

Wireless Networking & **Communications Group**

Augmenting GPS with PNT from LEO

Peter lannucci • Todd Humphreys The University of Texas at Austin

Work supported by Sandia National Laboratories, US Army Futures Command

THE UNIVERSITY OF TEXAS AT AUSTIN **RADIONAVIGATION LABORATORY**

Call to Action for GPS

- Protect
- Toughen
- Augment

WHAT STARTS HERE CHANGES THE WORLD

LEO

- DARPA: Blackjack
 - "Pivot to LEO"
 - Comms+PNT payloads (in phase 2)
 - Government-owned vehicles (\$4-15 million per SV)
- DLR + GFZ Potsdam: Kepler
 - Next-generation Galileo
 - orbit determination

WHAT STARTS HERE CHANGES THE WORLD

Space-based atmosphere-free global synchronization + precision

Commercial LEO

A OneWeb and Airbus joint venture

12,000-30,000 satellites

WHAT STARTS HERE CHANGES THE WORLD

STARLINK

Kuiper Systems amazon

3,000 satellites

Elements of Fused PNT

Clock

Radio

Q: Can we compromise on clock quality?

A: Yes. Discipline to GPS and update frequently. (e.g. 50s)

Q: Can we compromise on signal structure?

A: Yes. High SNR, wide bandwidth.

Spectrum

Already present ... just not purpose-built!

- Q: Can we share spectrum, time, and antennas with (primary) data customers?
- A: Yes. TDMA+FDMA, high SNR. Service cost per 20km spot beam \approx cost of 1 MB/s downlink bandwidth

Prior work

- High-Integrity GPS program (Iridium,
 - Now Satelles

Boeing, Coherent Navigation, 2007-2011)

• Not single-epoch (Transit-style positioning) • Tyler Reid, A. Neish, P. Enge (2016-2018)

Commercial Broadband LEO

Commercial Broadband LEO

+31 dB **Power Flux Density**

1,000× **More satellites**

700× **Faster Multipath** Decoherence

4,000,000× **Bandwidth for Data (Zero-lag Ephemerides)**

No atomic clocks (OCXO sufficient)

+25 dB **RX** antenna selectivity (vs. horizon)

20 ms Single-Epoch **Positioning and Timing**

30× **Greater Bandwidth** (vs. civilian signals)

Bottom Line

+56 dB Anti-Jam

Reliant on Commercial Service Providers

Pay-as-you-go (cf. Iridium)

Intermittent Ranging

Bulky RX Antenna ("pizza-box sized")

95% user error: 32cm (AoE 1s) 1.21m (AoE 50s)

Hardware costs to **US Govt:** \$0.00

Not resilient to global GPS Outage (yet)

Back-up Slides

Age-of-Ephemeris = 50s

Error Budget (millimeters)

Clock 227.6

Error Budget (variance, cm²)

Clock 889.6

Age-of-Ephemeris = 50s

Error Budget (millimeters)

15.3 Ranging 0.1

Tropo

Clock 9.7

Age-of-Ephemeris = 1s

Error Budget (variance, cm²)

25.0 Ranging 0.3

Tropo

Clock 16.4

Age-of-Ephemeris = 1s

Starlink Visible Satellites

Starlink PDOP

Kuiper Visible Satellites

Kuiper PDOP

1-D DOP Model

Duty cycle

Quantity	Description	Estimate
au	Ephemeris Update Interval	$50\mathrm{s}$
T	Clock RMS error, worst case	0.271 m
R	Orbit RMS error radial, worst case	0.037 m
A	Orbit RMS error along-track, worst case	0.057 m
C	Orbit RMS error cross-track, worst case	0.049 m
w_R	Geometric weight factor, radial	0.774
w_A	Geometric weight factor, along-track	0.448
w_C	Geometric weight factor, cross-track	0.448
σ_{SISURE}	Satellite timing and positioning errors	0.301 m
$\sigma_{ m IONO}$	Ionospheric delay error	0.028 m
σ_{TROPO}	Tropospheric delay error	0.050 m
$\sigma_{ m RNM}$	Receiver noise and multipath errors	0.005 m
$\sigma_{ m URE}$	User ranging error per satellite	0.307 m
$\Delta x_{95,H}$	95% horizontal error	0.558 m
$\Delta x_{95,V}$	95% vertical error	0.717 m
Δx_{95}	95% total error	1.205 m

Age-of-Ephemeris = 50s

$$\begin{aligned} beint corr = \sigma_{11} \cdot \sqrt{\frac{1}{2}\sqrt{\frac{1}{2}(0.05)}}, & where $\hat{\sigma}_{1}^{1} = 100P \cdot \sigma_{1,12}^{2} \\ p_{1,22}^{2} = \sigma_{1,222} + \sigma_{2,32}^{2} + \frac{1}{2}h_{22}^{2} + \frac{1}{2}h_{2}^{2} + \frac{1}{2}h_{2}^{2} + \frac{1}{2$$$

