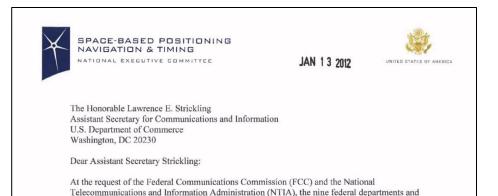
# DOT GPS Adjacent Band Compatibility Assessment

.....

Space-Based PNT


**Advisory Board Meeting** 

June 28, 2017

# GPS Adjacent Radiofrequency Band Compatibility Assessment

- Identify adjacent band transmit power levels that can be tolerated by existing GNSS receivers for civil applications [excluding certified aviation applications - those are considered in a parallel FAA effort]
- Effort Led By DOT/OST-R/Volpe Center
- Accomplish this through:
  - An open and transparent approach (six public workshops)
  - GNSS Receiver and Antenna Testing Radiated, Wired, and Antenna characterization
  - Development of 1 dB Interference Tolerance Masks (ITMs)
  - Development of generic transmitter (base station and handheld) scenarios
  - Inverse and propagation modeling / use case scenarios

## **EXCOM Letter**



"... without affecting existing and evolving uses of space-based PNT services vital to economic, public safety, scientific, and national security needs."

The EXCOM Agencies continue to strongly support the President's June 28, 2010 Memorandum to make available a total of 500 MHz of spectrum over the next 10 years, suitable for broadband use. We propose to draft new GPS Spectrum interference standards that will help inform future proposals for non-space, commercial uses in the bands adjacent to the GPS signals and ensure that any such proposals are implemented without affecting existing and evolving uses of space-based PNT services vital to economic, public safety, scientific, and national security needs.

ASHTON B. CARTER EXCOM Co-Chair Deputy Secretary of Defense

WHN D. PORCARI EXCOM Co-Chair Deputy Secretary of Transportation

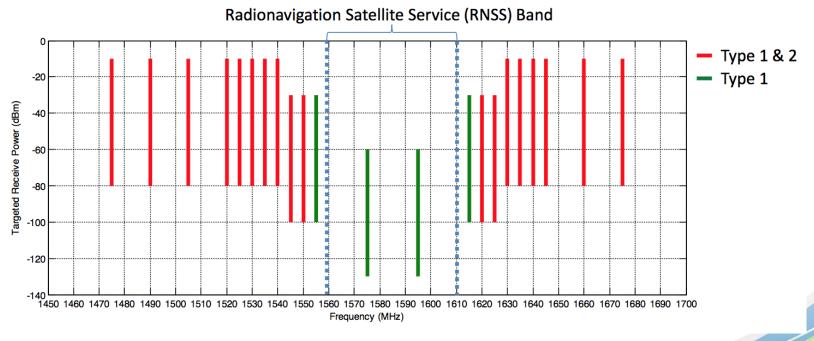
### Space-Based PNT Advisory Board View: Minimum Criteria for Testing/Evaluation of GPS Adjacent Band Interference

- **1. Accept and strictly apply the 1 dB degradation** Interference Protection Criterion (IPC) for worst case conditions (This is the accepted, world-wide standard for PNT and many other radiocommunication applications)
- Verify interference for <u>all classes of GPS receivers</u> is below criteria, especially precision (Real Time Kinematic - requires both user and reference station to be interference-free) and timing receivers (economically these two classes are the highest payoff applications – many \$B/year)
- 3. Test and **verify interference for receivers** in **all operating modes** is below criteria, particularly **acquisition** and **reacquisition** of GNSS signals under difficult conditions (see attachment of representative interference cases)
- 4. Focus analysis on <u>worst cases</u>: use <u>maximum</u> authorized transmitted interference powers and <u>smallest-attenuation</u> propagation models (antennas and space losses) that do not underrepresent the maximum power of the interfering signal (including multiple transmitters)
- Ensure interference to emerging Global Navigation Satellite System (GNSS) signals (particularly wider bandwidth GPS L1C – Galileo, GLONASS), is below criteria
- 6. All testing must include GNSS expertise and be open to public comment and scrutiny

