

Compatibility of Terrestrial Reference Frames used in GNSS Broadcast messages

Stephen Malys, Thomas Johnson, Todd Kawakami

20 November, 2019

Presented at the 24th National Space-Based PNT Advisory Board Cocoa Beach, Florida

NATIONAL GEOSPATIAL NGA

Approved for public release, 20-054

NTELLIGENCE AGENCY

Methodology: Compare Terrestrial Reference Frames Realized through Broadcast Nav Messages to Reference Frame Realized through Post-Fit MGEX Experiment

Broadcast GNSS Ephemerides

- <u>Predictions</u> that must be used for direct (non-augmented) real-time Positioning, Navigation and Timing
- Represent a <u>real-time realization</u> of the operational Earth-Centered, Earth-Fixed Terrestrial Reference Frame
- Accessible by following procedures documented in respective space to user segment Interface Control Documents

Post-Fit Multi-GNSS (MGEX) Ephemerides

- Best available ephemerides for GPS, GLONASS, Galileo, BeiDou-2
- Based on International Terrestrial Reference Frame 2014 (ITRF 2014) Implemented in IGS on 29 Jan 2017 (IGS14)

Terrestrial Reference Frames in GNSS

Data Span: 56 Days: 21 July-14 Sept 2019 (8 GPS Weeks: 2063-2070)

- Terrestrial Reference Frame used in Broadcast Ephemerides
 - ► GPS WGS 84 (G1762')
 - ► GLONASS PZ-90.11
 - ► Galileo GTRF19v01 (Implementation date TBC)
 - ► BeiDou CTRF2000
- Terrestrial Reference Frame used in Post-Fit MGEX Ephemerides
 - ▶ In ITRF2014 (IGS14) as realized by GFZ at 5-minute rate
 - GFZ= Deutsches GeoForschungsZentrum Potsdam
 - IGS14 is the IGS realization of ITRF2014
- All Broadcast and MGEX Ephemerides were obtained from: <u>ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex</u>
 - MGEX = Multi GNSS Experiment, Coordinated by the International GNSS Service (IGS)

US GPS Operational Monitor Station Network

Earth-Centered, Earth Fixed coordinates and velocities for these stations form the basis for the Terrestrial Reference Frame realization WGS 84 G1762'

NGAO

Multi GNSS Experiment (MGEX)

Earth-Centered, Earth Fixed coordinates and velocities for these stations are the basis for the Terrestrial Reference Frame realization IGS14

Approved for public release, 20-054

Comparing Terrestrial Reference Frames 7 Parameter Transformation

A Single Simplified Metric for Comparing Terrestrial Reference Frame Realizations

$$RSS_{7} = \sqrt{\Delta X^{2} + \Delta Y^{2} + \Delta Z^{2} + \Delta L^{2} + R_{X}^{2} + R_{Y}^{2} + R_{Z}^{2}}$$

Where all units are cm. ΔL and Rs converted at the mean Earth radius

Evolution of ITRF Realizations

Data Source: <u>http://itrf.ign.fr/doc_ITRF/Transfo-ITRF2014_ITRFs.txt</u>, downloaded 29 Oct, 2019

GNSS Contributions to Four Decades of TRF Refinements by the IERS

Using the best each method has to offer: VLBI, SLR, GNSS, DORIS

Sci. Comm. TRF	# GNSS Stations	IGS Data Span (IGS began in 1994)	
BTS84	34(TRANSIT)	9 Years (Transit)	
ITRF88	0	0	
ITRF89	0	0	
ITRF90	0	0	
ITRF91	14		
ITRF92	13-48		
ITRF93	44		
ITRF94	26-69	1-3 years	
ITRF96	36-132	2-5 years	
ITRF97 ITR97 IGS97	40-145 IGS	2-7 Years	
ITRF2000 IGS00 IGb00	156-167 IGS	5-9 Years	
ITRF2005 IGS05	<338 IGS	10 Years	
ITRF2008 IGS08 IGb08	395 IGS (TBC)	12.5 Years	
ITRF2014 IGS 14	578 IGS (TBC)	21.1 Years	

7-Parameter Transformations using Ephemerides

- For each GNSS, 7-parameter Helmert transformations were computed between the IGS reference frame (IGS14) and the Earth-fixed coordinate frames used by the navigation messages.
- A Helmert transformation consists of
 - ► 3 translation parameters (ΔX , ΔY , ΔZ)
 - 3 rotation parameters (RX, RY, RZ)
 - 1 scale parameter
- Note that at Earth's surface,
 - ▶ 1 mas ≈ 3.09 cm
 - ▶ 1 ppb ≈ 0.64 cm

Constellations and Tracking Networks Used

Constellation	# of Satellites	# of IGS Stations Used to Obtain Navigation Messages	Satellites Tracked (PRN) (SC s/n for GLONASS)	Number of Data Points
GPS	31	140	01, 02, 03, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32	495,600
GLONASS	21	128	730, 747, 744, 742, 745, 743, 802, 717, 853, 723, 721, 716, 736, 851, 854, 720, 719, 855, 731, 732, 735	318,503
Galileo	14	132	01, 02, 03, 04, 05, 07, 08, 09, 11, 12, 19, 24, 26, 30	224,465
BeiDou-2	5 GEO	49	01, 02, 03, 04, 05	76,038
Only	7 IGSO	73	06, 07, 08, 09, 10, 13, 16	111,851
	3 MEO	96	11, 12, 14	46,784

