Multi-GNSS: Users' perspective

Gerhard Beutler

Astronomical Institute, University of Bern (AIUB) IAG representative on PNT Advisory Board

based on material provided by O. Montenbruck¹⁾, R. Dach²⁾, L. Prange²⁾, E. Brockmann³⁾, S. Lutz³⁾

1) DLR, DE, 2) AIUB, CH, 3) swisstopo, CH

18th PNT Advisory Board Meeting December 8, 2016 Crowne Plaza, Redondo Beach and Marina Hotel 300 N Harbor Drive California, Cal 90277 USA

Contents

- > Multi-GNSS: the systems 2016
- > MGEX: status within the IGS
- >MGEX@CODE: status and plans
- >MGEX@swisstopo: a regional application

International Association of Geodesy

2

Multi-GNSS: the systems 2016

System	Block	Signals	Satellites
GPS	IIR	L1 C/A, L1/L2 P(Y)	12
	IIR-M	L1 C/A, L1/L2 P(Y), L2C,	7
		L1/L2 M	
	IIF	L1 C/A, L1/L2 P(Y), L2C,	12
		L1/L2 M, L5	
GLONASS	Μ	L1/L2 C/A & P	23
	M+	L1/L2 C/A & P, L3	1
	Κ	L1/L2 C/A & P, L3	1+(1)
BeiDou-2	MEO	B1-2, B2, B3	3
	IGSO	B1-2, B2, B3	6
	GEO	B1-2, B2, B3	5+(1)
BeiDou-3	MEO	B1-2, B1, B2, B3ab	2+(1)
	IGSO	B1-2, B1, B2, B3ab	2
Galileo	IOV	E1, E6, E5a/b/ab	3+(1)
	FOC	E1, E6, E5a/b/a	6+(4)
QZSS	Ι	L1 C/A, L1C, L1 SAIF, L2C, L6	1
		LEX, L5	
IRNSS	IGSO	L5/S SPS & RS	4
	GEO	L5/S SPS & RS	3

From Montenbruck et al (2016)Status: October 2016 4 global systems (GPS, GLONASS, BeiDou-3, Galileo), **3 regional systems (QZSS, IRNSS**, BeiDou-2) GPS, GLONASS, BeiDou-2 and IRNSS operational with 31, 24, and 9 satellites, respectively Galileo, BeiDou-3, QZSS are "under construction" **IRNSS** is fully deployed, as well.

Multi-GNSS: the systems 2016

4

5-Dec-16

The MGEX ground-tracking network

Figure 2: IGS multi-GNSS stations in October 2016.

Currently, about 170 Multi-GNSS stations track a combination of Galileo, Beidou, QZSS, in addition to GPS and GLONASS. QZSS is of interest in the Western Pacific and Oceanic regions.

MGEX Analysis

Institution	Abbr.	Constellations	SP3	CLK	SNX	ERP	BSX
CNES/CLS	GRM	GPS+GLO+GAL	15 min	30 s	х	1	-
CODE	COM	GPS+GLO+GAL+BDS+QZS	15 min	5 min	<u></u>	х	X
GFZ	GBM	GPS+GLO+GAL+BDS+QZS	5 min	30 s	-	x	X
JAXA	QZF	GPS+QZS	5 min	1.77	-	1.77	55
TUM	TUM	GAL+QZS	5 min	1000	<u></u>	1000	227
Wuhan Univ.	WUM	GPS+GLO+GAL+BDS+QZS	15 min	5 min	-	X	_

MGEX Analysis Centers (ACs) and products (orbits, clocks, coordinates of ground tracking network, Earth rotation parameters, intersystem biases)

MGEX Analysis

	GPS	GLONASS	Galileo		BeiDou			QZSS	
			IOV	FOC	MEO	IGSO	GEO	YS	ON
Radial	1-3	4-11	6-10	4-10	3-11	11 - 23	54	10 - 24	30-71
Along-Track	2 - 4	4 - 12	10 - 18	10 - 19	10 - 21	24 - 39	298	28 - 57	84-133
Cross-Track	2 - 3	3 - 9	9 - 20	6-14	6 - 10	17 - 23	410	16 - 39	59 - 156
3D	3 - 6	6-17	16 - 29	14-26	12 - 26	32-51	510	40-73	123-240

Table 9: RMS values derived from orbit comparisons for the time period 1 January - 30 June 2016. All values are given in cm.

