OPNT Optical Positioning, Navigation and Timing


Feasibility of a Nationwide Fiber-Optic Sub-Nanosecond Timing Infrastructure for Terrestrial PNT and GPS Backup Systems

Dr. Jeroen Koelemeij CTO and co-founder OPNT BV, Amsterdam, The Netherlands Also affiliated with VU University Amsterdam

Outline

- PNT wishlist space-based PNT with terrestrial back-up/augmentation
- The (sub)nanosecond time synchronization problem in wide-area telecom networks, and how to overcome it
- Possible terrestrial PNT back-up/augmentation solutions
 - Sparse grid (CONUS)
 - Dense grid (CONUS)
- Outlook

Space-based PNT: GPS

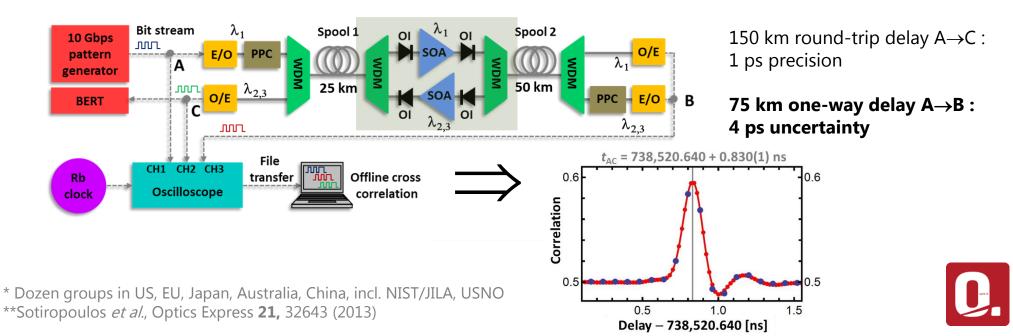
- Building GPS and keeping it operational with such excellent up-time statistics is an amazing and outstanding feat!
- GPS has become the cornerstone of an increasing number of technologies, including critical infrastructure (mobile telecom, electrical power, finance, transportation and aviation, military)
- Looking toward the future, better/more reliable PNT solution is required (in some cases even by law), to overcome
 - Threats of jamming/spoofing/meaconing
 - Extreme space weather conditions
 - Limited coverage and accuracy in urban environments and indoors

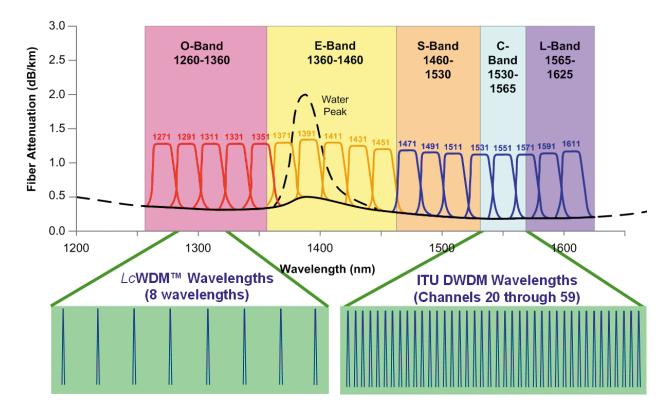
PNT performance wish list

Wish-list item	Target performance	Current bottleneck	Solution (Dr. Koelemeij's two cents)
GPS timing backup	<10 ns	Lack of alternative wide-area ns-level timing technology*	Space + Terrestrial
GPS positioning backup	<10 m	Lack of wide-area alternative with fully GPS-equivalent performance	Space + Terrestrial
Improved positioning accuracy & coverage	<0.1 m (urban areas, indoor environments)	Clock accuracyMultipath	 Space + Terrestrial Terrestrial
Improved time accuracy	<0.1 ns (to support TOA ranging at 0.1 m)	Clock accuracyMultipath	 Space + Terrestrial Terrestrial

*Note that the accuracy of current network time protocols (NTP - milliseconds, PTP/IEEE1588 - microseconds) is insufficient to provide GPS-independent time

Terrestrial PNT requires a time base with (nation)wide coverage...

