Global Navigation Satellite Systems – What's Up?

Knowledge for Tomorrow

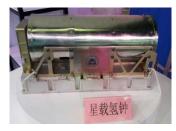
Oliver Montenbruck

with support of Peter Steigenberger and Steffen Thölert

1

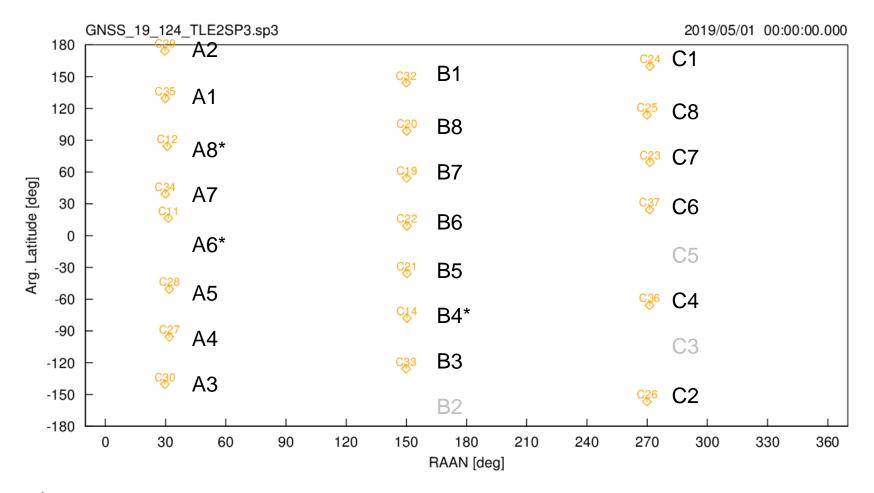
Constellation Status

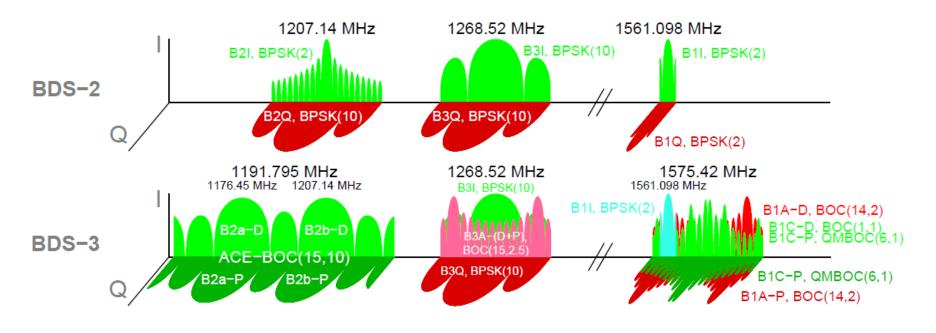
System	Blocks	Signals	Sats*)
GPS	IIA, IIR	L1 C/A, L1/L2 P(Y)	1,11
	IIR-M	+L2C	7
	IIF	+L5	12
	III	+L1C	(1)
GLONASS	M	L1/L2 C/A+P	21+(1)
	M+	L1/L2 C/A+P, L3 (CDMA)	2
	K1	L1/L2 C/A+P, L3 (CDMA)	1+(1)
BeiDou	BDS-2 MEO, IGSO, GEO	B1-2, B2b, B3	3, 7, 5
	BDS-3S MEO, IGSO	B1, B1-2, B2a/b/ab, B3	(2), (2)
	BDS-3 MEO, IGSO, GEO	B1, B1-2, B2a/b/ab, B3	18, (1), (1)
Galileo	IOV	E1, E6, E5a/b/ab	3+(1)
	FOC	E1, E6, E5a/b/ab	19+(3)
QZSS	Block I	L1 C/A, L1C, L2C, L5, SAIF, E6 LEX	1
	Block II IGSO, GEO	L1 C/A, L1C, L2C, L5, L1S, E6, L5S	2, 1
IRNSS	IGSO, GEO	L5, S	4+(1), 3


*) Status May 2019; brackets indicate satellites not declared healthy/operational