## **Major Milestones**

- Use case data collection effort with Federal Partners and Industry
- Released a public GNSS receiver test plan and developed an in depth GNSS receiver test procedure
- Carried out GNSS testing
  - Radiated test data: collected in an anechoic chamber [White Sands Missile Range (WSMR)]
  - Conducted test data: collected in a laboratory environment [Zeta Associates]
  - Antenna characterization data [The MITRE Corporation]
    - Integrated antennas: collected in an open sky environment
    - External antennas: collected in an anechoic chamber
- Produced 1 dB Interference Tolerance Mask (ITM) results
- Developed use case scenarios and conducted inverse modeling to Determine power levels that can be tolerated
- For more detail see: <u>http://www.gps.gov/spectrum/ABC/</u>

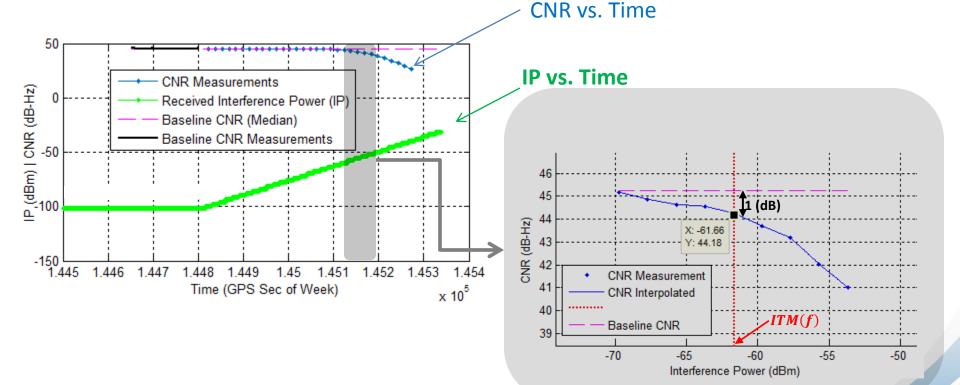
# **Radiated Testing Overview**


- GNSS receiver testing was carried out April 25-29, 2016 at the Army Research Laboratory's (ARL) Electromagnetic Vulnerability Assessment Facility (EMVAF), White Sands Missile Range (WSMR), NM
- Participation included DOT's federal partners/agencies (USCG, NASA, NOAA, USGS, and FAA) and GPS manufacturers (GM, u-blox, NovAtel, Trimble, John Deere, UNAVCO)
  - Air Force/GPS Directorate conducted testing week of April 18th
- 80 receivers were tested representing six categories of GPS/GNSS receivers: General Aviation (non certified), General Location/Navigation, High Precision & Networks, Timing, Space Based, and Cellular
- Tests performed in the anechoic chamber:
  - Linearity (receivers CNR estimators are operating in the linear region)
  - 1 MHz Bandpass Noise, In-band and adjacent band (Type 1)
  - 10 MHz Long Term Evolution (LTE) (Type 2)
  - Intermodulation (effects of 3rd order intermodulation)

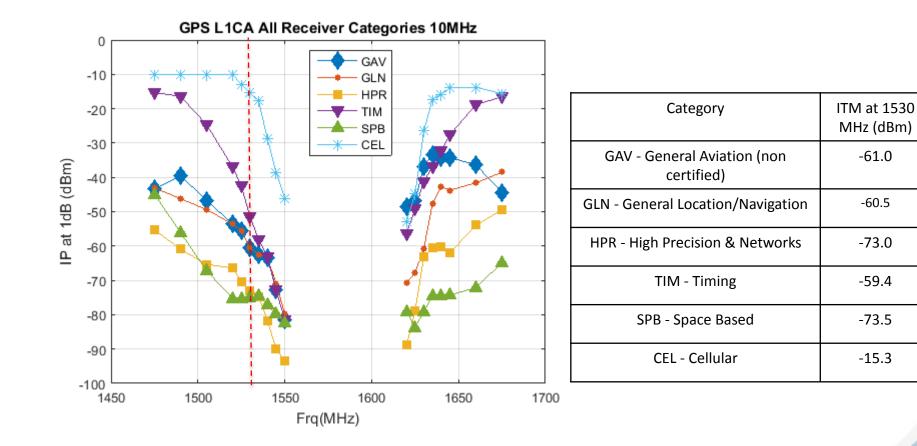
### **Test Chamber Setup and Tested Signals**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Signal          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPS L1 C/A-code |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPS L1 P-code   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPS L1C         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPS L1 M-code   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPS L2 P-code   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SBAS L1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLONASS L1 C    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLONASS L1 P    |
| MAN NAME INCOMENTATION OF THE OWNER | BeiDou B1I      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Galileo E1 B/C  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |

