2015 PNT Advisory Board

QSS-EXT-1283

Project Overview of The Quasi-Zenith Satellite System

31 October 2015 QZS System Services Inc. (QSS)

Contents

1. Project/System Overview and Program Status

2. Mission of the QZSS

3. Demonstration Results of the QZSS

Project Overview

National undertaking, "Quasi-Zenith Satellite System (QZSS)" operated by the Cabinet Office of Japan was divided to 2 divisions since end of 2012 : Satellite System (project under ministerial jurisdiction), and Operation System (PFI).

	Operation System project of QZSS (QSS/PFI project)	Satellite System project of QZSS
Term	2012~2032	2012~2016
Outline	 Design and examination of Total System. Promotion of QZSS Utilization Improvement, maintenance, and management of Ground System. Accomplishment of the Total System operation. Total 4 satellites (MICHIBIKI and 3 QZSS) will be operated. Promotion of the QZSS Utilization 	Development of 3 QZSS (2 QZSS/1 geostationary orbit satellite and simulator) (project under ministerial jurisdiction)

1. System Overview

Functional Capability: GPS Complementary **GNSS** Augmentation **Messaging Service Coverage:** Asia and Pacific region Signals (QZS-1): L1C/A, L1C, L2C and L5L1S (L1–SAIF) on 1575.42 MHz L6 (LEX) on 1278.75MHz

(L1Sb will be added as SBAS from 2020's)

1st QZSS satellite "MICHIBIKI"

Four satellites constellation will be established and the service will start in 2018.

Quasi-Zenith Satellite System (QZSS) 🔇

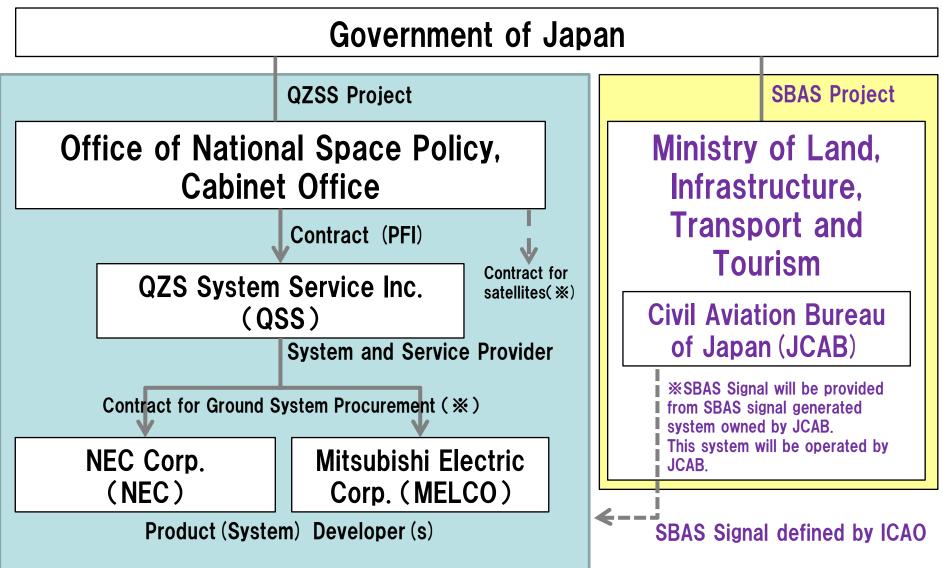
QZSS is positioning satellite system for complement and augment GPS.

[Contribution]:

