Space and Missile Systems Center

Global Positioning Systems Directorate

GPS Status & Modernization Progress: Service, Satellites, Control Segment, and Military GPS User Equipment

18-19 May 2016

Lt Col Andrew Zinn Global Positioning Systems Directorate

Global Positioning Systems Directorate

SPACE AND MISSILE SYSTEMS CENTER

å "We are... the Green Monsters!" R **Col Steve Whitney** Director Mission:

Professionals aquiring, delivering and sustaining reliable GPS capabilities to America's warfighters, our allies, and civil users

GPS Overview

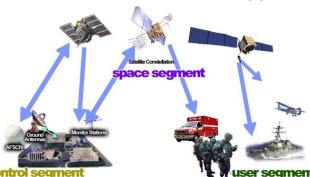
Civil Cooperation

- 1+ Billion civil & commercial users worldwide
- Search and Rescue
- Civil Signals
 - L1 C/A (Original Signal)
- L2C (2nd Civil Signal)
- L5 (Aviation Safety of Life)
- L1C (International)

<u>Spectrum</u>

- World Radio Conference
- International
 Telecommunication Union
- Bilateral Agreements
- Adjacent Band Interference

Department of Transportation


Federal Aviation Administration

Department of Homeland Security

U.S. Coast Guard

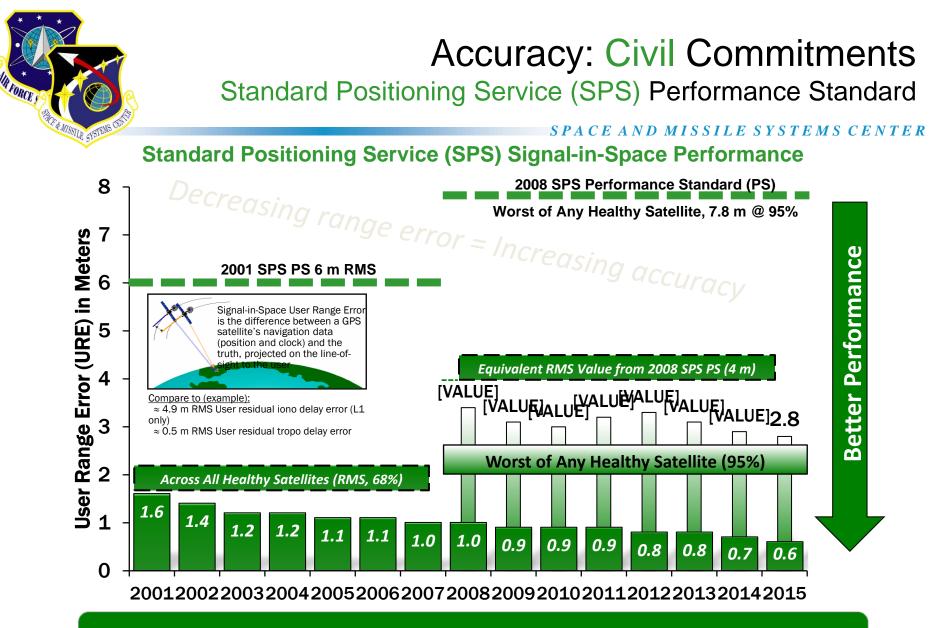
39 Satellites / 31 Set Healthy Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age	Oldest	
GPS IIR	12	14.3	18.8	
GPS IIR-M	7	8.8	10.6	
GPS IIF	12	2.3	5.9	
Constellation	31	8.4	18.8	