* BeiDou-3

- Five experimental satellites (BDS-3S)
 - launched 2015-2016 (non-operational)
 - technology demonstration (ISL, H-Maser, platforms)
- Global Constellation (BDS-3)
 - 18 operational MEO satellites (launched 2017-2018)
 - 2 platforms (8 x SECM, 10 x CAST)
 - 1 IGSO and 1 GEO in testing
 - Early service declared Dec. 2018
- New Signals
 - B3I declared as open signal, available on BDS-2 and -3
 - New B1C and B2a signal on BDS-3
 - B2b and B2ab transmitted on BDS-3 but no ICD yet
 - New navigation CNAV1 on B1C and CNAV2 on B2a (resembling GPS CNAV2 on L1C and CNAV on L2C/L5)
 - Advanced modulation schemes (QMBOC, ACE-BOC)
 - PRN range extended to 63

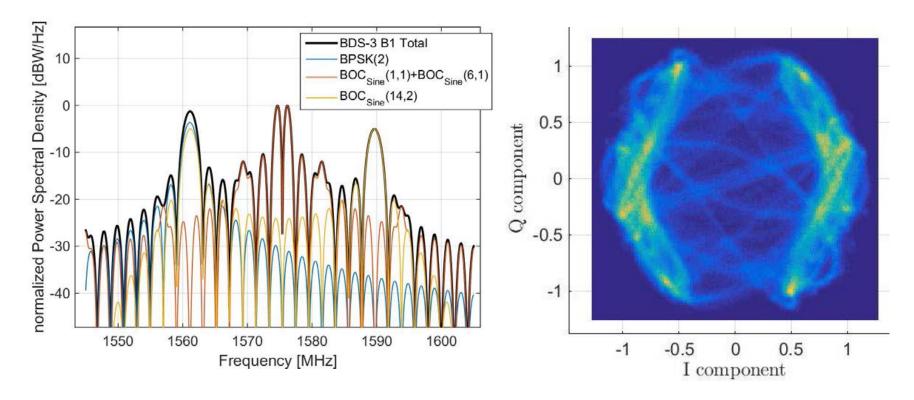



China Satellite Navigation Office December, 2017

BeiDou-2/3 MEO Constellation Chart (Walker 24/3/1)

Lower L–Band

Upper L–Band


- B1I and B3I common to all satellites
- B2I phased out?
- New B1C/B2a signals (interoperable with GPS L1C/L5, Galileo E1/E5a)

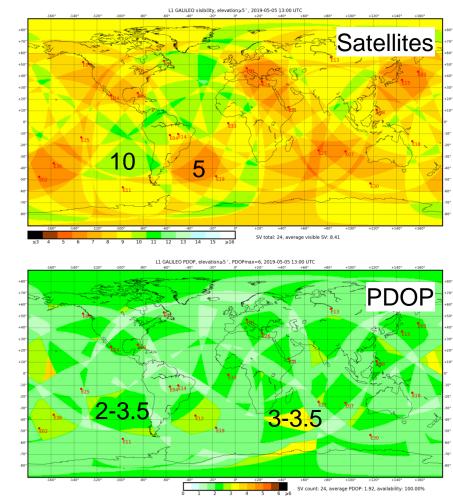
BeiDou-3 Modulation Techniques

- Quadrature Multiplexed BOC modulation (QMBOC) for B1 signal
 - Independent realization of interoperable MBOC signal in L1 band (alternative to Galileo CBOC and GPS TMBOC)
 - Data signal uses BOC(1,1) on I-channel
 - Pilot signal uses superposition of BOC(1,1) (I-channel) and BOC(6,1) (Q-channel)
 - Flexible choice of relative signal powers for all components
- CEM via Intermodulation Construction (CEMIC)
 - Constant envelope modulation for "arbitrary" number of signals, power ratios, and phase relation / frequency (alternative to CASM and POCET)
 - Used to combine 5 (?) signal components plus intermodulation product in B1 band: B1I, B1C-data, B1C-pilot, B1A-data (TBC), B1A-pilot (TBC)
- Asymmetric Constant Envelope Binary Offset Carrier (ACE-BOC)
 - Dual-frequency constant envelope multiplexing technique
 - Similar to Galileo AltBOC, but allows different powers in the two sub-bands (here B2a, B2b)