GNSS capability, Asia–Pacific region

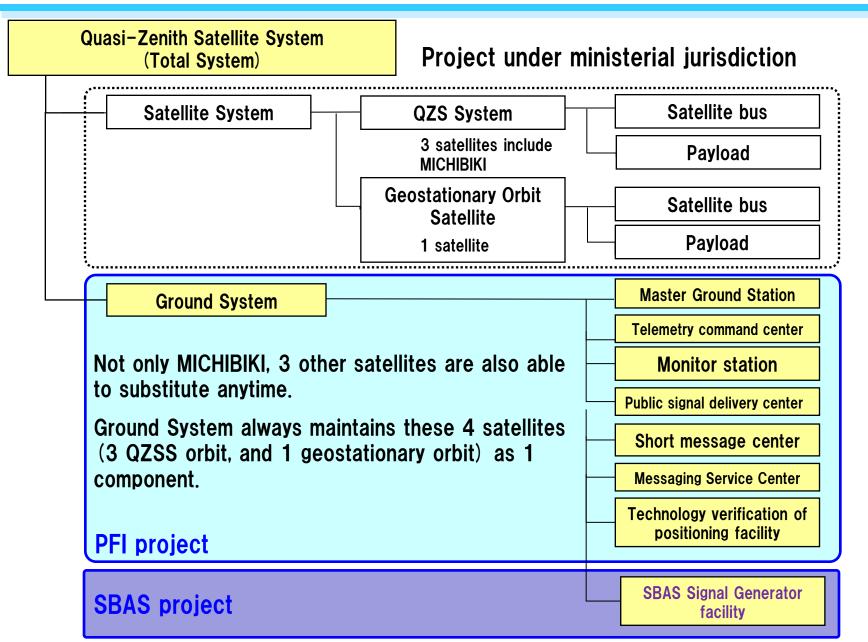
•Japan – U.S. cooperation

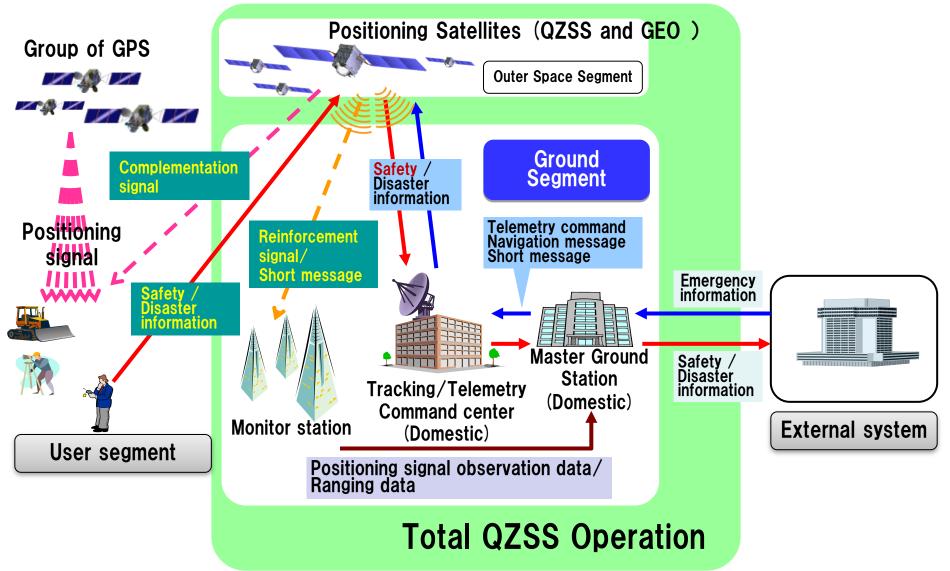
•Enhancement of disaster management and national security [Plan (Original)]:


Prepare the 4 satellites constellation (3 QZ orbit + 1 Geostationary orbit) by the end of the 2010s. In the future, 7 satellites constellation shall be completed to enable continuous and more sustainable positioning. [Current Status]:

System and application verification by using the first satellite, MICHIBIKI.

[Number of Satellites] (as of the beginning of 2018JFY) QZ Orbit: 3 satellites constellation, Geostationary Orbit: 1 satellite


Organization and Contractual Frameworks


%The contract for QZSS Satellites procurement has been concluded between Cabinet Office and MELCO.