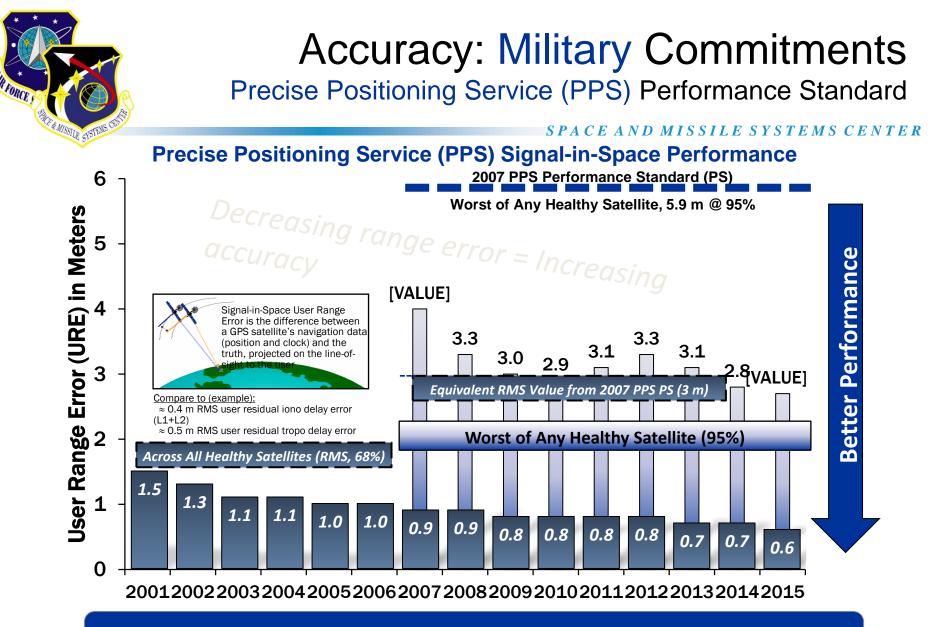
SPACE AND MISSILE SYSTEMS CENTER

Department of Defense

- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOMS
- GPS Partnership Council


Maintenance/Security

- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Semi-Annually
 ICWG: Worldwide Involvement
- Update GPS.gov Webpage
- Load Operational Software on over 970,000 SAASM Receivers
- Distribute PRNs for the World
 120 for US and 90 for GNSS


International Cooperation

- 57 Authorized Allied Users
 - -25+ Years of Cooperation
- GNSS
 - Europe Galileo
 - China Beidou
 - Russia GLONASS
 - Japan QZSS
 - India IRNSS

AS OF 4 MAY 16

System accuracy better than published standard

System accuracy better than published standard

Current & Historical Statistics

SPACE AND MISSILE SYSTEMS CENTER

	SIS vs JPL RMS URET (cm)			Mean			
	Period		Best Day		Worst Day		AoD
	Ending	SIS	Date	SIS	Date	SIS	hours
Current Week	05/04/2016	51.0	04/29/2016	38.8	05/04/2016	60.6	11.38
Last Week	04/27/2016	51.7	04/25/2016	38.2	04/26/2016	60.9	11.67
Rolling Quarter	05/04/2016	51.9	04/25/2016	38.2	03/11/2016	64.0	11.55
Rolling 1/2 Year	05/04/2016	51.9	04/25/2016	38.2	12/19/2015	70.3	11.45
Rolling Year	05/04/2016	53.9	04/25/2016	38.2	05/23/2015	71.5	11.40
Best Day Ever			04/25/2016	38.2			11.81
Best Week Ever	04/14/2016	45.3					11.49
Worst Week Rolling Year	05/27/2015	64.4					11.32

Best day/week ever achieved this year!

Civil Navigation (CNAV)

SPACE AND MISSILE SYSTEMS CENTER

CNAV message types currently being broadcast

Туре	Title	Description/Function
10	Ephemeris 1	Keplerian orbital parameters
11	Ephemeris 2	Keplerian orbital parameters
30	Clock, IONO & Group Delay	SV Clock correction parameters, ionospheric and SV group delay correction parameters
33	Clock & UTC	SV Clock correction parameters, Coordinated Universal Time parameters
32	Clock & EOP	SV clock correction parameters, Earth Orientation Parameters (On hold until <u>AEP 5.12.2 June 2016</u>)

- Current CNAV broadcast is "Pre-Operational" and intended to support modernized civil receiver development:
 - L2C CNAV marked Healthy
 - L5 CNAV marked un-Healthy (supports test)
- Benefits:
 - Provides basic PNT service to CNAV developers

CNAV Broadcast is performing as expected.

