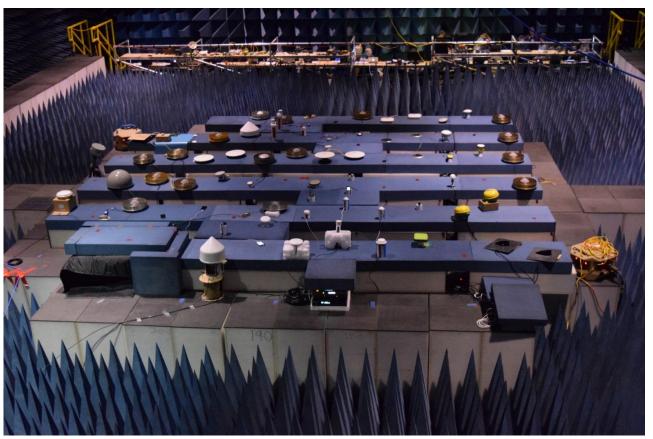
DOT GPS Adjacent Band Compatibility (ABC) Assessment

GPS Adjacent Radiofrequency Band Compatibility Assessment

- Identify adjacent band transmit power levels that can be tolerated by existing GNSS receivers for civil applications [excluding certified aviation applications - those are considered in a parallel FAA effort]
- Effort Led By DOT/OST-R/Volpe Center
- Accomplish this through:
 - GNSS Receiver and Antenna Testing Radiated, Wired, and Antenna characterization
 - Development of 1 dB Interference Tolerance Masks (ITMs)
 - Development of generic transmitter (base station and handheld) scenarios
 - Inverse and propagation modeling / use case scenarios

Space-Based PNT Advisory Board View: Minimum Criteria for Testing/Evaluation of GPS Adjacent Band Interference

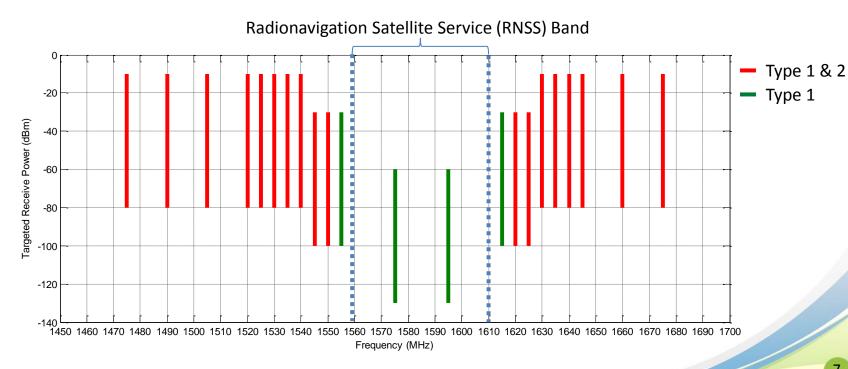
- 1. Accept and strictly apply the 1 dB degradation Interference Protection Criterion (IPC) for worst case conditions (This is the accepted, world-wide standard for PNT and many other radiocommunication applications)
- 2. Verify interference for **all classes of GPS receivers** is below criteria, especially precision (Real Time Kinematic requires both user and reference station to be interference-free) and timing receivers (economically these two classes are the highest payoff applications many \$B/year)
- 3. Test and **verify interference for receivers** in **all operating modes** is below criteria, particularly **acquisition** and **reacquisition** of GNSS signals under difficult conditions (see attachment of representative interference cases)
- 4. Focus analysis on worst cases: use maximum authorized transmitted interference powers and smallest-attenuation propagation models (antennas and space losses) that do not underrepresent the maximum power of the interfering signal (including multiple transmitters)
- 5. Ensure interference to emerging Global Navigation Satellite System (GNSS) signals (particularly wider bandwidth GPS L1C Galileo, GLONASS), is below criteria
- 6. All testing must include GNSS expertise and be open to public comment and scrutiny.


