Clash

Dr. Bradford Parkinson Stanford University

<u>Underlying cause of the Clash</u>: How much received power does a communications system need?

Greatly Simplified Communication Theory

So for a data Rate of D (say 10 megabits/sec):

 $D \cdot E_b = Received \ Power(PR) \approx D \cdot 10 \cdot N_0$ Or: $P_R \ge (Data \ Rate \ * \ 10 \ N_0)$

<u>Not Startling</u>: To send larger amounts of Data, need to spray the user with proportionally more power

Assured PNT for All

 A certain company (Lxxx) had License for transmitting Satellite to Ground for Communications
 But the received power was very low and did not support a large D (Data Rate)

But LXXX saw a great opportunity

- Convert the License to high power <u>terrestrial</u> <u>transmissions</u> (Asked for 15.8 Kw)
 - \circ Tower Spacing at about $\frac{1}{4}$ mile
 - Would support broadband sending movies etc.
 - Spectrum Value would jump: \$2B → \$10B+
- Tried to get the FCC to slip this through just before Thanksgiving 2010 - while everyone was digesting turkey
- PNT community found out and slowed the process down
- <u>But*But</u> apparently a predecessor Lxxx company had already found a significant <u>Clash</u> with GPS...
 O According to Harbinger lawsuit

Adjacent band interference concern

Original proposal: Convert to terrestrial & transmit <u>15 kW</u>+,
 Example then Considered: With a minimum tower spacing of ~
 ¼ mile (so impacted area must be much less than 1/8 mile or else impacted area could be, e.g., city-wide)

LXXX signal goal is <u>5 Billion times GPS</u> at $\frac{1}{4}$ mile (tower spacing suggests GPS never further than 1/8 mile)

Lxxx Equivalent to -Niagara at ~ 1 Billion Watts (167 feet with 64,750 cubic feet/ second)

Illustrating Power Ratio of 5 Billion to One

LightSquared Nationwide Interference

with GPS

Adjacent band interference concern

Interference tests were initiated by government and proposer. Results:

- Lxxx claimed minimal harm stated: could be solved by retrofitting new filters or buying new GPS sets
- DOT showed substantial problems
 <u>Who to believe? The Tests:</u>
- 1) FCC mandated Technical Working Group (TWG)
- 2) National Space-Based PNT Systems Engineering Forum (NPEF)
- 3) Department of Transportation (DOT) Adjacent Band Compatibility (ABC)
- 4) Roberson and Associates (RAA)
- 5) National Advanced Spectrum and Communications Test Network (NASCTN)

Evaluating the Quality of the GNSS interference tests

JAMES R. HOREJSÍ, GG-15 DOD NPEF Co-Chair

KENNETH K. ALÉXANDER DOT NPEF Co-Chair

Figure 3-23: HPR bounding ITMs for each of the emulated GNSS signals

Assured PNT for All

Max Lxxx Transmitter Power should be constrained by the % area that is degraded

Geometric problem directly scales with spacing of transmitters (d)

For Example: At 0.57 **(1/3^{0.5}) d,** 100% of the area would be covered

What degradation radius would result, if degradation were limited to 10% of the area?

Percentage Degraded Area for Various Degradation Radii

Maximum Lxxx Transmitter power to protect GPS High Performance Receivers - HPR

Transmitter Spacing (d)	Radius to protect 90% of the Area from HPR GPS degradation	Tolerable Lxxx Transmitter Power for 90% High Performance GPS Protection
1000m	170m	25 milliwatts
400m	68m	4 milliwatts
100m	17m	0. 2 milliwatts

Clash - Fundamental Incompatibility

Lxxx Proposals										
~ Date	Power	Spacing	Comments							
2010	15.6 kW	400 Meters	Original "Thanksgiving" Proposal to FCC							
2012	1.56 kW	400 Meters	Quickly dropped power when PNT community protested							
2015	1.56 kW	400 Meters	Last Official, Same as 2012							
2017	19.8 W	Would not say	Verbal only: Presumably less than 400 Meters spacing							
DOT Adjacent Band Compatibility Tests										
Deploymen	nt Stand off	Max Tolerable EIRP								
	distance (m)	GLN	HPR	TIM	CEL					
Macro Urban	10	0.8 mW	64 μW	8.7 mW	12.3 W					
	100	79.4 mW	6.5 mW	0.9 W	1.26 kW					

But Wait - it may be worse...