Constellation Snapshot

SPACE AND MISSILE SYSTEMS CENTER

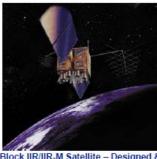
4 Generations of Operational Satellites

- Block IIA 8 Residual
 - 7.5 year design life
 - Launched 1990-1997

- Block IIR - 12 Operational

- 7.5 year design life (oldest operational satellite will be 19 yrs old in Jul)
- Launched 1997-2004

- Block IIR-M - 7 Operational, 1 Residual


- 7.5 year design life
- Launched 2005-2009
- Added 2nd civil navigation signal (L2C)

- Block IIF - 12 Operational

- 12 year design life
- Launched 2010-2016
- Added 3rd civil navigation signal (L5)

lock IIA Satellite – Designed & Built by Rockwell International

Block IIR/IIR-M Satellite – Designed & Built by Lockheed Martin

Block IIF Satellite – Designed & Built by Boeing

*Current as of 5 May 16

GPS IIF

SPACE AND MISSILE SYSTEMS CENTER

- 12 total GPS IIFs on-orbit
- Final IIF launch complete! - GPS IIF-12 satellite successfully launched 5 Feb 16

8 Launches in 24 Months -- Most aggressive GPS launch schedule since 1993

GPS III

SPACE AND MISSILE SYSTEMS CENTER

GPS III is the newest block of GPS satellites

- 4 civil signals: L1 C/A, L1C, L2C, L5
 - First satellites to broadcast common L1C signal
- 4 military signals: L1/L2 P(Y), L1/L2M

SV01-SV08 on contract; SV09 & SV10 approved

- 2 year delay due to technical challenges w/ payload
- SV09-10 same requirements baseline as SV01-08 but with no NDS payload

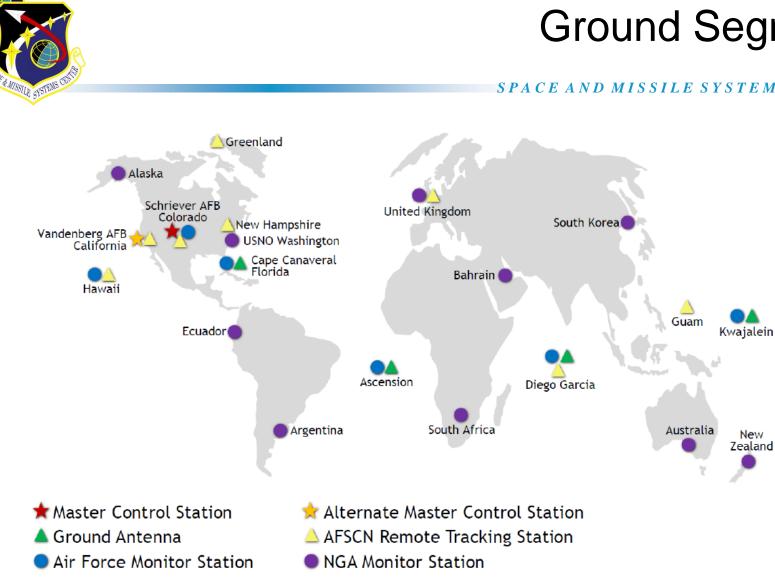
SV01 In Assembly Integration and Testing

- Baseline thermal vacuum testing completed 23 Dec 15
- Electromagnetic Interference (EMI) test completed 14 May 16

