Assured PNT Strengths and Synergies

Contributions of GNSS manufacturers to the U.S. economy

Economic Benefits	Total
Direct Economic Impacts	
Total Revenues	\$16.0 billion
Total Value Added	\$9.1 billion
Total Payrolls	\$3.5 billion
Number of Employees	42,126
Payroll per Employee	\$81,969
Direct and Indirect Economic Impacts	
Output	\$32.0 billion

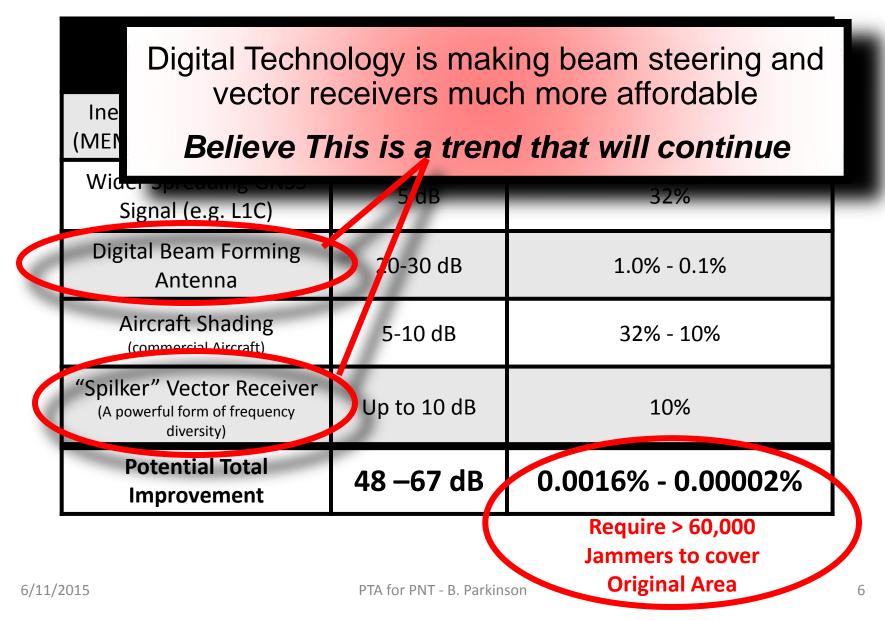
Will be updated at this meeting

So what is the Problem?

• High-level USG Official:

"GPS is much too vulnerable, we must <u>replace</u> it with new Inertials [Instruments] and Chip Scale Atomic Clocks [CSAC]"

- Indeed, GPS has a very weak signal, and also depends on Line of Sight to at least 4 satellites, But...
- IMHO <u>Better Statement</u> the "PTA" solution:


"We must <u>P</u>rotect, <u>T</u>oughen, and <u>A</u>ugment GPS to ensure that it meets User's PNT needs" A matter of Record -Strengths and Synergies

- GPS/GNSS
- Inertial Systems and Components
- eLoran

Summarizing GPS Characteristics

Jam Resistance - the "Nibbles"

Improving Jamming Resistance Performance

		GPS/GNSS		
Char	acteristic	Simple C/A	Directional Antenna & L1C – dual freq	
	ystem ailability	Worldwide		
ıracy	Horizontal	1 to 5	meters	
Accu	Vertical	2 to 10 meters		
Time Fix	to First	~ 2 Minutes		
<mark>bility</mark> to rence	Deliberate – 1 kW	Line of sight	1/60 th of simple (~2miles)	
Vulnerability Interference	Natural - Iono etc.	Range errors to 10 m (?)	Dual Frequency Correction	
Integrity – Probability of undetected out of spec PNT		10 ⁻⁵ (ARAIM)	10 ⁻⁷ (ARAIM + WAAS)	
(Cost	\$20 + Display& Ant	\$3000 to \$20000 (?)	