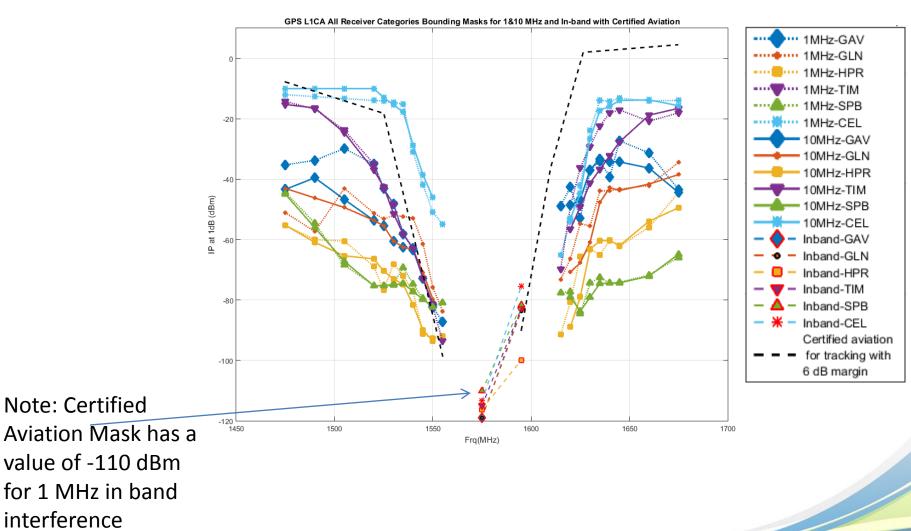
# **Interference Test Signal Profiles**


- Data collected to develop Interference Tolerance Mask (ITM) for receivers
  - Carrier signal to noise density ratio (CNR) recorded over varying interference power levels at numerous interference center frequencies




Interference Test Signal Frequencies and Power Profiles

# Data Processed to Produce a 1 dB Interference Tolerance Mask (ITM)


• Example for determining ITM for 1 frequency (1545 MHz) for PRN 31 for one of the Devices Under Test (DUT)

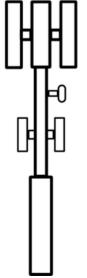


# Summary of 10 MHz Bounding Masks GPS L1 C/A



### Summary of 1&10 MHz and In-band with Certified Aviation Bounding Masks GPS L1 C/A




## **Summary of Radiated Test Results**

- 1 MHz AWGN and 10 MHz LTE interference signals ITM bounds have been produced for all emulated GNSS signals
- Most bounding ITMs show little sensitivity to interference signal types (AWGN (1 MHz) and LTE (10 MHz))
- Certified aviation receiver mask does not bound the masks of the 6 civil receiver categories
- In-band interference 1-dB degradation levels are consistent with expectation (-110 to -120 dBm/MHz for the L1C/A ITMs)

### **Inverse Modeling / Transmit Power Levels**

- Base Station Models
  - Report ITU-R M.2292 4G network characteristics for various deployments
  - Recommendation ITU-R F.1336 antenna characteristics
- Handset/Mobile Device Models
  - 23 dBm EIRP, isotropic transmit antenna, vertical polarization, 2 meter height
- Propagation Loss Models
  - Free-space path loss
  - Two-ray path loss model is expected to show larger impact regions
  - Irregular terrain model

### **ITU-R M.2292 Macro Base Stations**



#### Macro Rural

- 18 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 58/61/61 dBm
- 30 m height
- 3 deg downtilt
- > 3 km cell radius