GPS III SV11+ Acquisition

- Anticipate competing GPS III SV11-32 Production
 - Drive down SV costs & mitigate reliance on single nav payload vendor
 - Promote effective competition and reduce risk with production design phase
- Two-phase acquisition allows contractors time to mature designs
 - Phase 1: Production Readiness Feasibility Assessment
 - Awarded 5 May 16 to Boeing, Lockheed Martin, and Northrop Grumman
 - Determine if viable, low-risk, high confidence sources exist
 - Deliverables include nav payload design and brass board (hardware) test results, initial SV design, manufacturing/production process and facilities maturity
 - Phase 2: Full & open competition for GPS III SV11-32 production
 - FY18 projected award
 - First SV delivery in FY23 (SV11)

GPS III SV11+ Technical Baseline


- Current Enterprise technical baseline being updated to reflect AFROCapproved GPS III Follow-On Production CDD
 - SV01-10 baseline plus additional requirements:

Requirements (SV01-10 Baseline)	Additional Requirements
Backward Compatibility	Redesigned Nuclear Detonation Detection System (NDS) (KSA)
Availability of Position Accuracy	Laser Retro-reflector Array (KSA)
Position and Time Transfer Integrity (10-4)	Search and Rescue/GPS (KSA)
Availability of Time Transfer Accuracy	Unified S-Band Interface Compliance
Net Ready	Regional Military Protection – M-Code Power (TBD-KPP)
Sustainment – Materiel Availability	

- Capability Development Document (CDD) update will seek JROC approval to add Regional Military Protection M-Code Power
 - Provides up to -140dBW M-Code Regional Power
 - Currently unfunded
- Synchronization of the tech baseline underway

Ground Segment

SPACE AND MISSILE SYSTEMS CENTER

R FORCE ;

New Zealand

Ground Segment

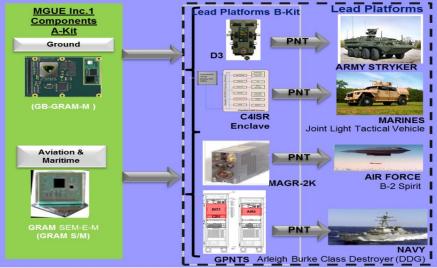
- Architecture Evolution Plan (AEP)
 - Day-to-day command and control of up to 31 satellites
 - 4 dedicated Ground Antennas and AFSCN capability
 - 6 dedicated and 10 NGA Monitor Stations
- Launch, Anomaly Resolution, and Disposal Operations (LADO)
 - Day-to-day command and control residual satellites using AFSCN
 - State-of-health monitoring
 - Leverage for some vehicle emergencies
 - Launch prep and initial post-launch operations
 - Satellite end of life disposal operations

GPS Next Generation Operational Control System (OCX)

Modernized command & control system

- GPS III command & control
- M-Code
- Robust cyber security infrastructure
- Modern civil signals & monitoring
- Improved PNT performance
- Prime: Raytheon (Aurora, CO)

- OCX Block 0: launch & checkout for GPS III
 - Currently in test
 - Successfully completed seven launch exercises/simulations
- OCX Block 1: replaces AEP, adds modern features
 - Currently in design and risk reduction testing prior to restart of coding
- OCX Block 2: adds advanced NAVWAR and Civil Signal Performance Monitoring capabilities

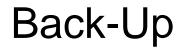

OCX Status

- Root cause of OCX problems:
 - Schedule was unrealistic at contract award in 2010
 - Appropriate systems engineering and system integration was not implemented in early phases
 - Initial cybersecurity requirements not well understood
- Holding quarterly reviews with Mr. Kendall, SecAF, and Raytheon CEO
 - Detailed reviews to measure progress and schedule ahead
 - Mobilizing resources across government and industry to enable system fielding
- Contingencies and "off ramps" are in place to meet GPS commitments in-case of further OCX issues

Military GPS User Equipment (MGUE)