The GPS Characteristics

Inertial Navigation Systems and Components

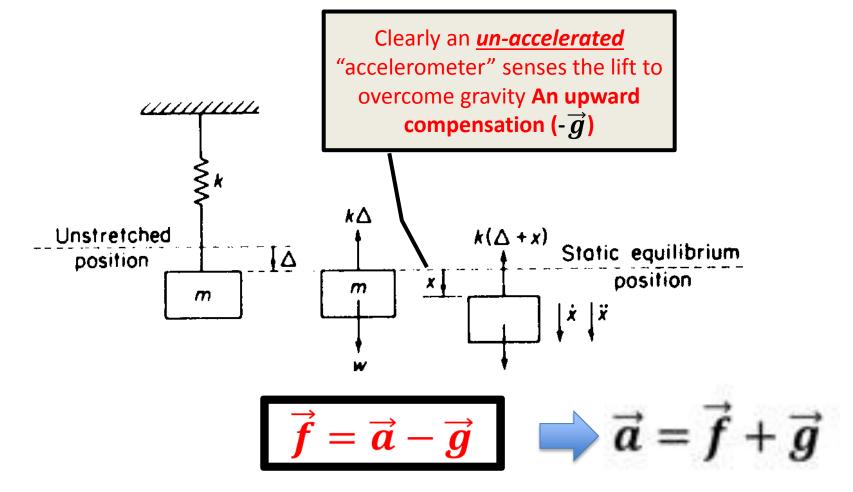
The simple view of Inertial Navigation

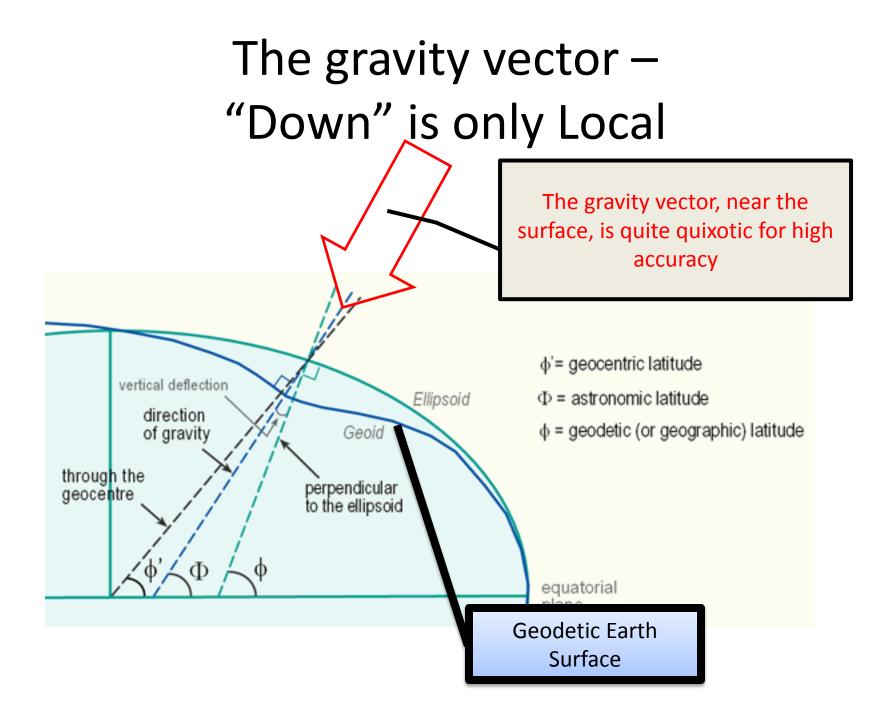
 Double integrate <u>vector acceleration</u> and you have <u>vector position</u> (i.e. 3D)

$$\vec{P} = \int \int \vec{a} \ d^2 t$$

So with a perfect "accelerometer" you end up with perfect position...