System Configuration of QZSS

7

Conceptual Scheme of QZSS Operation

Orbit (s) of QZSS

<u>4-Satellite Constellation:</u>

1st QZS (launched in 2010) plus

3 additional satellites (2 QZ Orbit, 1 Geostationary Orbit)

Orbit (s) of QZSS

Q-Z Orbit Parameter and Tracking Range

Orbit Parameter	Nominal Allocation	Tracking Range	
Semimajor Axis (A)	42164km	-	
Eccentricity(e)	0.075	0.075±0.015	
Inclination (i)	40 degree	36 ~ 45 degree	
Argument of Perigee (w)	270 degree	270±2.5 degree	
RAAN (Ω)	Block I_Q: 117 degree Block II_Q: 117±130 degree	-	
Central Longitude (λ)	136 degree	130~140 degree	

RAAN: Right Ascension of the Ascending Node

Geosynchronous Orbit Parameter and Tracking Range

Orbit Parameter	Nominal Allocation	Tracking Range	
Longitude	E 127 127±0.1 deg		
Latitude	0	0±0.1 degree	

QZSS Visibility Time

11

R

Positioning Signal of QZSS (as of Sept. 2015)

Positioning Signal of QZSS

Not only positioning complementation signal, but satellite orbit, time, and ionosphere correction information will be also transmitted as augment information.

		1 st Satellite	2 nd -4 th Satellite			
				QZO	QZO	GEO
L1C/A	1575.42 MHz	Positioning	complement GPS	0	0	0
L1C		Positioning	complement GPS	0	0	0
L1S		Augmentation (SLAS)		0	0	0
		Message Service		0	0	0
L2C	1227.60 MHz	Positioning	complement GPS	0	0	0
L5	1176.45 MHz	Positioning	complement GPS	0	0	0
L5S		Augmentation Experimental Use		_	0	0
L6	1278.75 MHz	Augmentation (CLAS)		0	0	0
L1Sb	1575.42	Augmentation	SBAS	-	—	0

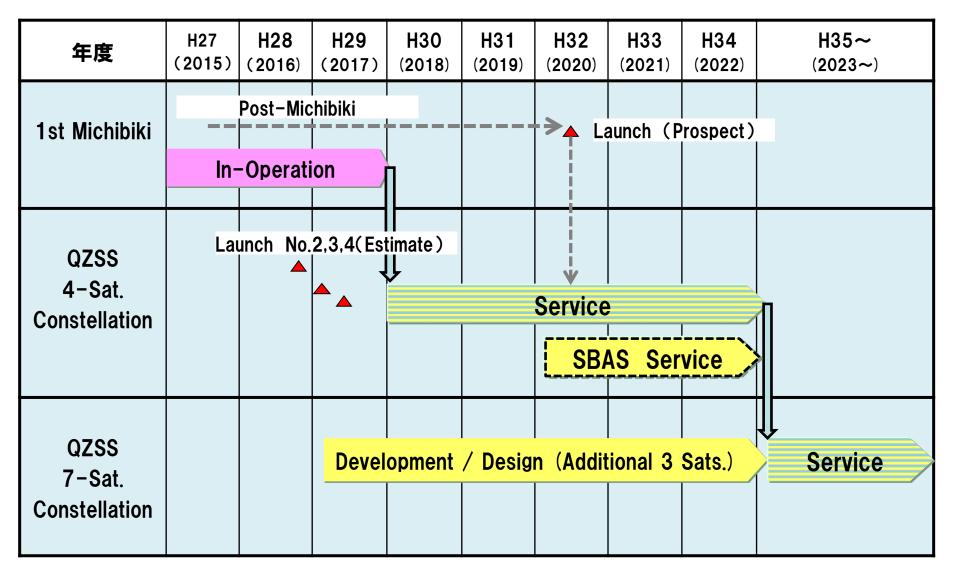
SBAS Service will be available from the beginning of 2020's.

QZSS Program Status

- Japan US Cooperation
 - Sep 22, 1998 : "Joint Statement regarding cooperation in the use of the GPS" was issued.
 - Jan 18, 2012 : Joint Announcement on US-Japan GPS cooperation
 - The United States welcomed Japan's decision to expand and <u>upgrade QZSS into an operational and</u> <u>regional system</u> that, in time, could be composed of as many <u>as seven satellites</u> and acknowledged the important contribution such an expanded and upgraded system will make to the space-based <u>PNT services in</u> <u>the Asia-Pacific region</u>.

QZSS Program Status

- Japan US Cooperation
 - July 24, 2013 : Joint Announcement on US-Japan GPS cooperation
 - Both Governments reaffirmed that continued close cooperation in the area of GNSS will contribute to the peaceful development of the Asia-Pacific region and promote global economic growth. Both Governments reaffirmed the importance of providing open access to basic GNSS services for peaceful purposes, free of direct user fees.