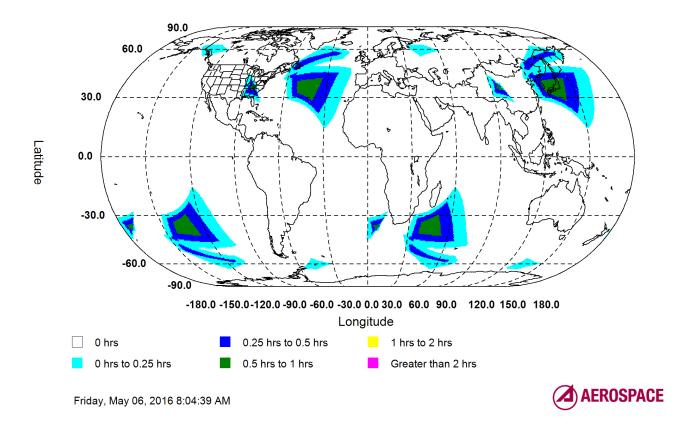
- Commercial market-driven acquisition approach
 - Three vendors developing modernized receiver cards
 - Feedback from initial testing flowing back to vendor developments
- Conducting early integration activities with platform program offices
 - Agreements in place to support integration and test of service nominated lead platforms
 - Progress integrating MGUE into B-2 software integration lab and prototype MAGR-2k box

- MGUE program is in process of finalizing the Increment 1 Acquisition Program Baseline (APB) per OUSD(AT&L) direction to support a Milestone B decision
- Draft MGUE Increment 2 Capability Development Document (CDD) in coordination; includes space receiver, hand-held, and Precision Guided Munitions (PGM)

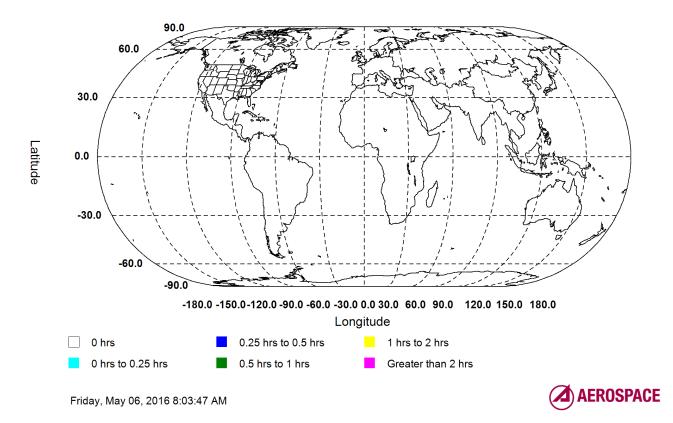


GPS Director's Perspectives

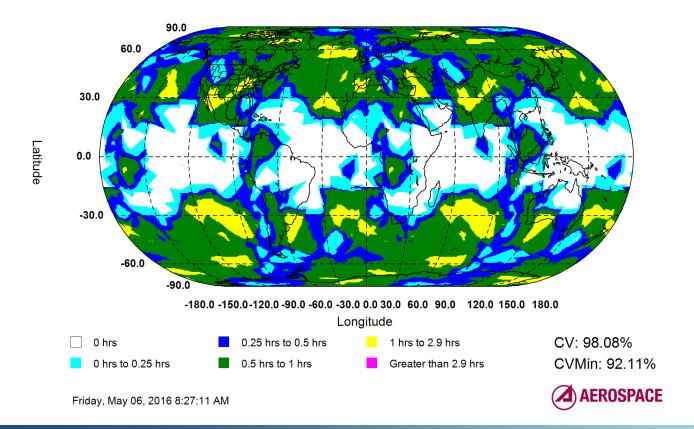
- Recognize the global utility of GPS
 - Committed to maintaining uninterrupted service "the Gold Standard"
- Embracing Gen Hyten's Space Enterprise Vision by continuing to enhance PNT resiliency
 - Includes examination of multi-GNSS receivers
- Appreciate the need for alternative PNT sources, and challenge the community (labs, industry, others) to propose & explore solutions
- Next-Generation Operational Control System (OCX) addressing cost and schedule challenges
- Looking at opportunities to provide operational modernized signal capabilities prior to OCX delivery