The user has to know the Initial Position and Velocity


• So we have:


$$\vec{P} = \int \int \vec{a} \ d^2 t + (\vec{V_0}) t + (\vec{P}_0)$$

<u>*Current position*</u> is known no better than Initial position and the error increases with time if initial velocity is not known---

Where does an inertial PNT find initial position?

"Perfect" accelerometers: What does an "Accelerometer" actually measure?

Another complication for inertial components

- To Navigate system must be accurately oriented to a known reference frame
- This converts the physical vectors to measurements that orient to E, N, and Up (or equivalent

•
$$\begin{bmatrix} P_E \\ P_N \\ P_U \end{bmatrix} = \underline{P} = \int \int \left(\underline{f} + \underline{g} \right) d^2 t + \underline{V}_0 t + \underline{P}_0$$

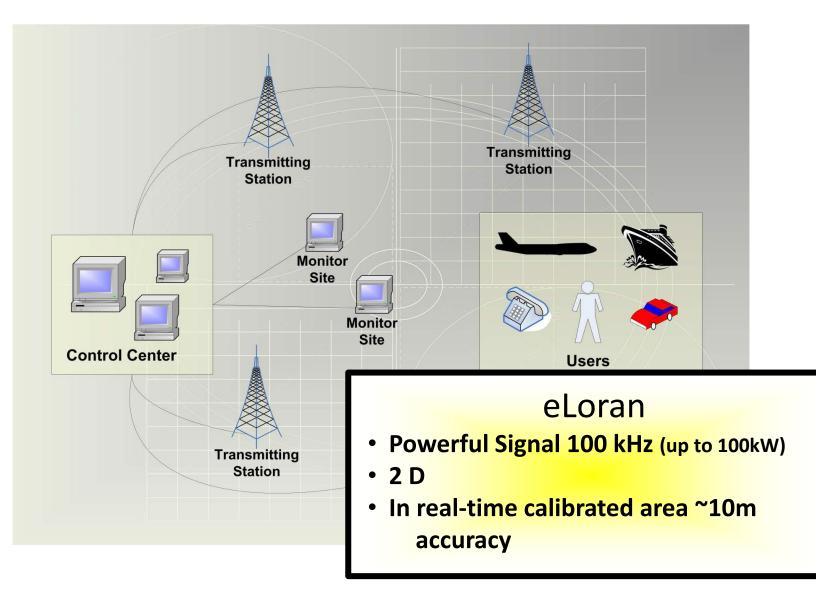
 Note vector arrows have been replaced with underlines (indicating a coordinate system)

Finding Initial Attitude

- Null two cross axis accelerometers to find "level"
- Orient East/West gyro to sense no earth rate
- Typically takes 15 to 20 minutes to find orientation to about an arc minute
- At 100km, an arc minute in azimuth is about 30 meters.

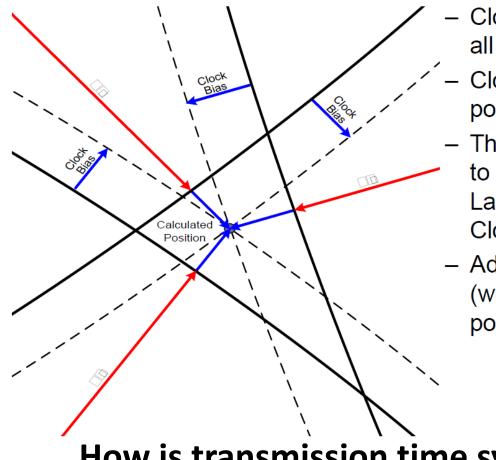
Inertials - the fundamental Challenges – even with a "perfect" accelerometer

- Initial Alignment
- Accurate knowledge of Local Gravity ($\vec{f} = \vec{a} \vec{g}$)
- Most errors unbounded with time
- Result inertial horizontal <u>errors</u>:
 - Typically grow at 0.1 nm/hr (~ 200m/hr)


Very good ones grow at 0.01 nm/hr (~ 20m/hr)

