Space and Missile Systems Center

Global Positioning Systems Directorate

GPS Status & Modernization Progress: Service, Satellites, Control Segment, and Military GPS User Equipment

> PNT Advisory Board 7-8 Dec 2016

Col Gerry Gleckel, Deputy Director

Global Positioning Systems Directorate

Global Positioning Systems Directorate

SPACE AND MISSILE SYSTEMS CENTER

Professionals acquiring, delivering and sustaining reliable GPS capabilities to America's warfighters, our allies, and civil users


GPS Overview

SPACE AND MISSILE SYSTEMS CENTER

Civil Cooperation

- 1+ Billion civil & commercial users worldwide
- Search and Rescue
- Civil Signals
- L1 C/A (Original Signal)
- L2C (2nd Civil Signal)
- L5 (Aviation Safety of Life)
- L1C (International)

Spectrum

- World Radio Conference
- International Telecommunication Union
- Bilateral Agreements
- Adjacent Band Interference

37 Satellites / 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age	Oldest
GPS IIR	12	14.9	19.4
GPS IIR-M	7	9.4	11.2
GPS IIF	12	2.9	6.5
Constellation	31	9.0	19.4

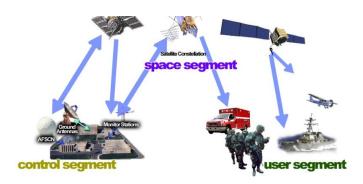
AS OF: 2 DEC16

Department of Defense

- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOMS
- GPS Partnership Council

Maintenance/Security

- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Semi-Annually
 ICWG: Worldwide Involvement
- Update GPS.gov Webpage
- Load Operational Software on over 970,000 SAASM Receivers
- Distribute PRNs for the World
 - 120 for US and 90 for GNSS



Department of Transportation

Federal Aviation Administration

Department of Homeland Security

· U.S. Coast Guard

International Cooperation

- 57 Authorized Allied Users
 - 25+ Years of Cooperation
- GNSS
 - Europe Galileo
 - China Beidou
 - Russia GLONASS
 - Japan QZSS
 - India IRNSS

GPS SIS Performance Scoreboard

SPACE AND MISSILE SYSTEMS CENTER

GPS SIGNAL IN SPACE (SIS) PERFORMANCE (CM)

GPS Performance Report Card

SPACE AND MISSILE SYSTEMS CENTER

- 2013 report now available on gps.gov
 - http://www.gps.gov/systems/gps/performance/
- This report measures GPS performance against GPS SPS PS assertions

Table 2.1: Summary of SPS PS Metrics Examined for 2013

SPSPS08 Section	SPS PS Metric	2013 Statu
	$\leq 7.8 \mathrm{m}$ 95% Global average URE during normal operations over all AODs	V+
3.4.1 SIS URE Accuracy	≤ 6.0 m 95% Global average URE during normal operations at zero AOD	V+
	≤ 12.8 m 95% Global average URE during normal opera- tions at any AOD	+
	≤ 30 m 99.94% Global average URE during normal opera- tions	*
	≤ 30 m 99.79% Worst case single point average URE during normal operations	*
3.5.1 SIS Instantaneous URE Integrity	$\leq 1X10^{-5}$ Probability over any hour of exceeding the NTE tolerance without a timely alert	> +
3.6.1 SIS Continuity - Unscheduled Failure Interruptions	≥ 0.9998 Probability over any hour of not losing the SPS SIS availability from the slot due to unscheduled interrup- tion	V+
3.7.1 SIS Per-Slot Availability	≥ 0.957 Probability that (a.) a slot in the baseline 24-slot will be occupied by a satellite broadcasting a healthy SPS SIS, or (b.) a slot in the expanded configuration will be occupied by a pair of satellites each broadcasting a healthy SIS	V+
3.7.2 SIS Constellation Availability	≥ 0.98 Probability that at least 21 slots out of the 24 slots will be occupied by a satellite (or pair of satellites for ex- panded slots) broadcasting a healthy SIS	V+
	≥ 0.99999 Probability that at least 20 slots out of the 24 slots will be occupied by a satellite (or pair of satellites for expanded slots) broadcasting a healthy SIS	V+
3.7.3 Operational Satellite Counts	≥ 0.95 Probability that the constellation will have at least 24 operational satellites regardless of whether those opera- tional satellites are located in slots or not	V+
3.8.1 PDOP	≥ 98% Global PDOP of 6 or less	V+
Availability	≥ 88% Worst site PDOP of 6 or less	/ +
3.8.2 Position Service Availability	≥ 99% Horizontal, average location ≥ 99% Vertical, average location ≥ 90% Horizontal, worst-case location ≥ 90% Vertical, worst-case location	V+
3.8.3 Position Accuracy	≤ 9 m 95% Horizontal, global average ≤ 15 m 95% Vertical, global average ≤ 17 m 95% Horizontal, worst site < 37 m 95% Vertical, worst site	V+