QZSS Program Status

- Basic policy on the implementation of the operational QZSS project (Cabinet Decision on September 30, 2011)
 - The Government of Japan has decided to accelerate the deployment of the operational QZSS as expeditiously as possible.
 - Four satellites constellation shall be established by the 2018JFY.
 - This year (Jan. 2015), the Japanese government has decided to up-grade the QZSS to 7 satellites constellation in 2023 (around) JFY.

• Verification of QZS-1 MICHIBIKI

- Technical Verification by JAXA.
- Application Verification by private companies.

QZSS Program Schedule (Update)

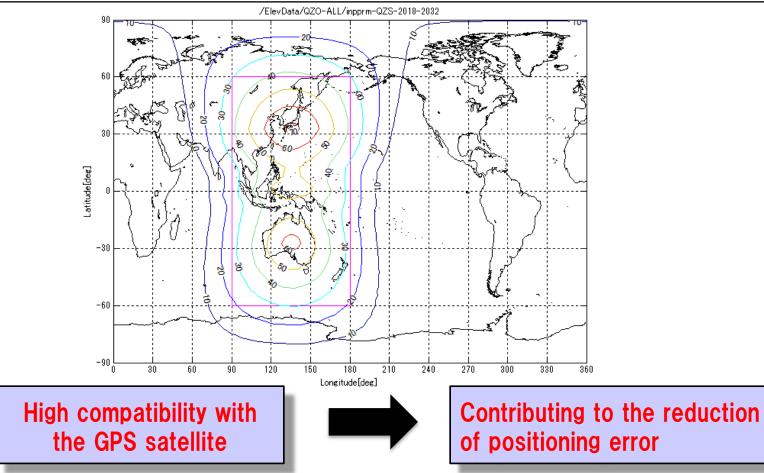
SBAS Service will be available from 2020's under Ministry of Land, Infrastructure, Transport and Tourism jurisdiction.

2. Mission of the QZSS

2. Mission of QZSS

QZSS provides positioning- related service and messaging service.

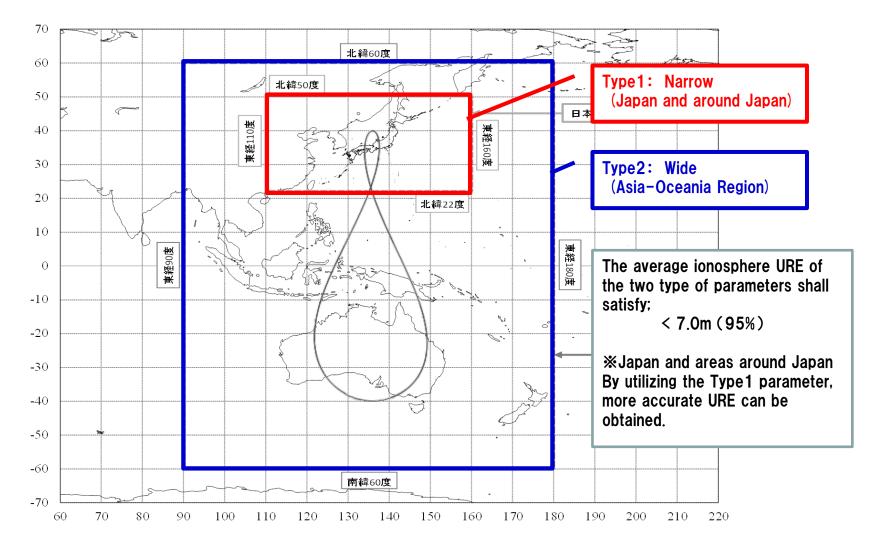
Positioning- related service


Messaging Service

5 Satellite Report for Disaster and Crisis Management (DC Report) The service to provide users in the field with disaster management and rescue.

2, **3**, **5** : These services are under investigation for overseas users.