Notes: Data Span: 56 Days: 21 July-14 Sept 2019 (8 GPS Weeks: 2063-2070) BeiDou: MGEX ephemerides are available only for BeiDou Phase 2 Spacecraft

Numerical Results: Mean values

Data Span: 56 Days: 21 July-14 Sept 2019 (8 GPS Weeks: 2063-2070)

GNSS	∆X (cm)	∆Y (cm)	∆Z (cm)	RX (mas)	RY (mas)	RZ (mas)	Scale (ppb)	RSS of 7 Parameters (cm at Re)
GPS	0	0	5	-0.01	0.28	1.06	-0.27	6.0
GLONASS	0	0	10	0.21	0.00	1.76	-9.71	13.0
Galileo	2	0	5	-0.10	-0.22	-0.34	-3.31	5.9
BeiDou-2 (MEO)	11	3	42	-0.63	0.15	5.04	-16.61	47.5
BeiDou-2 (MEO, IGSO)	17	66	16	1.06	-2.38	7.51	-13.11	74.7
BeiDou-2 (MEO, IGSO, GEO)	39	59	44	-0.31	-2.70	3.83	-11.37	84.9

Largest value for each row shown in red

$$RSS_{7} = \sqrt{\Delta X^{2} + \Delta Y^{2} + \Delta Z^{2} + \Delta L^{2} + R_{X}^{2} + R_{Y}^{2} + R_{Z}^{2}}$$

2

Numerical Results: <u>Standard Deviations</u>

Data Span: 56 Days: 21 July-14 Sept 2019 (8 GPS Weeks: 2063-2070)

GNSS	∆X (cm)	∆Y (cm)	∆Z (cm)	RX (mas)	RY (mas)	RZ (mas)	Scale (ppb)	RSS of 7 Parameters (cm at Re)
GPS	1	1	2	0.57	0.87	1.17	0.11	5.4
GLONASS	2	2	6	0.26	0.52	2.78	0.57	11.0
Galileo	1	1	1	0.09	0.09	0.25	0.35	1.9
BeiDou-2 (MEO)	6	5	8	1.48	4.91	3.52	5.46	22.5
BeiDou-2 (MEO, IGSO)	10	10	7	1.64	3.16	3.01	2.25	21.4
BeiDou-2 (MEO, IGSO, GEO)	17	13	15	2.03	3.91	3.60	4.06	31.6
Largest value for each row shown in red Largest value for each row shown in red 1 mas = 3.09 cm 1 ppb = 0.64 cm $RSS_7 = \sqrt{\Delta X^2 + \Delta Y^2 + \Delta Z^2 + \Delta L^2}$							$\frac{1}{2} + R_x^2 + R_y^2$	$R_{y}^{2} + R_{z}^{2}$

Rotation around Z (Rz) => Location of Zero Meridian as realized through GNSS broadcast messages Data set: 56 Days (21 July-14 Sept 2019)

Conclusions (slide 1 of 2)

- Terrestrial Reference Frame Realizations Accessible via Broadcast GNSS Messages During the 8 weeks of 2019 are:
 - Coincident with the ITRF14 (IGS14) at a level of
 - < 6 cm for GPS and Galileo</p>
 - < 13 cm for GLONASS</p>
 - < 47 cm for BeiDou-2 MEO with larger differences when IGSO and GEO SVs are included
 - Repeatable on a daily and weekly basis at a level of
 - ~ 5 cm for GPS
 - ~ 2 cm for Galileo
 - ~ 11 cm GLONASS
 - ~ 22 cm for BeiDou-2 MEO with larger values for IGSO and GEO

Conclusions (slide 2 of 2)

- The same Reference Frame comparison method was first performed in 2017 (Using first 8-10 weeks of 2016)
 - Using ITRF2008 (IGS08) as a truth standard

System	<u>8 weeks in 2016</u> (vs. IGS08)		<u>8 weeks in 2019</u> (vs. IGS14)		
	RSS ₇ (cm)	σ (cm)	RSS ₇ (cm)	σ (cm)	
GPS	4.3	4.2	6.0	5.4	
GLONASS	14.5	11.5	13.0	11.0	
Galileo	5.2	5.7	5.9	1.9	
BeiDou-2 (MEO)	25.7	26.0	47.5	22.5	

Smallest values for each data period shown in green => Best Consistency with ITRF

Acknowledgements

- Many Thanks to:
 - The MGEX Participants
 - The IGS
 - The IERS
 - NASA/CDDIS
- Colleagues at NSWC Dahlgren who performed the processing and analysis:
 - Jason T. Drotar
 - Russell Solomon
- Graphics
 - Pam Bailey

Summary of the WGS 84 Terrestrial Reference Frame

- Has, since inception, sought to be as coincident as possible with the Scientific Community's Best Terrestrial Reference Frame – Beginning with BTS84
- Has evolved and benefited significantly from the efforts of the IERS, IGS, IVS, ILRS, and the IDS

International Science Community

- IERS- International Earth Rotation and Reference System Service (Since 1987)
- IGS International GNSS Service for Geodynamics (Since 1994)
- IVS International VLBI Service (Since 1999)
- ILRS- International Laser Ranging Service (Since 1998)
- IDS International DORIS Service (Since 2003)
- Provides a global Earth-Centered, Earth-Fixed coordinate system for countless real-time and post-processing GPS users
- Remains coincident with the latest ITRF on the order of 1cm
- Facilitates real-time interoperability with other GNSS