Current orbit quality per coordinate, from MGEX comparisons:

GPS: 1-4 cm

GLO: 4-12 cm

Galileo: 4-14 cm

BeiDou: MEO < 20 cm, IGSO: < 30 cm, GEO: < 400 cm

QZSS, Yaw-Steering (YS): < 50 cm, Orbit-Normal mode (ON): < 160 cm

MGEX, SLR Validation

Table 10: SLR residual offsets and standard deviations for the time period 1 January - 30 June 2016. All values are given in cm.

	GLONASS	Gal	Galileo		BeiDou			
		IOV	FOC	MEO	IGSO	GEO		
COM	0.5 ± 5.0	-4.3 ± 4.5	-3.5 ± 4.3	-3.4 ± 6.5	-2.8 ± 14.5		-2.0 ± 26.0	
GBM	1.0 ± 5.5	-1.7 ± 8.0	-3.0 ± 8.2	-0.3 ± 3.5	-1.1 ± 6.5	-44.7 ± 42.0	15.4 ± 26.5	
GRM	0.2 ± 5.2	-0.3 ± 4.5	-1.3 ± 4.7					
QZF							-13.8 ± 16.2	
TUM		-6.1 ± 8.8	-4.6 ± 8.6				8.1 ± 28.9	
WUM	1.0 ± 5.4	-2.0 ± 4.2	-6.2 ± 9.0	-2.5 ± 4.2	-3.4 ± 8.2	-37.7 ± 29.2	13.1 ± 25.8	

Figure 4: Number of SLR normal points of the new satellite navigation systems for the time period 1 January – 30 June 2016 as used for the analysis in Table 10. Satellites are identified by their space vehicle number (SVN).

SLR is the only independent validation technique for GNSS- and RNSS-derived orbits. All, except the GPS satellites, have SLR reflectors! Offsets indicate orbit model deficiencies!

Ultra-Rapid solutions are available four times/day with a latency of three hours, rapid solutions once per day with a latency of about half a day, final solution once per week with a latency < 1 week, MGEX solution once per week, with a latency < 1 week

CODE participates as COM Analysis Center in the IGS MGEX (Multi-GNSS Experiment and Pilot Project).

COM regularly analyzes five systems, namely

- > GPS, GLONASS, Galileo, Beidou, QZSS
- About 80 satellites and 160 permanent sites of the MGEX network contribute to the COM solutions.
- COM solutions include satellite orbits, satellite clock correction, ERPs, inter-system biases
- In the long term CODE plans to incorporate all GNSS into its routine solutions.
- In the framework of the COM solutions CODE contributes to implementing ``exotic'' satellite attitude/SRP models
- Public access to MGEX monitoring results via FTP: => ftp://ftp.unibe.ch/aiub/CODE_MGEX/

- Satellite-fixed Cartesian coordinate system (x,y,z), unit vector e_{sun} pointing from satellite to Sun is perpendicular to solar panels under Yaw-steering.
- QZSS and BeiDou switch to orbit normal (ON) steering mode, when the Sun is close to the satellites' orbital planes.

SLR residuals of QZS-1 with SRP models (arc-length 1 day)

Yaw-Steering SRP (red) is not sufficient for ON mode Experimental ECOM-N... models (green, blue) better represent SRP Additional Challenge: switching epochs between YS and ON are unknown

5-Dec-16

swisstopo

- is the national mapping agency of Switzerland, responsible for Swiss first order network ("Landesvermessung")
- > operates "AGNES", a multi-purpose GNSS network
- is an Analysis Center of EUREF, the IAG Commission establishing the European Reference Frame.
- > and AIUB/CODE closely cooperate in the field of GNSS research and applications.

Hierarchical Permanent Networks

MGEX@swisstopo: Motivation

PPP for product/strategy evaluation

V_B		North [mm]	East [mm]	Up [mm]	#OBS/Epo
COD	G	8.52	9.57	16.07	10.1
COD	GR	5.67 (-33%)	5.32 (-44%)	11.67 (-27%)	18.3 (+81%)
COM*	G	11.23	11.42	21.79	9.9
COM	GR	6.86 (-39%)	7.03 (-38%)	14.56 (-33%)	17.7 (+79%)
COM	GRE	6.54 (-42%)	6.50 (-43%)	13.29 (-39%)	21.4 (+116%)
COM	GREC	6.27 (-44%)	6.21 (-46%)	13.22 (-39%)	24.2 (+144%)
GBM	G	9.06	9.78	17.46	10.1
GBM	GR	5.82 (-36%)	5.50 (-44%)	12.46 (-29%)	18.2 (+80%)
GBM	GRE	5.65 (-38%)	5.00 (-49%)	11.87 (-32%)	22.0 (+118%)
GBM	GREC*	5.78 (-36%)	10.24 (+5%)	13.49 (-23%)	25.4 (+151%)