QZSS Service: Positioning related Service ①Satellite Positioning Service


[Coverage Range] More than 10 degrees elevation to QZS constellation

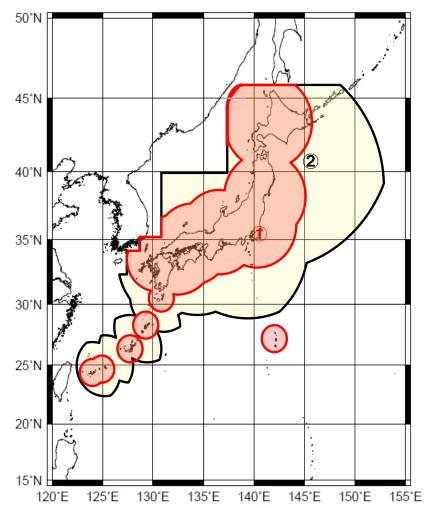
1Satellite Positioning Service

Ionosphere Parameter for L1C/A (Two types of parameters)

2Sub-meter Level Augmentation Service

Sub-meter Level Augmentation Signal			
Transmit <code>FL1S</code> signal which has the same frequency modulation with <code>FL1C/A</code> , in order to augment positioning.			
Accuracy of positioning : a few meters (Ionosphere disturbance (fluctuations), multipath and others will affect the accuracy.)			
Private consumers are suitable user since dual frequencies receivers are overpriced and have short battery life			
 For Private Navigation Sightseeing, shopping information Emergency point report (#110/#1) 			
For Public Transportation Navigation	•Management of ship/vessel and bus/taxi operation		
For Disaster/Crisis Management	 Searching activity, local security 		

②Sub-meter Level Augmentation Service


[SLAS Service] DGPS correction data will be provided in L1S signal

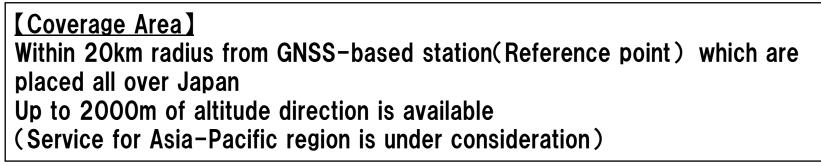
MSG Type 50 (in L1S) : DGPS correction data

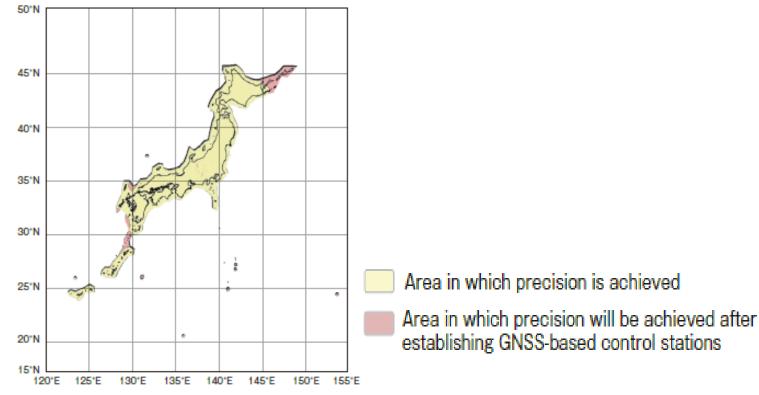
[Service Range]
•Japan and around Japan area
(at the start of the service, 2018)

