gnss2la	ftp1la	link
		bias1la	-	(new style to appear)
	ос	bias1oc	ftp1oc	(redundant instance to appear)
			PPP / Monitoring	
GPS	LA	dev1la	dev(W1W2+C1C2)	pod fast
GPS+GLO+GAL+BDS+QZS	LA	dev2la	PPP(5con decoupled + in-situ comparison)	pod
GPS	ос	pp1oc	PPP(decoupled, comparison for SSR)	pod fast

- Network design for robustness: through system redundancy
- GOCs <u>redundantly</u> connected with internet using leased network connections
- Geographic separation provide a <u>resiliency</u> to single points of failure, whether technical failure, or to natural hazards
- Each GOC hosts 10-20 high-end computers along with firewalls, switches, storage devices, redundant power supplies, with <u>computational</u> <u>redundancy, spares</u>, and <u>backup</u> <u>capabilities</u>

May 4, 2022

This document has been reviewed and determined not to contain export controlled technical data.

GNSS Orbit Determination Accuracy Capabilities of the GDGPS System

GDGPS Published Baseline Requirements
--

Attribute	GPS	Galileo	BeiDou	GLONASS	QZSS	NAVIC
Orbit Errors	< 0.15 m	< 0.15 m	MEO < 0.3 m	< 0.2 m	< 2 m	< 10 m
			IGSO < 5 m			
			GEO < 3 m			
Clock Error (RMS) < 0.1 m		< 0.1 m	MEO < 0.20 m	< 0.15 m	< 0.5 m	< 3 m
	< 0.1 m		IGSO < 1.5 m			
			GEO < 0.5 m			
User Range < 0.08 m			MEO < 0.3 m	< 0.12 m	< 0.3 m	< 1 m
	< 0.08 m	< 0.08 m	IGSO < 1 m			
			GEO < 0.5 m			
GAL: Multiple solutions are available, currently both I/NAV (E1+E5b) and F/NAV (E1+E5a) signals						
BDS: Multiple solutions are available, currently using B1I, B2I, B3A and B2a signals						
GLO: Satellite-specific clock bias removed due to frequency-specific range biases						

Actual GDGPS performance outperforms baseline requirements and will be discussed later

May 4, 2022

10 jpl.nasa.gov

GPS and GAL UREs Using GDGPS Compared to Post-Processed Products

GPS URE error, March 2022 (dev2la)

Real-Time Orbits, Clock and UREs for March 2022

GDGPS Baseline Requirements

Attribute	GPS	Galileo
Orbit Errors (3D RMS)	< 0.15 m	< 0.15 m
Clock Error (RMS)	< 0.1 m	< 0.1 m
User Range Error (RMS)	< 0.08 m	< 0.08 m

- Low cadence orbit filter <u>at every 60 sec</u>
- High cadence clock filter <u>at every second</u>
- Compared to high precision GipsyX rapid product

May 4, 2022

This document has been reviewed and determined not to contain export controlled technical data.

Representative Real-Time PPP Accuracy Using RTGx

- Real-time positioning accuracy of real-time kinematic 5-min point-positioning of 125 GDGPS tracking sites with RTGx during September 2017
- Real-Time PPP accuracy for GAL HAS Phase 2 is 20 cm (95%) horizontal and 40 (95%) vertical.

RTGx PPP Solution Using GDGPS Clocks and Orbits on May 1, 2022

Conclusions

- A potential GPS HAS using GDGPS has unique and multiple advantages:
 - Global network of GDGPS-processed stations available (100+ stations)
 - Network is designed for resiliency and robustness using redundancies at all levels
 - Current real-time accuracy is shown to be in par or higher than Phase 2 GAL HAS performance anticipated by 2024
- <u>Significant challenges</u> for GPS HAS remain including no signal-in-space planned, no access to uplink stations for GPS
 - Distribution only possible via Internet
- GDGPS is <u>technologically fully capable</u> of providing high-accuracy corrections to GPS and Galileo if requested to support GPS HAS

Acknowledgements

- Contributions were made possible by research carried out with support from GDGPS funds at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration
- Contributions from Group members of the Near Earth Tracking Systems are gratefully acknowledged

jpl.nasa.gov

This document has been reviewed and determined not to contain export controlled technical data.