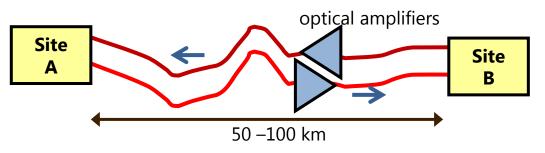

- For several PNT back-up and augmentation approaches, a terrestrial system seems the way to go
- But any terrestrial PNT system (beacons on Earth) has coverage challenges
 - GPS space vehicle at 20,000 km can cover entire continent
 - Beacon/pseudolite at 600 m tower, distance to horizon: 87 km (54 mi)
 - Would require ~1500 pseudolites to cover CONUS
- Literally copying "GPS on Earth" would require:
 - About 1500 atomic clocks (\$100MM+)
 - Keeping all clocks in sync (<10 ns) essentially independently of GPS (TWSTFT, other, \$\$\$, recurring)
- Alternate solution: accurate and continuous clock synchronization through telecom optical fiber, replacing atomic clocks with low-cost oscillators (i.e. new network time protocols beyond GPS)



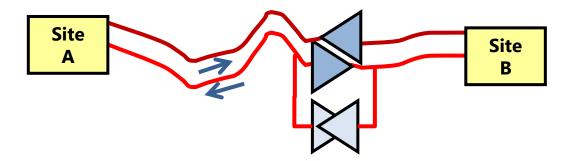
Fiber-optic time & frequency transfer

- Over the past decade, scientific research has produced new methods to distribute time and frequency with high accuracy over long distances (>1000 km) through telecom optical fiber*
- Our research: maximize compatibility with existing fiber-optic network infrastructure
- Example: two-way exchange and cross correlation of 10 Gbps optical data streams over 75 km**

Compatibility with telecom networks: WDM

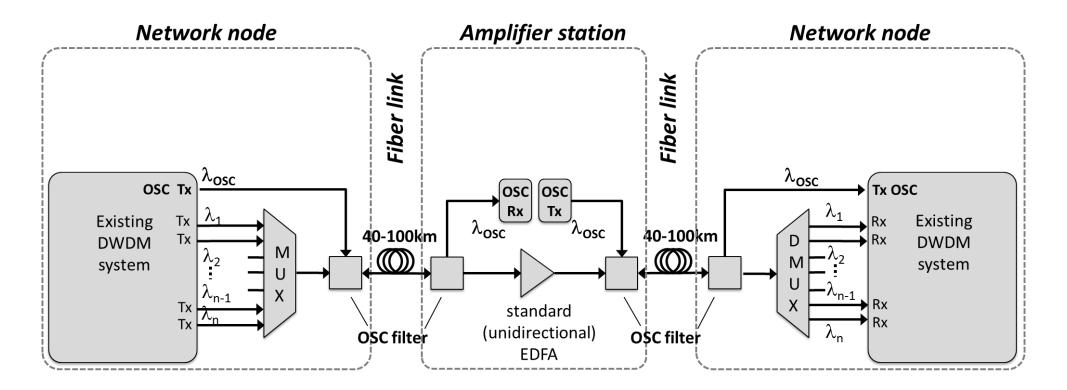


- Wavelength Division Multiplexing (WDM): allows simultanoues transmission of many wavelengths, each carrying its own data
- Can use WDM to transmit "time and frequency wavelengths" along with regular data traffic
- Time & frequency signals don't require much spectrum
 - Less than 1% of total capacity
 - Fibers always have more than 1% capacity available

