Precise GNSS & V2X for Automated Vehicles

PNT Advisory Board
6 June 2019

Curtis Hay Technical Fellow GNSS, V2X & Maps General Motors

OUR VISION

At General Motors, we envision a future with zero crashes, zero emissions and zero congestion:

Zero crashes to save lives

Each year close to 1.25 million people die in car crashes around the world, 40,000 in the United States alone. More than 2 million people are injured. Human error is a major contributing factor in 94 percent of these crashes.

Zero emissions to leave our children a healthier planet

Vehicles release almost 2 billion tons of carbon dioxide into the atmosphere every year.

Zero congestion to give our customers back their precious time

In the United States, commuters spend about a week of their lives in traffic each and every year. That's a week not spent with those we love, doing what we want to do and being where we want to be.

GM Super Cruise

Cadillac CT6 with Super Cruise

- Internal combustion engine
- Industry's first true hands-free driving technology for the freeway
- Retail Availability: Q4 2017
- Standard on CT6 Platinum, Optional Feature on CT6 Premium
- Becoming available on all Cadillac models, rollout starting 2020. Other GM brands to follow
- 0-85 mph on precisely mapped interstate highways
- Driver attention required!
- Precise map (+/- 10 cm 95%)
- Precise GNSS (median 90 cm)

Super Cruise Video

Precise GNSS Localization

Today:

- GPS L1 C/A, GLONASS G1
- Tightly coupled sensor fusion (MEMS yaw_rate gyro, differential wheel odometry)
- Low cost L1 antenna
- Real-time PPP/RTK corrections (Trimble RTX)
- 10-Hz update rate
- 1.8 meter horizontal accuracy (95%) on highways

Future:

- GPS L1/L5, Galileo e5a, GLONASS G1, Beidou
- Low cost multi-frequency, multi-constellation automotive antenna
- Improved Trimble RTX
- 100+ state Kalman Filter for camera feature points, IMU, GNSS, wheel odometry
- 20-Hz update rate
- 50-cm horizontal accuracy (95%) on all mapped roads

Why is Precise GNSS Required for Automated Vehicles?

Automated Vehicle Sensor Characteristics

	Sensor	Pros	Cons
Perception ehide Reference Fram	Radar	Relatively Low Cost Good Ranging Accuracy	Cannot Detect Road Markings
	Lidar	Highly Accurate Ranging	Higher Cost Less Effective in Featureless Areas
	Camera	Lower Cost Good Object Detection	Less Effective in Featureless Areas Less Effective in Snow, Darkness
Absolute Localization Global Reference Frame	HD Map	Excellent Accuracy (< 10 cm 95%)	Requires Continuous Updates High Maintenance Costs
	Motion Sensors (Gyro, Accel, Wheel Ticks)	Lower Cost	High Drift Rate for MEMS Sensors
	GNSS (GPS, GLONASS, Galileo, Beidou)	Lower Cost Global Availability Common Reference Between Vehicles	Poor Performance in Urban Areas, Tunnels

Precise GNSS (Sub-Meter) Provides these Benefits

- Same Reference Datum as HD Map

 complimentary data
- Common Reference Datum between Adjacent Vehicles (V2V)
- Redundancy
 - Mitigate limitations with perception sensors
- Road Class Identification (referenced with map)
 - Interstate, state, county, pavement type, etc.
- <u>Lane Identification</u>
 - Especially important for lane change maneuvers, entering/exiting highway, turning at intersections, V2V
- Higher quality, lower cost <u>HD map crowd-sourcing</u>

GNSS cannot be used exclusively for localization! Must be combined with perception, IMU, map!

Essential GNSS Technologies for Automated Vehicles

GNSS Corrections (Trimble RTX for Super Cruise)

- Low rate (< 2 kbps) minimize data costs
- Delivered through satellite L-band or mobile IP
- Clock, orbit, ionosphere, troposphere state corrections
- Required for confident lane identification and sensor redundancy

Dual Frequency, Multi-Constellation

- GPS L5 has better signal structure, fewer satellites
- Galileo E5a CDMA preferred over GLONASS FDMA
- Requires high volume, low cost antenna
- GNSS industry already far along with high accuracy, lower cost products

Multi-Axis Gyro/Accelerometer IMU

- Low Bias Drift Rate, Low Angular Random Walk
- Yaw more important than Roll/Pitch!

GNSS Integrity Monitoring is Critical

Also... Cellular Connectivity!

- Precise Map Updates, GNSS Corrections & HD Map Crowd Sourcing
- Live advisor services (OnStar)
- Remote diagnostics

V2X COMMUNICATIONS

SPEED

TRAFFIC

Up to 980 Ft (300 Meters)

Summary

No Perfect Sensor for Automated Vehicles – All have limitations

• Relative perception (Lidar, Camera, Radar) must be complemented by Absolute (GNSS, IMU, Map)

Sub-Meter GNSS Supports many AV Use Cases!

- Lane Identification
- Road Classification
- HD Map Development and Maintenance
- V2X

GNSS Integrity Monitoring is Critical

Despite uncertainty with radio technology and lack of federal mandate—

V2X continues to offer great potential for automotive safety and automated vehicles