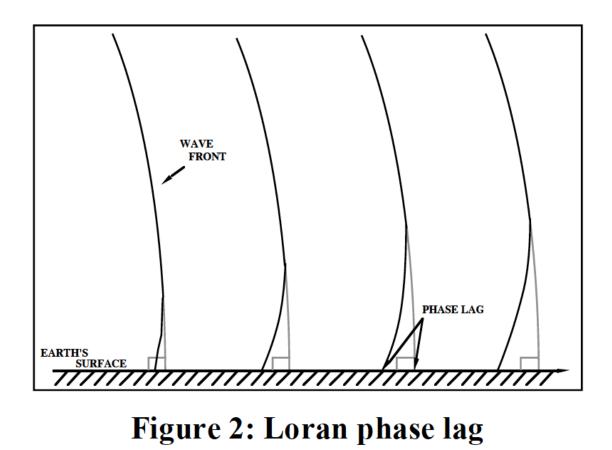
• And the new technology typically takes 20 years to field and is initially very expensive

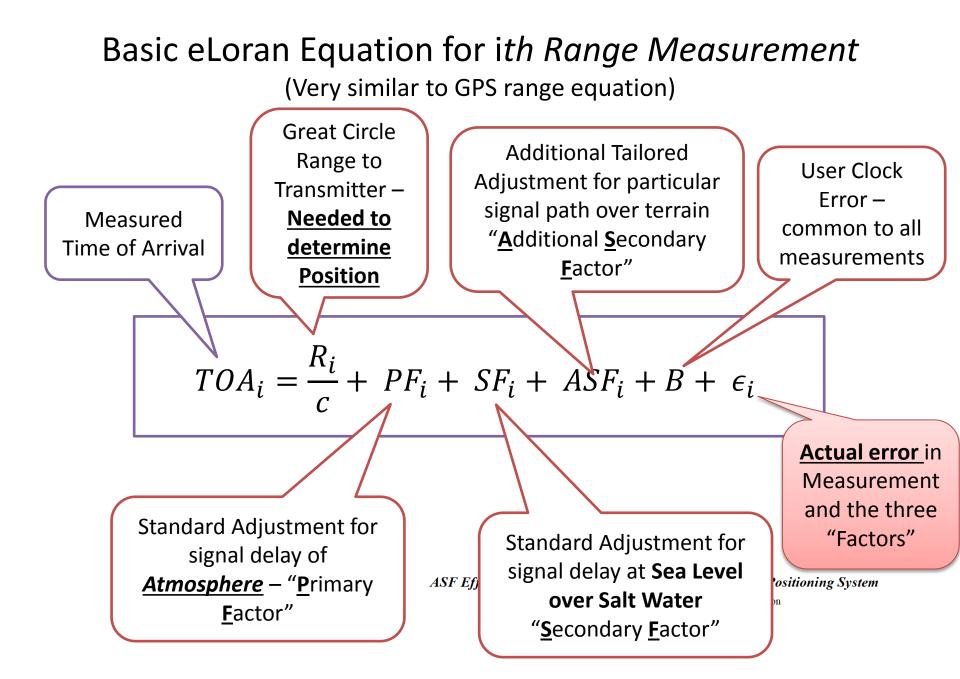
Characteristic		Inertials		
Onar	acteristic	Traditional High Avionics Performan		
	ystem ailability	Error grows with distance and time from P ₀		
Accuracy	Horizontal	>200m/hr	>20m/hr	
Accu	Vertical	No Vertical (Use Baro?)		
Time to First Fix		15 to 20 minutes		
<mark>bility</mark> to rence	Deliberate – 1 kW	Invulnerable		
Vulnerability Interference	Natural - Iono etc.	Invulnerable		
Integrity – Probability of undetected out of spec PNT		10 ⁻³ – (KAL007)	10 ⁻⁴ - Triple Redundant	
(Cost	> \$5000	\$200,000	


Summary of Characteristics of Inertial Navigators

eLoran Sytem Overview (courtesy UrsaNav)

2D Positioning with eLoran


(Courtesy UrsaNav)



- Clock bias is common on all measured TOAs
 - Clock bias is solved in position iteration process
 - Three TOA measurements
 - to solve three unknows: Latitude, Longitude and Clock bias
 - Additional TOAs enable (weighted) least squares positioning

How is transmission time synchronized?