• Kin. coordinate repeatabilities over one week for ZIM3

*COM: Satellite clocks have 300 s sampling, all others 30 s *GBM: Issue with C05 (GEO), which is not included in COM

General benefit adding more GNSS

Multi-Purpose Network AGNES

Automated GNSS Network for Switzerland (AGNES) used for

- Positioning
- Reference Frame Maintenance
- Federal Surveying
- Science
 - GPS-Meteorology
 - Tectonics

AGNES as an active provider of the reference frame

- GLONASS support since Mid 2007
- GPS+GLO+GAL+BDS support since 2015/2016

Reprocessing: coordinates / velocities

 Velocity estimates based on repro + operational; impact small: standard dev. vertical ±0.25 mm/yr

 Coordinate repeatability based on Vienna mapping is slightly better (height component)

CHTRF2016 Multi-GNSS campaign

 All ~200 reference points measured this summer and analysed in Multi-GNSS style

International Association of Geodesy

5-Dec-16

CHTRF2016 Multi-GNSS campaign

- 10 operators
- 15 weeks (Mo Sa)
- April 11 October 14, 2016
- ~ 44 hours of measurements per point
- All data analysed already (Multi-GNSS)
 - Horizontal position ~ 1 cm with official coordinates
 - Vertical position: to be validated (switch from relative to absolute antenna PCVs)

V **AGNES Multi-GNSS prototype**

206 stations, new vs old processing scheme

References

Montenbruck et al: The MGEX of the IGS— Achievements, Prospects, Challenges, ASR (2016/17)

Prange and Susnik (2016): Update on the AIUB contributions to multi-GNSS related projects: MGEX orbit and clock solution (status 2016), *Seminar, CODE/AIUB*

Brockmann, Lutz, Ineichen, Schaer: the use of CODE products at swisstopo, *Seminar, CODE/AIUB*

References

The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – Achievements, Prospects and Challenges

Oliver Montenbruck^a, Peter Steigenberger^a, Lars Prange^b, Zhiguo Deng^c, Qile Zhao^d, Felix Perosanz^e, Ignacio Romero^f, Carey Noll^g, Andrea Stürze^h, Georg Weberⁱ, Ralf Schmid^j, Ken MacLeod^k, Stefan Schaer^l

^aDeutsches Zentrum für Luft- und Raumfahrt (DLR), German Space Operations Center (GSOC), 82234 Weßling, Germany ^bAstronomisches Institut der Universität Bern (AIUB), Sidlerstrasse 5, 3012 Bern, Switzerland ^cDeutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany ^dGNSS Research Center, Wuhan University, No.129 Luoyu Road, Wuhan 430079, China ^eCentre National d'Etudes Spatiales (CNES), 18, avenue Edouard Belin, 31401 Toulouse Cedex 9, France ^fEuropean Space Agency (ESA), European Space Operations Centre (ESOC), Robert-Bosch-Straße 5, 64293 Darmstadt, Germany ^gGoddard Space Flight Center (GSFC), Code 690.1, Greenbelt, MD 20771, USA ^hBundesamt für Kartographie und Geodäsie (BKG), Richard-Strauss-Allee 11, 60598 Frankfurt/Main, Germany ⁱNtrip Enterprise, Rotdornweg 98, 60433 Frankfurt/Main, Germany ^jTechnische Universität München, Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Arcisstraße 21, 80333 München, Germany ^kCanadian Geodetic Survey, Natural Resources Canada (NRCan), 588 Booth Street, Ottawa, Ontario, Canada ^lBundesamt für Landestopografie swisstopo, Seftigenstrasse 264, 3084 Wabern, Switzerland

In review, Advances in Space Research (ASR)

J Geod DOI 10.1007/s00190-016-0968-8

ORIGINAL ARTICLE

CODE's five-system orbit and clock solution—the challenges of multi-GNSS data analysis

On line, Journal of Geodesy (JoG)