#### Macro Suburban

- 16 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 56/59/59 dBm
- 30 m height
- 6 deg downtilt
- 0.5 3 km cell radius

#### Macro Urban

- 16 dBi antenna gain
- +/-45° polarization
- 3 sectors
- EIRP: 56/59/59 dBm
- 25 m height
- 10 deg downtilt
- 0.25 1 km cell radius

### **Emergency Services Scenarios**



Photo courtesy Tiero/ThinkStock Drone/Emergency Response/Disasters



Photo courtesy StockSolutions/ThinkStock
Ankle Bracelet
Monitoring



Photo courtesy Mokee81/ThinkStock Police/Emergency Response/Resource Tracking



Photo courtesy Mrdoomits/ThinkStock Emergency Response/ Resource Tracking



Photo courtesy ThinkStock Drone/Emergency Response/Disasters

### **Construction/Infrastructure Scenarios**



Photo courtesy of WSP Canada Inc GPS HPR receiver used in construction/surveying



Photo courtesy of WSP Canada Inc GPS HPR receiver used in construction/surveying



Photo courtesy ThinkStock

#### GPS HPR receiver used in construction guidance



Photo courtesy Medvedkov/ThinkStock Construction/Surveying

## **Agriculture/Farming Scenario**



Photo courtesy Valio84sl/ThinkStock

#### Drone/Crop Monitoring



Photo courtesy of John Deere High Precision Farming



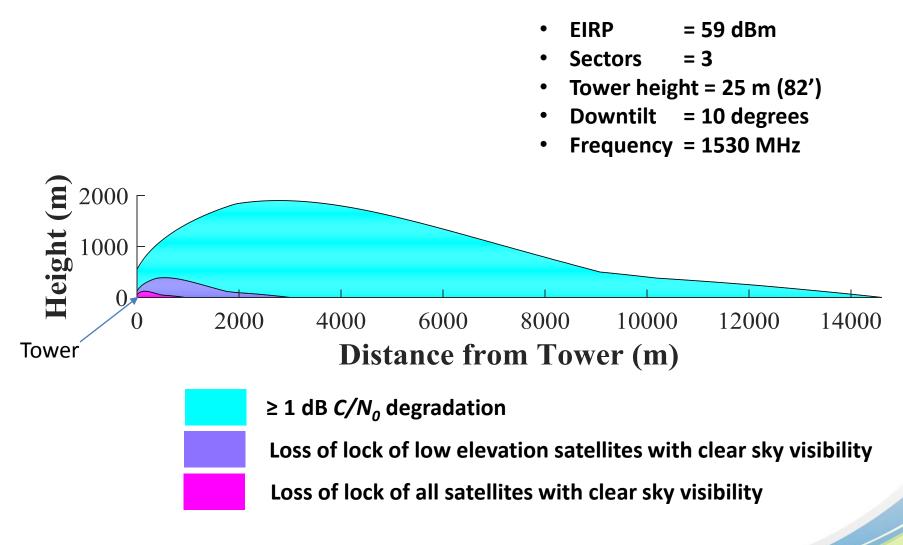
#### Photo courtesy of John Deere GPS Guidance System



Photo courtesy of John Deere

**High Precision Farming** 

## Why HPR as an Important Use Case?


- EXCOM Priorities
  - Focus on existing uses  $\checkmark$
  - Vital Needs:
    - Economic 🗸
    - Public Safety ✓
    - Scientific 🗸
    - National Security 🗸

#### PNT Advisory Board Priorities

- Focus on HPR and TIM
- Focus analysis on most sensitive case
- Apply the 1 dB degradation
- Include GNSS

| Category Existing Uses |              | Vital Needs   |              |                   |                     | Most Sensitive ITM |
|------------------------|--------------|---------------|--------------|-------------------|---------------------|--------------------|
| Category Existing Uses | Economic     | Public Safety | Scientific   | National Security | WOSt Sensitive mivi |                    |
| GAV                    | ✓            | ✓             | ✓            | ✓                 | ✓                   |                    |
| GLN                    | ✓            | ✓             | ✓            | $\checkmark$      | $\checkmark$        |                    |
| HPR                    | ✓            | ✓             | ✓            | ✓                 | $\checkmark$        | ✓                  |
| TIM                    | ✓            | ✓             | ✓            | ✓                 | ✓                   |                    |
| CEL                    | ✓            | ✓             | ✓            | ✓                 |                     |                    |
| SPB                    | $\checkmark$ | ✓             | $\checkmark$ | $\checkmark$      | ✓                   | $\checkmark$       |