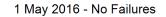
SPACE AND MISSILE SYSTEMS CENTER

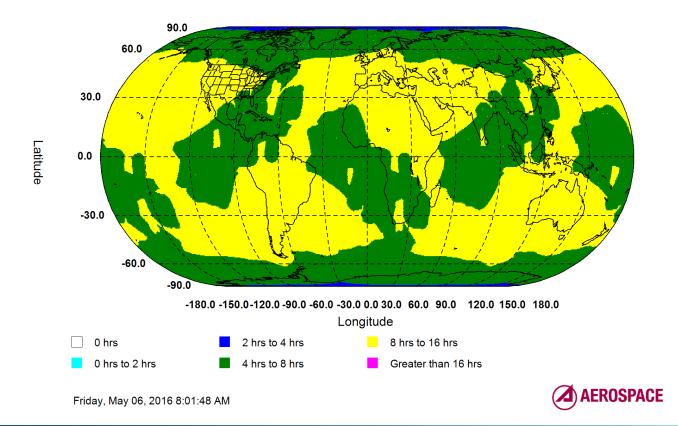

Current Constellation - L2C - 4-Fold Visibility Gaps

SPACE AND MISSILE SYSTEMS CENTER


Current Constellation - L2C - 1-Fold Visibility Gaps

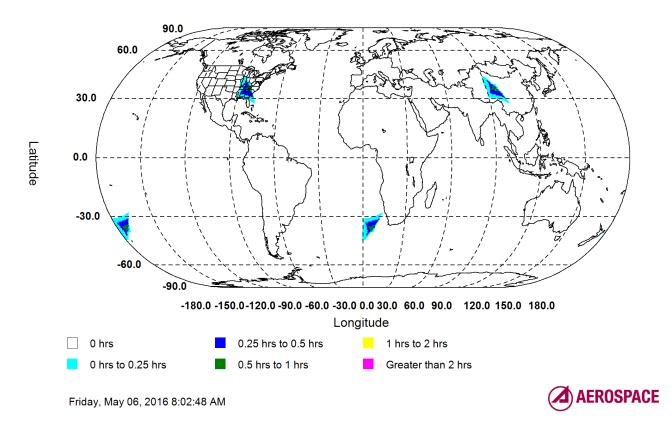
SPACE AND MISSILE SYSTEMS CENTER


Current Constellation - L2C - PDOP < 6 Gaps

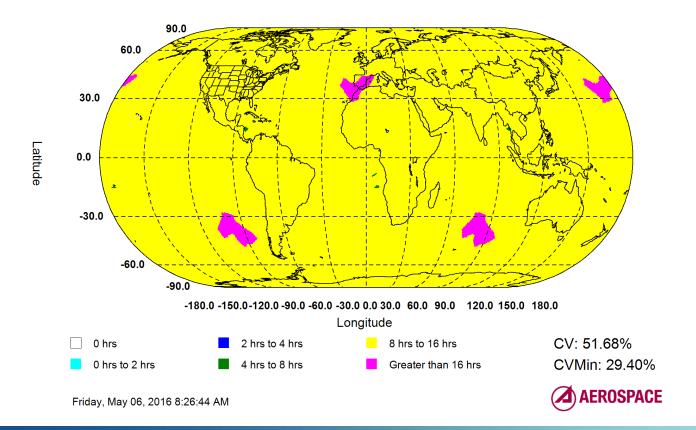


SPACE AND MISSILE SYSTEMS CENTER

Current Constellation - L5 - 4-Fold Visibility Gaps



SPACE AND MISSILE SYSTEMS CENTER


Current Constellation - L5 - 1-Fold Visibility Gaps

SPACE AND MISSILE SYSTEMS CENTER

Current Constellation - L5 - PDOP < 6 Gaps