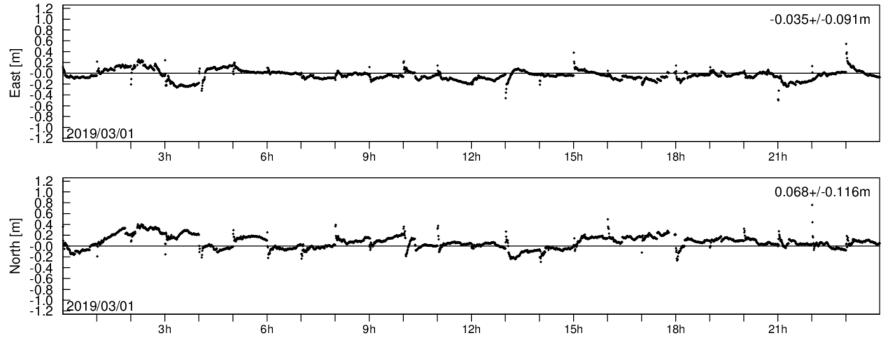
BeiDou-3 B1 Spectrum and I/Q-Diagram

Thoelert S., Antreich F., Enneking Ch., Meurer M., "BeiDou 3 Signal Quality Analysis and its Impact on Users," *Proc. ION ITM 2019*, Reston, Virginia, Jan.2019, pp. 909-924. <u>https://doi.org/10.33012/2019.16738</u>

BeiDou-3 Intersatellite Links

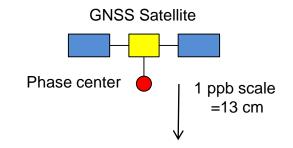

- K-band dual one-way ranging
 - Earth oriented phased array antenna, steerable up to 60° off-nadir
 - Time-multiplexed operation using predefined link allocation table
 - One forward and backward ranging measurement per slot (1.5 s each)
 - ~5 cm precision
- Processing
 - Extrapolation of fwd/bkwd ranges to common epoch (coarse a priori orbit)
 - Arithmetic mean of fwd/bkwd one-way range yields geometric range plus delays, difference yields clock offsets plus delays
- Enables orbit determination with regional ground network
 - Measurements not publicly available
 - Published results limited to BDS-3S and partial BDS-3 MEO constellation

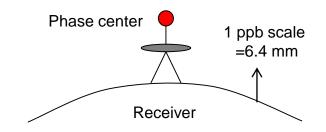
Galileo – "Accuracy Matters"


- Now 22 operational satellites
 - At least 5 sats above 5° elevation
 - PDOP mostly better than 3
- 2 additional sats in eccentric orbits
 - Not in almanac
 - Broadcast ephemerides (unhealthy)
- Exceptional SISRE:
 - ~20 cm RMS
 - ~40 cm 95%
 - Key to accurate point positioning

From https://www.glonass-iac.ru/

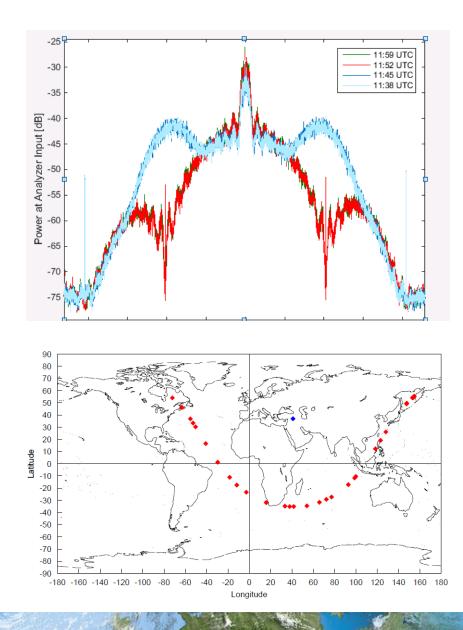
- Geodetic receiver and antenna (BRUX)
- E1+E5a code and carrier phase
- Kinematic positioning using with broadcast ephemerides
- Forward filter, hourly re-initialization
- 17cm RMS horizontal, 30 cm RMS vertical, 34 cm 3D RMS