Major Milestones

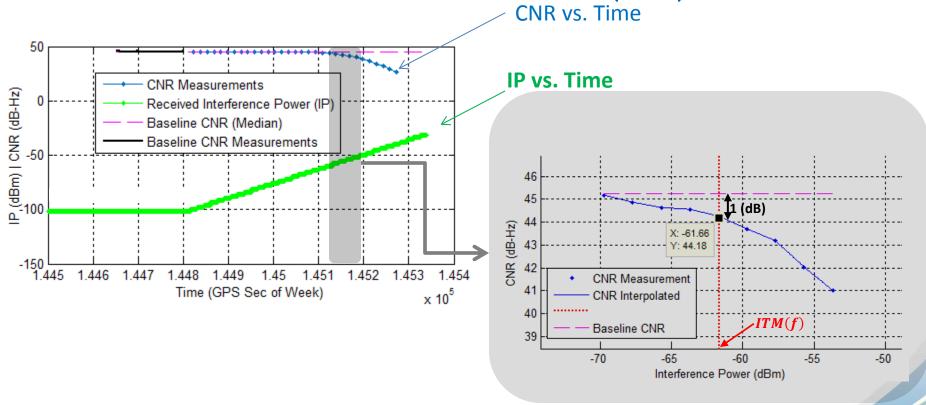
- Use case data collection effort with Federal Partners and Industry
- Released a public GNSS receiver test plan and developed an in depth GNSS receiver test procedure
- Carried out GNSS testing [OST-R/Volpe Center]
 - Radiated test data: Collected in an anechoic chamber [White Sands Missile Range (WSMR)]
 - Conducted test data: collected in a laboratory environment
 [Zeta Associates]
 - Antenna characterization data [The MITRE Corporation]
- Produced 1 dB Interference Tolerance Mask (ITM) results
- Developed Use Case Scenarios and Conducted Inverse Modeling to Determine Power Levels that can be Tolerated
- http://www.gps.gov/spectrum/ABC/

Radiated Testing Overview

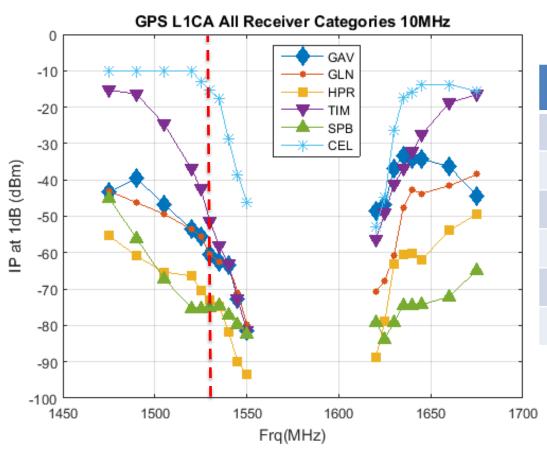
- GNSS receiver testing was carried out April 25-29, 2016 at the Army Research Laboratory's (ARL) Electromagnetic Vulnerability Assessment Facility (EMVAF), White Sands Missile Range (WSMR), NM
- Participation included DOT's federal partners/agencies (USCG, NASA, NOAA, USGS, and FAA) and GPS manufacturers
 - Air Force/GPS Directorate conducted testing week of April 18th
- 80 receivers were tested representing six categories of GPS/GNSS receivers: General Aviation (non certified), General Location/Navigation, High Precision & Networks, Timing, Space Based, and Cellular
- Tests performed in the anechoic chamber:
 - Linearity (receivers CNR estimators are operating in the linear region)
 - 1 MHz Bandpass Noise, In-Band and Adjacent Band (Type1)
 - 10 MHz Long Term Evolution (LTE) (Type 2)
 - Intermodulation (effects of 3rd order intermodulation)


Test Chamber Setup and Tested Signals

Signal
GPS L1 C/A-code
GPS L1 P-code
GPS L1C
GPS L1 M-code
GPS L2 P-code
SBAS L1
GLONASS L1 C
GLONASS L1 P
BeiDou B1I
Galileo E1 B/C

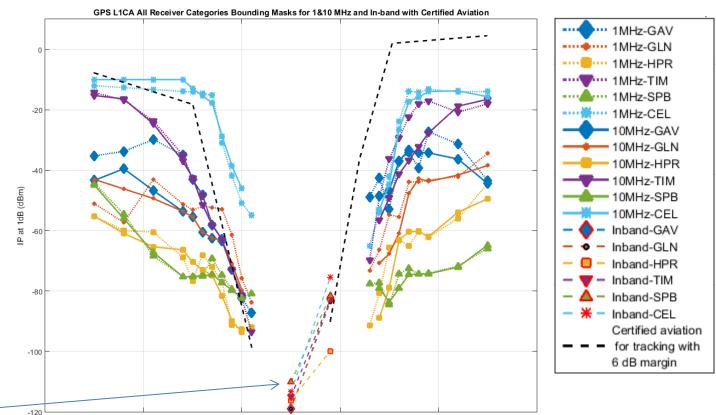

Interference Test Signal Profiles

- Data collected to develop Interference Tolerance Mask (ITM) for receivers
 - Carrier signal to noise density ratio (CNR) recorded over varying interference power levels at numerous interference center frequencies