②Sub-meter Level Augmentation Service

Positioning accuracy and it's range

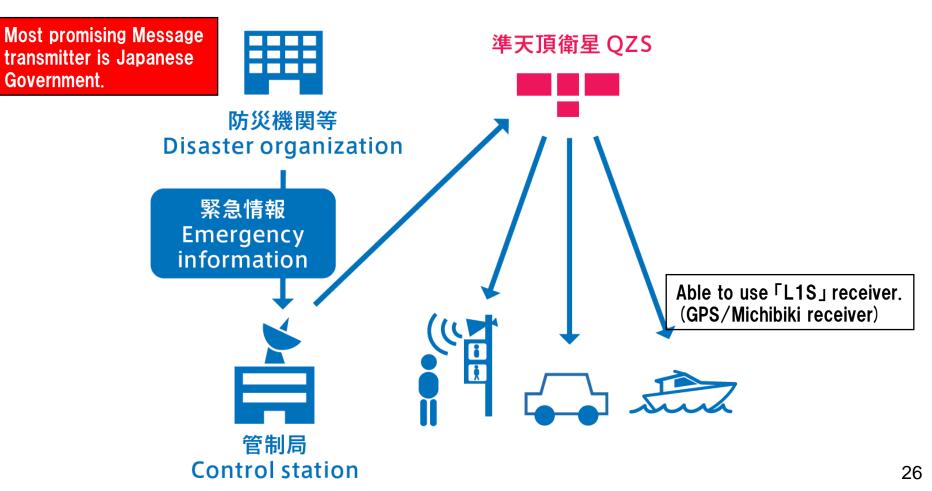
	Accuracy (95%) [m]	
	Н	۷
Range 1	1.0	2.0
Range ⁽²⁾	2.0	3.0


The DGPS corrections, more accurate positioning can be realized


3Centimeter Level Augmentation Service

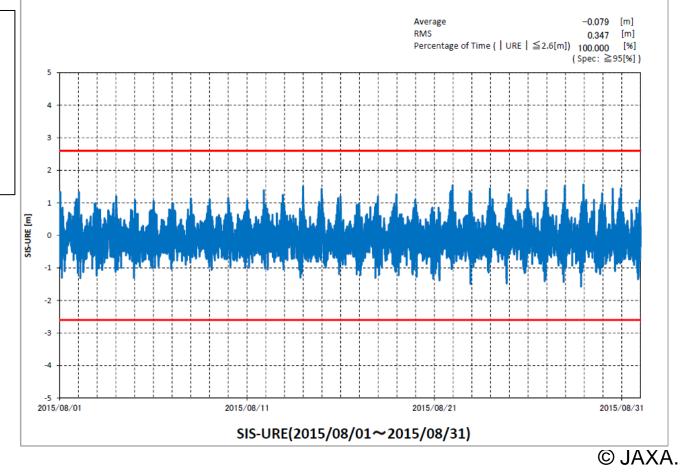
Centimeter Level Augmentation Signal			
Peculiar signal (frequency) which GPS satellite dose not support. This signal, 「L6」, will be transmitted for positioning augmentation. ※ GEO-NET (Reference stations) is necessary.			
Accuracy of positioning : Around ten-centimeter level (Reference stations are necessary)			
Target use	Target user are professionals who require high precision positioning		
For Driving Navigation	\sim machine (II (construction))		
For Land Survey	•Precise Land Survey		

3Centimeter Level Augmentation Service 🤇


< Centimeter Level Augmentation Service >

QZSS Service: MSG related Service (4) Satellite Report for Disaster and Crisis Management

By using reserve space of $\lceil L1S \rfloor$ signal, Short message (Disaster/Risk management report) can be transmitted.


3. Demonstration results of the QZSS

QZSS Technical Verification of QZS-1 MICHIBIKI

Since June, 2011, QZSS have provided navigation signals with good qualities, satisfying with their performance specifications, continuously.


SIS-URE for the first satellite is 40cm (rms) level which is comparable with those for GPS Block IIRm and IIF satellite

During one month in August 2015, <u>34cm (rms)</u>

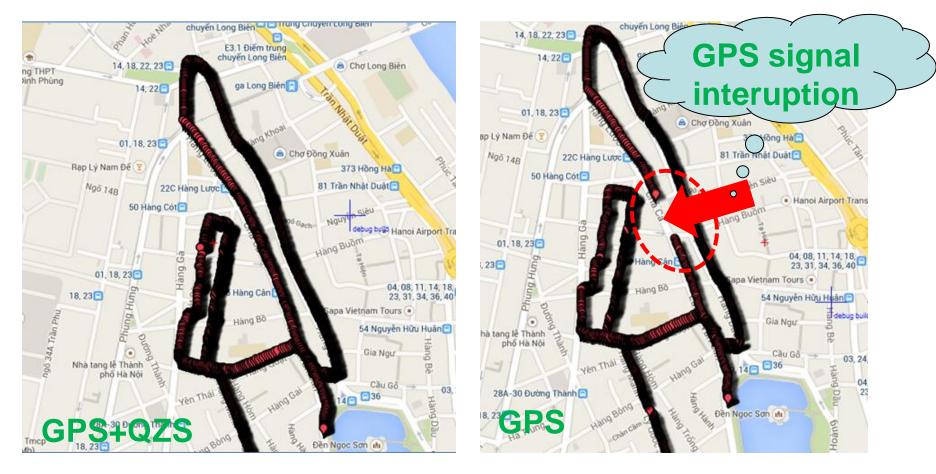
QZSS Technical Verification of QZS-1 MICHIBIKI