# Macro Urban Transmitter\* High Precision Receiver, 1530 MHz

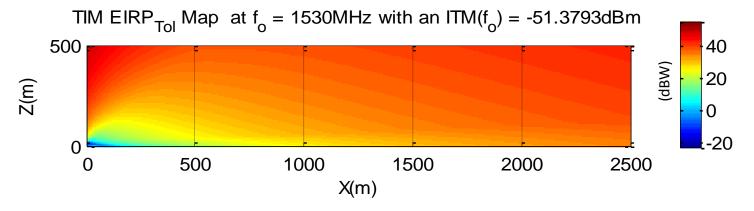


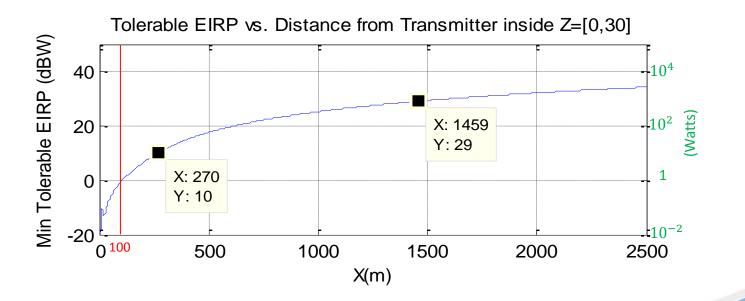
\* Based on ITU-R M.2292

#### Macro Urban, TIM, 1530 MHz = 56/59/59 dBm EIRP Sectors = 3 Tower height = 25 m (82') = 10 degrees Downtilt Frequency = 1530 MHz 200 Height (m) 100 200 400 600 800 1000 1200 1400 0 **Distance from Tower (m)** Tower $\geq$ 1 dB C/N<sub>o</sub> degradation Loss of lock of low elevation satellites with clear sky visibility

Loss of lock of all satellites with clear sky visibility

### **Inverse Modeling: CEL, 1530 MHz**

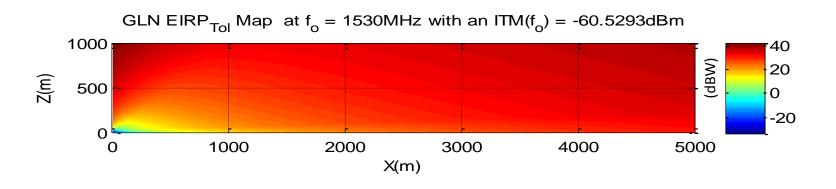

Extent of the impact region: 80 m from Transmitter for EIRP of 29 dBW
 6 m for EIRP of 10 dBW

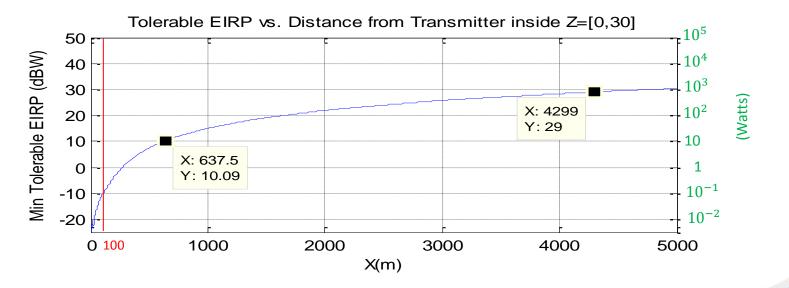

CEL EIRP<sub>Tol</sub> Map at  $f_0 = 1530$ MHz with an ITM( $f_0$ ) = -15.3651dBm 100 80 (dBW) 60 Z(m) 50 40 20 0 100 0 50 150 200 250 X(m) Tolerable EIRP vs. Distance from Transmitter inside Z=[0,30] Min Tolerable EIRP (dBW)  $10^{5}$ 50  $10^{4}$ 40 . 10<sup>3</sup> 30 (Watts) X: 80.5 -10<sup>2</sup> 20 Y: 29.02 10 10 X: 6 0 Y: 10.02 50 100 150 200 250 0 X(m)