Data Processed to Produce a 1 dB Interference Tolerance Mask (ITM)

 Example for determining ITM for 1 frequency (1545 MHz) for PRN 31 for one of the Devices Under Test (DUT)


Summary of 10 MHz Bounding Masks GPS L1 C/A

Category	ITM at 1530 MHz (dBm)
GAV - General Aviation (non certified)	-61.0
GLN - General Location/Navigation	-60.5
HPR - High Precision & Networks	-73.0
TIM - Timing	-59.4
SPB - Space Based	-73.5
CEL - Cellular	-15.3

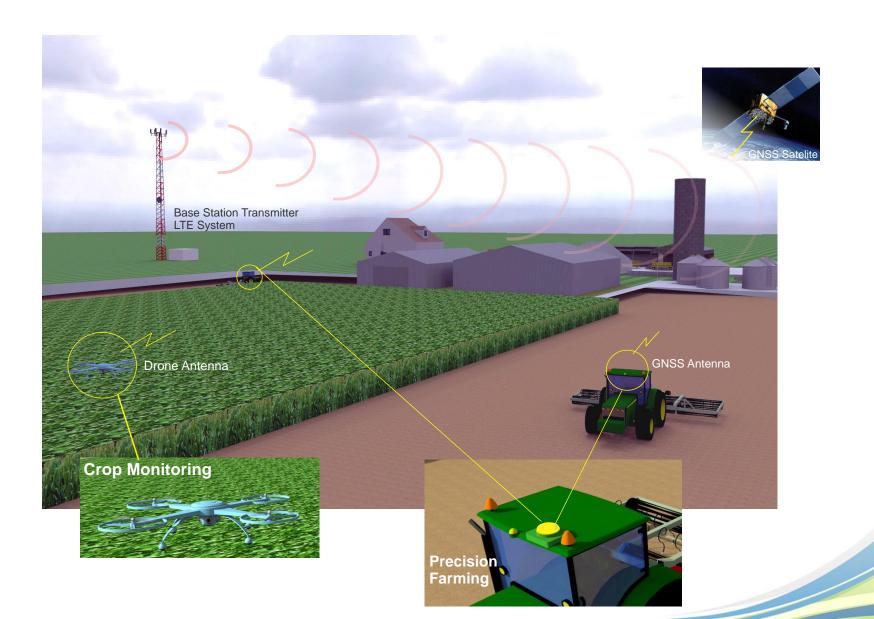
Summary of 1&10 MHz and In-band with Certified Aviation Bounding Masks GPS L1 C/A

Frq(MHz)

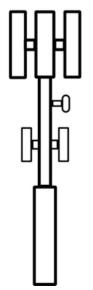
Note: Certified
Aviation Mask has a value of -110 dBm for 1 MHz in band interference

Summary of Radiated Test Results

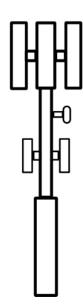
- 1 MHz AWGN and 10 MHz LTE interference signals ITM bounds have been produced for all emulated GNSS signals
- Most bounding ITMs show little sensitivity to interference signal types (AWGN (1 MHz) and LTE (10 MHz))
- Certified aviation receiver mask does not bound the masks of the 6 civil receiver categories
- In-band interference 1-dB degradation levels are consistent with expectation (-110 to -120 dBm/MHz for the L1C/A ITMs)


Emergency Response Scenario

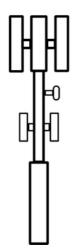
Construction/Infrastructure Scenario


Agriculture/Farming Scenario

Inverse Modeling / Transmit Power Levels

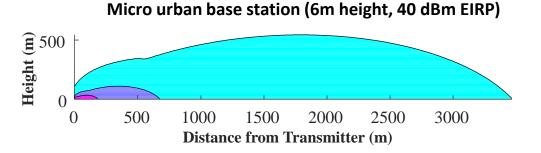

- Base Station Models
 - Report ITU-R M.2292 4G network characteristics for various deployments
 - Recommendation ITU-R F.1336 antenna characteristics
- Handset/Mobile Device Models
 - 23 dBm EIRP, isotropic transmit antenna, vertical polarization, 2 meter height
- Propagation Loss Models
 - Free-space path loss
 - Two-ray path loss model is expected to show larger impact regions
 - Irregular terrain model