- Multiple towers contribute additive noise
- Reflections from ground and buildings can increase normal 1/R² models by factors of over 10 (measured in Las Vegas)
- The newer GNSS signals have wider bandwidths for greater accuracy and A/J, but the receivers will also have greater BW
- The new military signal deliberately pushes energy away from the center frequency

Impacts in DC Area "new" verbal proposal 19.9 Watts

High Performance Receiver (HPR) degradation for the 19.9 Watt, "New" Lxxx Proposal – Nov. 2017. 36 towers in DC completely block reception for some receivers. Yellow area is MINIMUM 1 dB degradation. Interior of yellow region much higher than 1 dB. Results will become far worse when Lxxx raises power to 1584 watts.

Propagation Model: FSPL

The Clash - History Review

- To meet original model, Lxxx wanted 15kW at 400 meters tower spacing in two bands. (call this implied Data rate D_0)
- Their upper band was a complete non-start and abandoned $(D_0/2)$
- They then said 1.5 kW was a good first step, and this was tested by DOT and found wanting in 2011. ($D_0/20$, unless tower density increases call this the modified data rate)
- When the ABC testing in 2016 reconfirmed the problem Lxxx said they would consider an entry level of 19.8W, but would not specify the tower spacing ($D_0/1500$ if density does not increase)*

* Does not scale as separation distance squared – but about as cubed. If separation dropped to 100 meters, pick up factor of 4^3 or 64 – this is close to $D_0/20$

So what?

Summary of Preliminary 2013 US GPS Benefit Estimates

	Application Category	Range of Benefits (\$ billions)	Mid-range Benefits (\$ billions)	
	Precision Agriculture – grain*		13.7	
	Earthmoving with machine guidance in construction*	2.2-7.7	5.0	
	Surveying	9.8-13.4	11.6	
Over \$65B In Annual Benefits in				
		7.6-16.3	11.9	
 Hi Productivity - Heavy Reliance on 				
1		9.8-31.4	20.6	
	TOTAL (with alternative estimates for timing and consumer LBS averaged)	37.1-74.5	**68.7	

ſ

In Harm's Way: Rapidly growing RPV/UAV applications

Both RPV Control and Air Traffic Monitoring depend on GPS – probable paths less than 400 Meters to Transmitter sites Apt to be Directly in <u>Main Beam</u>

Assured PNT for All

The Point

- To be viable, Lxxx must achieve a minimal data rate Perhaps $D_{0,}$ or $D_0/20$
- But this implies a certain Lxxx Received Power level
 P_R ≧ (D₀ * 10 N₀) <u>at the furthest distance</u>. (again see "scaling" note)
- If achieved by repurposing the 1525 -1535 MHz band at 400 m spacing:
 - as little as 30 milliwatts would degrade GPS High Performance Receivers everywhere
- Any game of trading tower power and spacing, still is approximately the same result
- Toughening GPS might help <u>a little</u>,, but does not solve the problem for existing High Performance Receivers

A New Offer by LXXX? Allow LXXX to

proceed, and any receivers who experience problems would be able to swap for a new (presumably immune) set

- The 1 dB is not to protect from loss of lock it is to preclude errors in timing (ranging) precision and accuracy.
- Most high precision users will not know this instantaneously only found out after the fact
- In any area the number of current users is totally unknown
- The using community would probably have no knowledge of such an arrangement
- Any such "swaps" would incur substantial time delays and loss of productivity
- This is an invitation for protracted litigation who caused what, when, and where?
- The military has stated the interference for their receivers is similar how could that be handled? Would Lxxx be a source of classified receivers?

<u>This offer does not seem viable</u>

Avoid the Clash - Just say no !!!

- For results approaching the Lxxx Data rate requires power on the ground <u>everywhere</u>, at levels GPS cannot tolerate.
- The only apparent solutions
 - leave the space to ground spectrum vicinity unchanged
 - Make a swap, or allow Lxxx to buy spectrum at least 100 MHz away from any GNSS signal