### Inverse Modeling: TIM, 1530 MHz

• Extent of the impact region: 1.5 km from transmitter for EIRP of 29 dBW

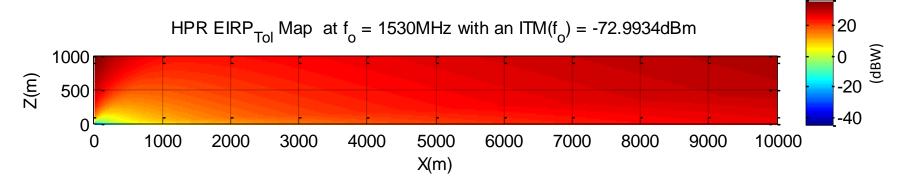
#### 270 m for EIRP of 10 dBW

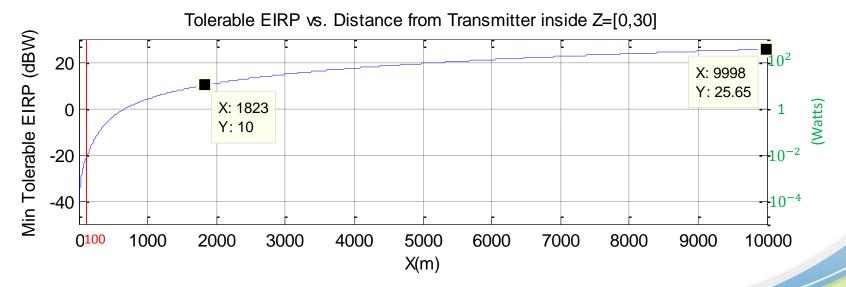



### **Inverse Modeling: GLN, 1530 MHz**

• Extent of the impact region: 4 to 4.5 km from Transmitter for EIRP of 29 dBW


#### 600 to 650 m for EIRP of 10 dBW






### Inverse Modeling: HPR, 1530 MHz

Extent of the impact region: >10 km from Transmitter for EIRP of 29 dBW
 1.5 to 2 km for EIRP of 10 dBW





### Summary Inverse Modeling – 1530 MHz Results (Single Base Station)

| Deployment     | Stand off<br>distance (m)   | Max Tolerable EIRP (dBW) |       |       |      |
|----------------|-----------------------------|--------------------------|-------|-------|------|
|                |                             | GLN                      | HPR   | TIM   | CEL  |
| Macro<br>Urban | 10                          | -31.0                    | -41.9 | -20.6 | 10.9 |
|                | 100                         | -11.0                    | -21.9 | -0.6  | 31   |
| Micro<br>Urban | 10                          | -29.8                    | -41.2 | -20.1 | 10.7 |
|                | 100                         | -9.8                     | -21.1 | -0.1  | 30.8 |
| Deployment     | t Stand off<br>distance (m) | Max Tolerable EIRP       |       |       |      |
|                |                             |                          |       | TINA  |      |

| Deproyment     |              |         |        |        |         |  |
|----------------|--------------|---------|--------|--------|---------|--|
|                | distance (m) | GLN     | HPR    | TIM    | CEL     |  |
| Macro<br>Urban | 10           | 0.8 mW  | 64 µW  | 8.7 mW | 12.3 W  |  |
|                | 100          | 79.4 mW | 6.5 mW | 0.9 W  | 1.26 kW |  |
| Micro<br>Urban | 10           | 1 mW    | 76 μW  | 9.8 mW | 11.7 W  |  |
|                | 100          | 104 mW  | 7.8 mW | 1 W    | 1.2 kW  |  |
|                |              |         |        |        |         |  |

### **Next Steps**

- Complete DOT GPS Adjacent Band Compatibility
   Assessment Final Report
  - Will include certified avionics and non certified receivers
- Issue Final Report for Public Review and Comment