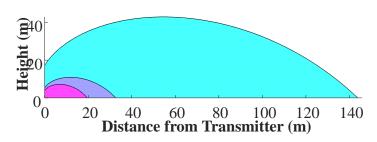
ITU-R M.2292 Macro Base Stations


Macro Rural

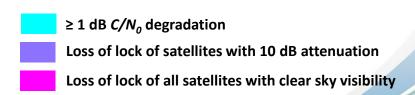
- 18 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 58/61/61 dBm
- 30 m height
- 3 deg downtilt
- > 3 km cell radius

Macro Suburban

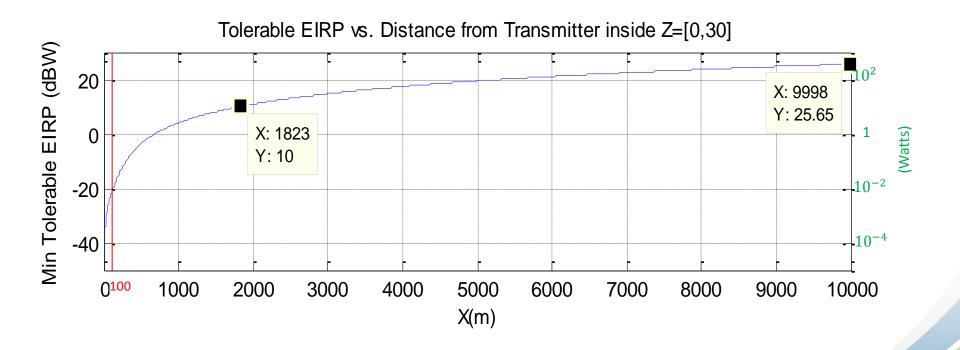

- 16 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 56/59/59 dBm
- 30 m height
- 6 deg downtilt
- 0.5 3 km cell radius


Macro Urban


- 16 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 56/59/59 dBm
- 25 m height
- 10 deg downtilt
- 0.25 1 km cell radius


Results: Region of Impact for ITU Recommended Power Levels

Handset (2m height, 23 dBm EIRP)



Inverse Modeling: HPR, 1530 MHz

Extent of the impact region:

>10 km from Transmitter for EIRP of 29 dBW

1.5 to 2 km for EIRP of 10 dBW

Maximum Tolerable Power Level for GPS/GNSS Receivers at 1530 MHz

Deployment	Stand off distance (m)	Max Tolerable EIRP (dBW)			
		GLN	HPR	TIM	CEL
Macro	10	-31.0	-41.9	-20.6	10.9
Urban	100	-11.0	-21.9	-0.6	31
Micro Urban	10	-29.8	-41.2	-20.1	10.7
	100	-9.8	-21.1	-0.1	30.8

Deployment	Stand off distance (m)	Max Tolerable EIRP			
		GLN	HPR	TIM	CEL
Macro Urban	10	0.8 mW	$64~\mu W$	8.7 mW	12.3 W
	100	79.4 mW	6.5 mW	0.9 W	1.26 kW
Micro Urban	10	1 mW	76 μW	9.8 mW	11.7 W
	100	104 mW	7.8 mW	1 W	1.2 kW

Maximum Tolerable Power Level for Space-Based Receivers at 1530 MHz

Deployment	Number of Base Stations	Max Tolerable Power		
Scenario		dBW	EIRP	
Macro Cell	184,500	11	12.6 W	
Macro Cell	67,240	16	39.8 W	
Macro Cell	44,850	17	50.1 W	
Macro Cell	24,140	21	125.9 W	
Macro + Micro Cell	282,186	8	6.3 W	
Macro + Micro Cell	102,841	12	15.8 W	
Macro + Micro Cell	69,477	14	25.1 W	
Macro + Micro Cell	39,695	16	39.8 W	

Next Steps

- Coordinate DOT GPS Adjacent Band Compatibility Assessment Final Report within U.S. Government
 - Includes certified avionics and non certified receivers
- Issue Final Public Report

Thank You