- E6B and E6C codes released Jan 2019
- High Accuracy Service:
 - Free of charge
 - Tender released early April 2019: "an open access service based on the provision of precise corrections (orbit, clock, biases, ionosphere) transmitted in the Galileo E6 signal (E6-B, data component), at a maximum rate of 448 bps per Galileo satellite connected to an uplink station allowing the user to achieve improved positioning performance".
 - Gradual introduction (service area, accuracy)
- Commercial Authentication Service:
 - "a controlled access service based on the encrypted spreading codes in the E6 signal (E6-C, pilot tone). Service access will be achieved by the distribution of the relevant key material (NAVSEC keys)".

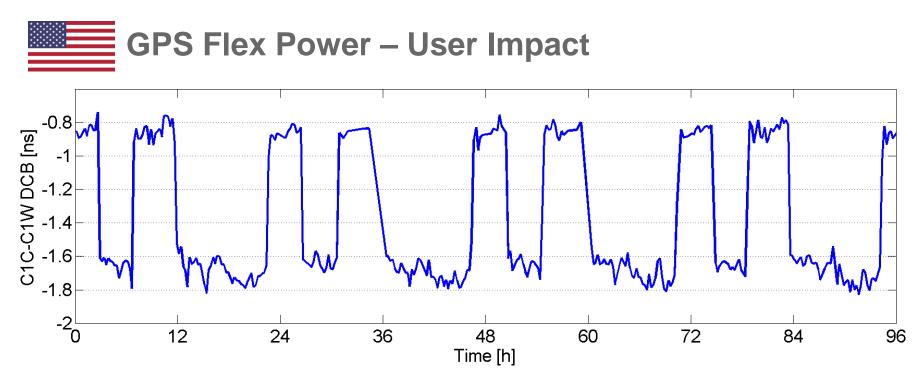


Galileo – Defining the Scale of the Geodetic Reference Frame

- GNSS contributes to International Terrestrial Reference Frame (ITRF) through coordinates of GNSS stations
- Estimated station height depends on phase center offset and variations of satellite and receiver antennas
- GPS, GLONASS:
 - Scale inherited from SLR and VLBI
 - Calibrated receiver antenna patterns
 - Estimated satellite antenna patterns
- Galileo:
 - Calibrated satellite antenna patterns
 - Calibrated receiver antenna patterns
 - Estimation of GNSS scale becomes feasible


- Change of transmit power among signals for improved jamming resistance
- Exercised in various test campaigns and operations since 2017
- Available on IIR-M and IIF satellites

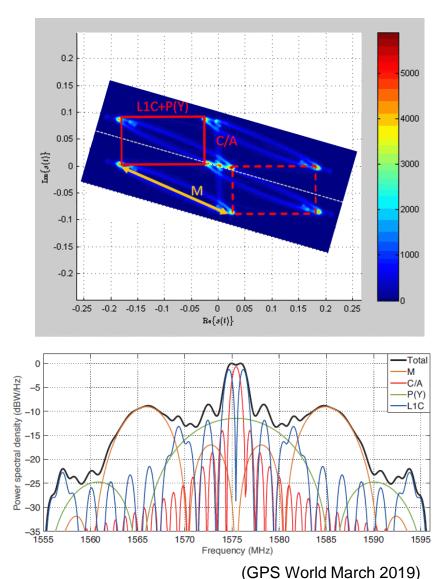
#	Sats	f	Duration	Region	Descritpion
1	lif	L1	since 2017/27	centered at 41°E, 37°N	C/A and P(Y) power increased by 2.5 dB
2		L1 L2	2018/103-107	Global	6 dB/5 dB P(Y) power increase on L1/L2
3	IIR-M IIF	L1 L2	2018/117, 121, 124 2:00 – 13:00 UTC		Sum of L1+L2 P(Y) power increased by 9 to 11 dB; IIR-M: L1 C/A power reduced by 2-3 dB