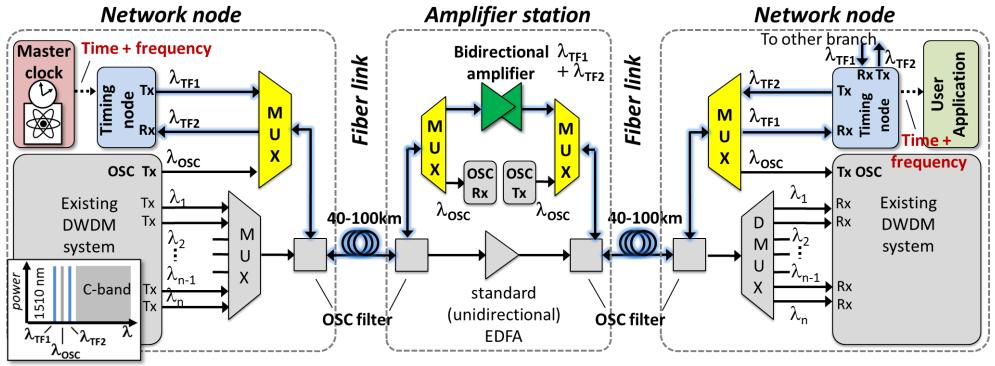


Uncalibrated delays and time errors

• Fiber-optic communication usually occurs over fiber pairs (but can measure round-trip delay)



- BUT difference between fiber delays is typically unknown and can be many microseconds, leading to similar time errors
- Solution 1: use GPS timing receivers at both ends to calibrate and remove time error...
- Solution 2: create bidirectional optical path in fiber (including bypass amplifier)

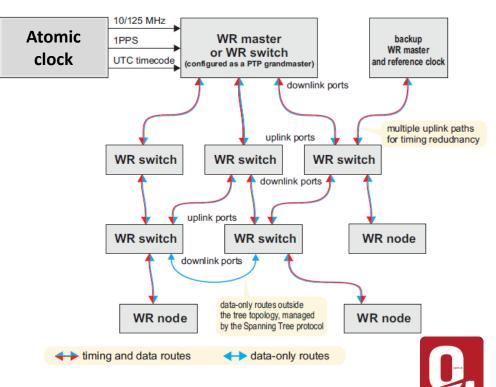


Timing through C band DWDM systems

Timing through C band DWDM systems

US Patent 9331844 B2

Similar WDM solutions demonstrated by others, e.g. LPL and Observatoire Paris, France http://www.refimeve.fr/index.php/en/ressources/publications/partners-of-refimeve.html


R. Nuijts, JK

Research at OPNT and VU University Amsterdam

- In collaboration with a dozen partners, mostly academic, mostly in Netherlands
- Developed and demonstrated key elements in installed networks:
 - WDM methods
 - Bidirectional optical amplification outside C band for T&F transfer
- Special interest: CERN's White Rabbit. Remember that for 0.1 m positioning (lane-level), 0.1 ns is sufficient (no picoseconds needed). VU and OPNT have managed to achieve 0.1 ns with WR.
- WR: basically 1 Gigabit Ethernet, very telecom-ish in nature
- OPNT: has own range of WR devices and supporting equipment (bidi's, WDM filters), first carrier-grade WR designs

'Upgrade' of IEEE1588 : White Rabbit (WR) http://www.ohwr.org/projects/white-rabbit

Recent examples

- 2×137 km WR link between VSL Delft and NIKHEF Amsterdam with (sub)nanosecond performance*
- Time and frequency through live core network Vodafone Netherlands (320 km ring, four locations, subnanosecond time sync)
- Interoperability tests in lab of US network operator (four different DWDM systems, <0.1 ns time accuracy over ~100 km during 11-day measurement run)
- Low-noise WR: approaching H-maser frequency stability**
- Ongoing: installations for VLBI and VSL/ESA in Europe (Q2/18)
- Preparations for PoC at US global data center operator

*E.F. Dierikx et al., IEEE TUFFC **63**, 945 (2016); T.J. Pinkert et al. (in preparation) **C. van Tour and J.C.J. Koelemeij, NRAO ngVLA memo #22 (2017)