Availability Improvement in Ginza, Tokyo (Feb. 19, 2011)

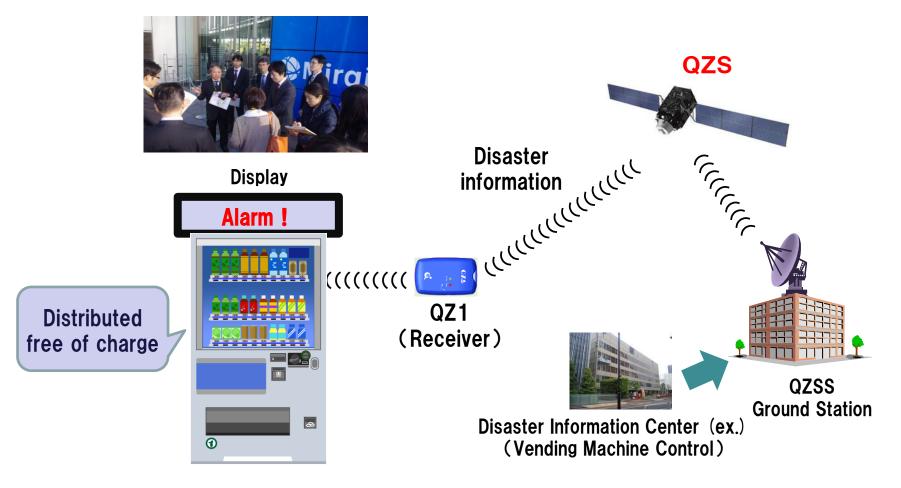
Date of Observation: 2011/2/19 250 minutes driving observation data during 6:00-12:30 obtained under JAXA-Melco joint research experiment

Single Frequency DGPS positioning Availability

GPS:39.5%



© JAXA.


QZSS Technical Verification of QZS-1 MICHIBIKI

Availability Improvement in Hanoi, Vietnam (Oct. 21–23, 2014) Receive QZSS signal well and have no missing data

QZSS Service: MSG related Service (4) Satellite Report for Disaster and Crisis Management

<u>Automatically switching vending machines to emergency mode</u> Receive emergency disaster information (Satellite Report for Disaster and Crisis Management Service), ⇒ Alarm display + Free Distribution

Receivers for Demo.

Necessary receiver (s) will be loaned to participants for free

For Sub-meter Augmentation and Short Message

For Centimeter Augmentation

SPAC

For Multi-frequency/Multi GNSS

Other Receivers and Apps.

Handy GOLF Navigator (Yupitel)

Summary

- ✓ Based on the decision of the GOJ, the deployment of the operational QZSS is underway.
 - 4 satellites constellation shall be established by the 2018JFY.
 - Necessary equipment (satellite, ground station and others) are currently in development.
 - GOJ has decided to up-grade the QZSS to 7-satellite constellation in 2020's.
- ✓ Verification, assessment and many demonstration of the QZSS have been conducted.
- ✓ SBAS signal will be provided via QZSS.
 −SBAS Service will be available from 2020's under Ministry of Land, Infrastructure, Transport and Tourism jurisdiction.

Thank you for your attention.

For more information, please visit our web site http://gzss.go.jp/en/

- A large circle illustrated "Q" as Quasi-Zenith Satellite System
- Green and blue circle composes 8 shapes: the coverage area of QZSS and they are represented earth and satellite.
- Blue line symbolized precise positioning information as well as enlargement of brand new service to society.
- Color of green stands for environment and safety, and blue stands for space and technology.