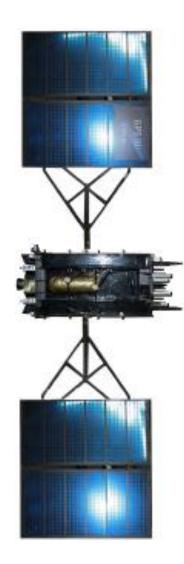


- M-code deactivated
- Power from M-code and intermodulation product distributed to C/A (or L2C) and P(Y) signals
- Total transmit power reduced (#1) or retained (#2) or unknown (#3)
- IIF flex power transitions triggered by visibility in area of interest

- Differential code bias variations at 1 ns level (subdaily; not covered by CNAV intersignal correction)
- C/N $_0$ changes for L1 C/A and semi-code less L1/L2 P(Y) tracking
- C/A-P(Y) phase relations unaffected (?)
- SPP users not affected; tolerable impact on precise point positing

GPS III – A New Kid inTown


- GPS III-1 launched 23 Dec 2018
- Transmits as PRN 4 since 8 Jan. 2019
- Unhealthy, not in almanac
- Tracked and processed by International GNSS Service
- New platform (Lockheed Martin)
- First satellite transmitting L1C signal


- New (mostly) digital signal generation
 - Very clean signals
 - Full coherency of L1, L2, L5 signals (unlike IIF)
- Five signals on L1
 - C/A-code
 - L1C data, L1C pilot, P(Y)-code
 - M-code
- Use of separate M-code transmit chain
- "Weighted voting" multiplexing scheme for L1C-(d,p) and P(Y)
 - Majority voting combination Interlacing of raw L1C-p, P(Y)

- Precise GNSS data processing relies on various spacecraft
- GPS III Phase center offsets (PCO) released right after launch ^(C)
 - Individual PCOs for L1, L2, L5
 - Surprisingly good agreement (6 cm) with first L1/L2 PCO estimates of F. Dilssner (ESA)
 - Important for GPS contribution to reference frame scale!
- Estimated phase variations +/- 15 mm
- Only coarse mass and size available for nongravitational force modeling
- Attitude control law for rapid noon/midnight turns so far unknown

Public Availability of Metadata

	GPS	GLO	GAL	BDS-2	BDS-3S	BDS-3	QZSS	IRNSS
Mass	(L)	L	Р	(L)	(L)	(L)	Р	(L)
СоМ			Р	L			Р	L
PCO/PCV	E,(P)/E	E	Р	E,L/E	E,L/	E,L/	Р	L/
LRA offset	n/a	L	Р	L	L	(L)	Р	P?
Coarse geometry	(L)	(L)	Р	L	(L)	(L)	Р	L
Detailed geometry							(P)	
Optical properties	(L)		Р	(E)			(P)	
Transmit Power	(M)	М	М	(M)			Р	
Nominal Attitude	(L)	L	Р	L	L	L	Р	L
Detailed Attitude	(E)	(E)	(E)	(E)	(E)	(E)	(E)	
Maneuvers				(L)			Р	

P: Provider; L: Literature; E: Estimated; M: Measured; () incomplete

Summary and Conclusions

- Worldwide GNSSs are continuously evolving
 - Galileo and global BeiDou-3 system approaching full deployment
- Plethora of signals in various frequency bands
 - Open and regulated signals in all systems
 - Great diversity of advanced modulation schemes
 - Digital signal generation units offer improved signal quality (low biases!)
- What matters?
 - Trend to high accuracy services (QZSS, Galileo, ...)
 - Cyber security, jamming and spoofing protection (GPS OCX, planned Galileo O/S and C/S authentication)
- GNSS for science and technology
 - Needs close interaction of science community, system providers and equipment manufacturers
 - Availability of proper satellite metadata is vital for high accuracy GNSS