OPNT White Rabbit building blocks

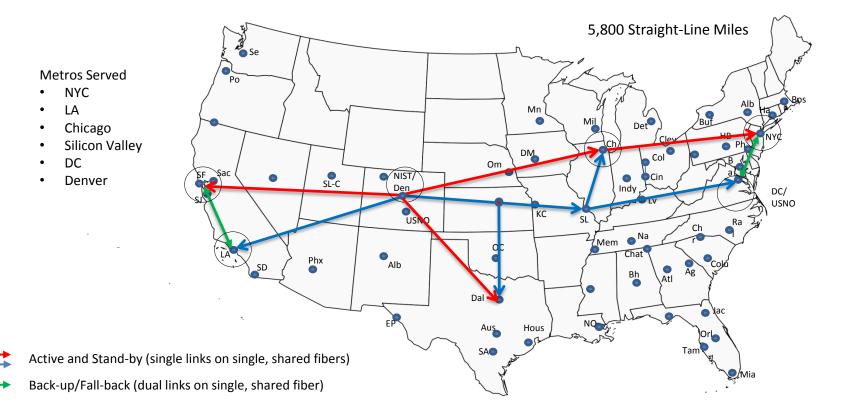
Timing Switch Sub nanosecond level, branching

Timing Node Sub nanosecond level end-point

Bidirectional Amplifer

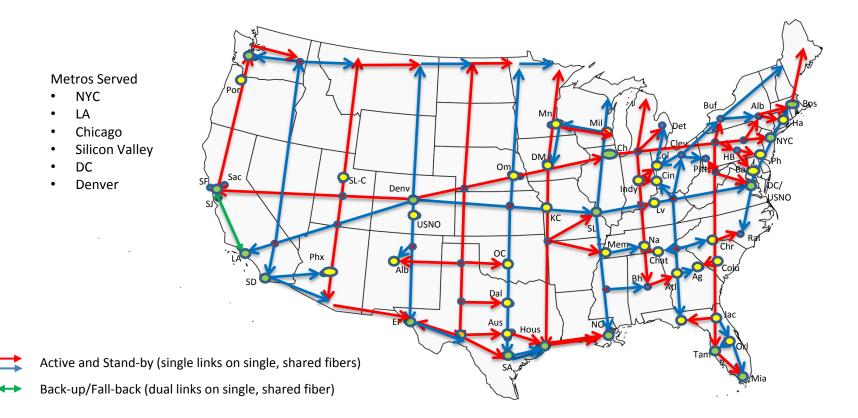
Range Extender

+ WDM Filters, Management, etc.