✓+ - Met or Exceeded

GPS Modernization

SPACE AND MISSILE SYSTEMS CENTER

Space System (Satellites)

Legacy (GPS IIA/IIR)

- Basic GPS
- NUDET (Nuclear Detonation)
 Detection System (NDS)

GPS IIR-M

- 2nd Civil signal (L2C)
- New Military signal
- Increased Anti-Jam power

GPS IIF

- 3rd Civil Signal (L5)
- Longer Life
- Better Clocks

GPS III (SV01-10)

- Accuracy & Power
- Increased Anti-Jam power
- Inherent Signal Integrity
- Common L1C Signal
- Longer Life

GPS III (SV11+)

- Unified S-Band Telemetry, Tracking & Commanding
- Search & Rescue (SAR)
 Payload
- Laser Retroreflector Array
- Redesigned NDS Payload

Ground System

Legacy (OCS)

- Mainframe System
- Command & Control
- Signal Monitoring

AEP

- Distributed Architecture
- Increased Signal Monitoring Coverage
- Security
- Accuracy
- Launch And Disposal Operations

OCX Block 1

- Fly Constellation & GPS III
- Begin New Signal Control
- Upgraded Information Assurance

OCX Block 0

GPS III Launch & Checkout

GPS III Contingency Ops (COps)

· GPS III Mission

OCX Block 2+

- Control all signals
- Capability On-Ramps
- GPS III Evolution

User Equipment System (Receivers)

Legacy (PLGR/GAS-1/MAGR)

First Generation System

User Equipment

- Improved Anti-Jam & Systems
- Reduced Size, Weight & Power

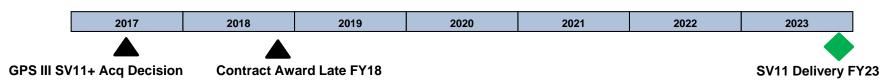
Upgraded Antennas

Improved Anti-Jam Antennas

Modernized

- M-Code Receivers
- Common GPS Modules
- Increased Access/ Power with M-Code
- Increased Accuracy
- Increased Availability
- Increased Anti-Tamper/ Anti-Spoof
- Increased Acquisition in Jamming

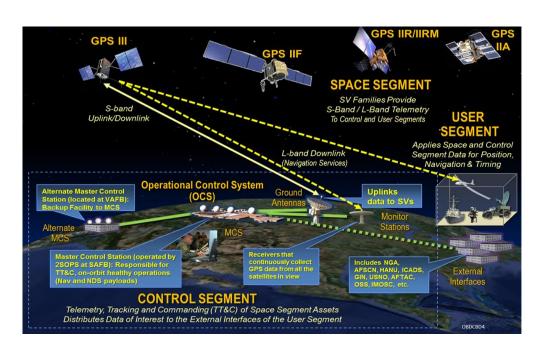
GPS III


- GPS III is the newest block of GPS satellites
 - 4 civil signals: L1 C/A, L1C, L2C, L5
 - First satellites to broadcast common L1C signal
 - 4 military signals: L1/L2 P(Y), L1/L2M
- SV01-SV10 on contract
 - SV09 & 10 awarded 21 Sep 16
 - Same requirements baseline as SV01-08
- Current Status
 - SV01 In Testing Flow
 - Baseline thermal vacuum testing completed 23 Dec 15
 - Electromagnetic Interference (EMI) test completed 14 May 16
 - SV02 NPE delivered 1 Jun 16
 - SV02/03 in assembly & integration
 - SV04-08 in box level assembly

GPS III SV11+

- Build on the legacy of the GPS IIF and GPS III programs
 - Drive down costs, maintain production readiness to achieve 2023 need date
- Plan to compete GPS III SV11+ Follow-on Production
 - Promote competition and reduce risk for production GPS space vehicles
- Two-phase approach
 - Phase 1: Production Readiness Feasibility Assessment
 - Gain insight into contractor SV & navigation payload production maturity & risk
 - The Boeing Company, Lockheed Martin Space Systems Company, and Northrop Grumman Aerospace Systems awarded contracts on 9 May 16
 - Phase 2: Production Competition
 - Full and open competition for up to 22 production ready GPS III SVs

GPS Next Generation Operational Control System (OCX)


- Next-generation C2 and cyber-defense for GPS
 - Worldwide, 24 hr/day, all weather, position, velocity and time source for military & civilian users
 - Improved PNT performance
 - Robust information assurance and cyber security
 - Modern civil signals & monitoring
 - Support to Military Code (M-Code) navigation warfare
- Incremental Development
 - OCX Block 0: launch & checkout for GPS III
 - OCX Block 1: operate & manage GPS constellation, replaces AEP, adds modern features
 - OCX Block 2: operate advanced M-Code features and Civil Signal Performance Monitoring
- Current Status: Working through program challenges
 - Quarterly Reviews with OSD AT&L, SECAF, and Raytheon CEO
 - SECAF declared Nunn-McCurdy Breach on 30 Jun 16
 - Nunn-McCurdy process complete, program recertified on 12 Oct 16 by USD/AT&L

Contingency Operations (COps)

- Contingency Operations (COps) provides limited operations of GPS IIIs until OCX Block 1 delivery
 - Legacy signal operations
 - Test-only support for modernized signals
 - RTO projected Apr 2019
- Schedule supports current mission need date of Sep 2019 to sustain on-orbit legacy signal capability
- COPS relies on OCX Block 0 for GPS III launch, major anomaly, and disposal capabilities
- Completed CDR in Nov 2016

Military GPS User Equipment (MGUE)

- Commercial market-driven acquisition approach
 - Three vendors developing modernized receiver cards
- Conducting early integration activities to support Service-nominated Lead Platforms
 - Nov 2015: Delivered first prototype MAGR2K-M to support B-2 integration & test
 - Dec 2015: Successful tracking of Y-Code by prototype
 MAGR2K-M in B-2 Software Integration Lab (SIL)
- MGUE Inc.1
 Components
 A-Kit
 Ground

 Ground

 GRAM-III

 GRAM SEM-E-NI
 (GRAM S/M)

 AIR FORCE
 B-2 Spirit


 NAVY
 GPNTS Arleigh Burke Class Destroyer (DDG)
- Apr 2016: Successful integration and M-Code track: modernized Embedded GPS Inertial System (EGI)
- Jun 2016: MGUE Final Test Articles (FTAs) provided to Navy DDG Destroyer Lead Platform program
- Aug 2016: B-2 Integration with new antenna in the B-2 SIL; tracking M-Code
- Draft MGUE Increment 2 Capability Development Document (CDD)
 in coordination: Space Receiver, Handheld, Precision Guided Munitions
- L-3 Interstate Electronics Corporation first DoD contractor to receive user equipment security certification, Oct 16

GPS Director's Perspectives

- GPS is the Global Utility
 - Committed to maintaining uninterrupted service "the Gold Standard"
- Embracing Space Enterprise Vision by continuing to enhance PNT resiliency
 - Includes examination of multi-GNSS receivers
- Appreciate the need for alternative PNT sources, and challenge the community (labs, industry, others) to propose & explore solutions
- Next-Generation Operational Control System (OCX) addressing cost and schedule challenges
 - Looking at opportunities to provide operational modernized signal capabilities prior to OCX

ACQUISITION PROFESSIONALS DELIVERING THE GOLD STANDARD IN SPACE-BASED PNT AND NDS SERVICES

GPS IIF

20 Feb 14: IIF-5

16 May 14: IIF-6

1 Aug 14: IIF-7

29 Oct 14: IIF-8

25 Mar 15: IIF-9

15 Jul 15: IIF-10

31 Oct 15: IIF-11

5 Feb 16: IIF-12