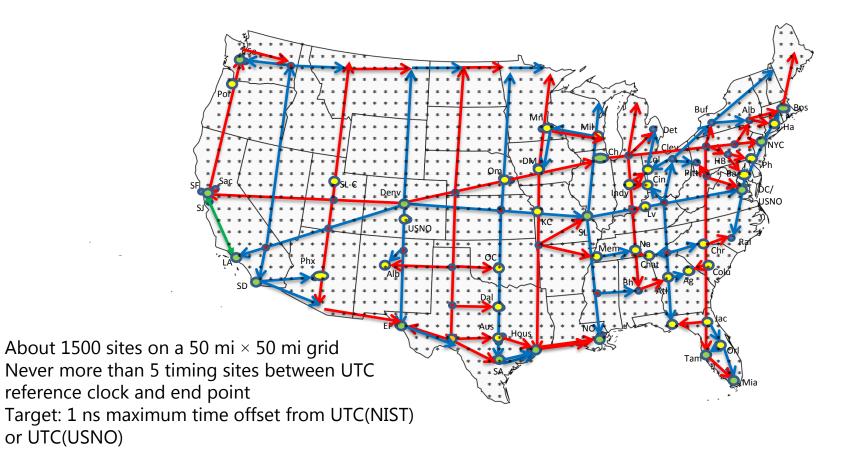


Nationwide terrestrial timing backbone

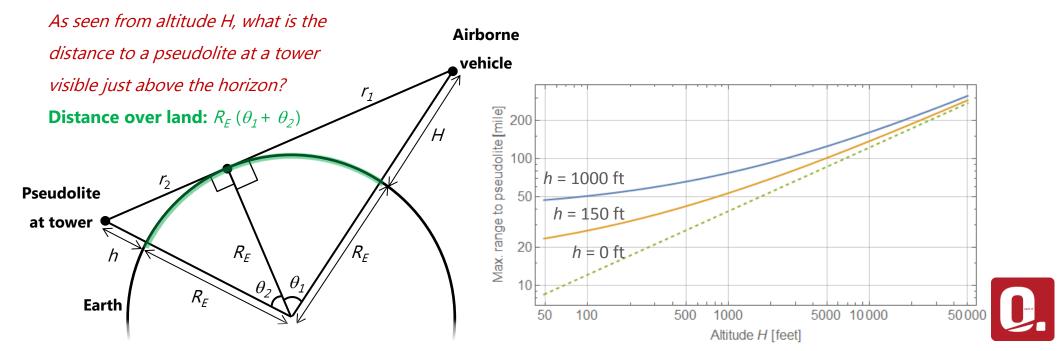
Several scenarios



US "Coast-to-Coast" Scenario



US "Coast-to-Coast Fishbone" Scenario

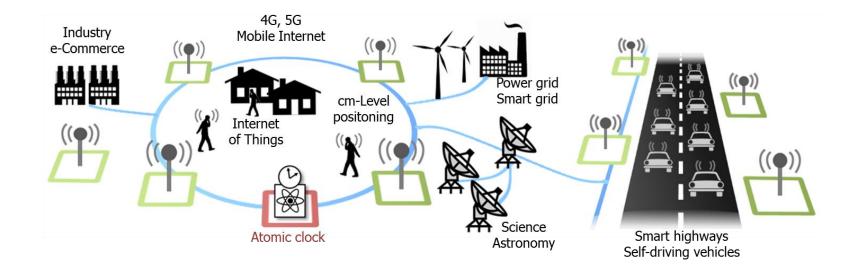

With Full-Visibility, Trilateration Grid

Terrestrial PNT backup system for airborne vehicles?

- Sparse 137 mi × 137 mi grid of 165 pseudolites (could be Lockheed Martin, Locata, NextNav, ...)
- Placed at >1,000 ft TV towers
- Support 3D trilateration (\geq 4 sites in view) for altitude H > 10,000 ft
- Denser grid: 1,500 pseudolites on 46 mi × 46 mi grid, 150 ft towers: support PNT for H > 1,000 ft

Quick comparison with GPS

- Use same DSSS modulation, but vastly different carrier frequency to avoid interference with GPS (cf. NextNav)
- Requires allocated spectrum
- Higher received power levels possible (higher SNR)
- No transmission through ionosphere ⇒ no ionospheric error
- Improved time synchronization accuracy ⇒ smaller clock and PNT error
- Stationary pseudolites, well known locations
 ⇒ smaller ephemeris error, simplified PNT algorithm


Sources of User Equivalent	
Range Errors (UERE)*	

	GPS	TPS
Source	Effect (m)	Effect (m)
Signal arrival C/A	±3	±3
Signal arrival P(Y)	±0.3	±0.3
lonospheric effects	±5	±0
Ephemeris errors	±2.5	±0.5
Satellite clock errors	±2	±0.5
Multipath distortion	±1	±1
Tropospheric effects	±0.5	±0.5
σR C/A	±6.7	±3.2
σR P(Y)	±6.0	±1.3

Outlook: densification and integration into 5G+

- Further densification: integration into 5G+ mobile infrastructure
- National terrestrial time infrastructure also useful for 5G mobile, finance, Smart grids, autonomous driving
- Topics addressed by SuperGPS project (with Delft University of Technology, KPN, VSL, a.o.)

Credits

- Team @ OPNT
- OPNT Advisors (Mr. Jeffrey K. Harris, Mr. Jean Pierre Aubry) and independent Board Member (Dr. Niel Ransom)
- Investors (Cottonwood Technology Fund, KPN Ventures)