Must account for Phase lag associated with Earth and Sea conductivity

At 100 Km, eLoran has substantial variability over land

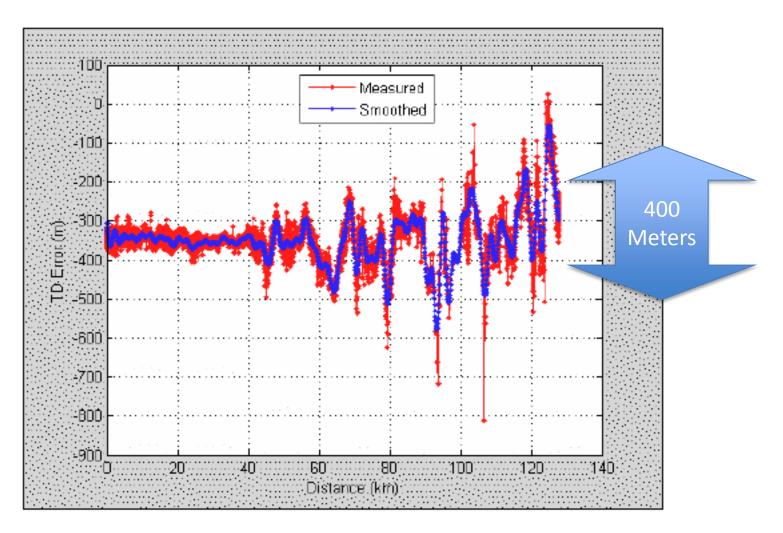
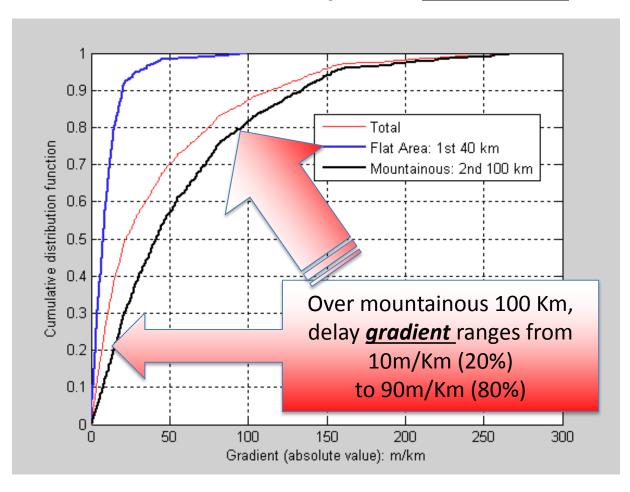
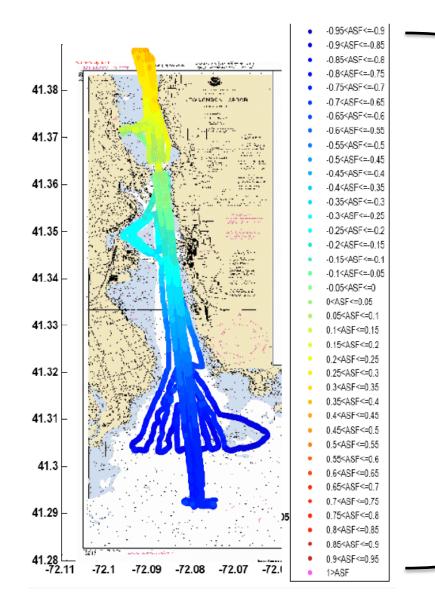
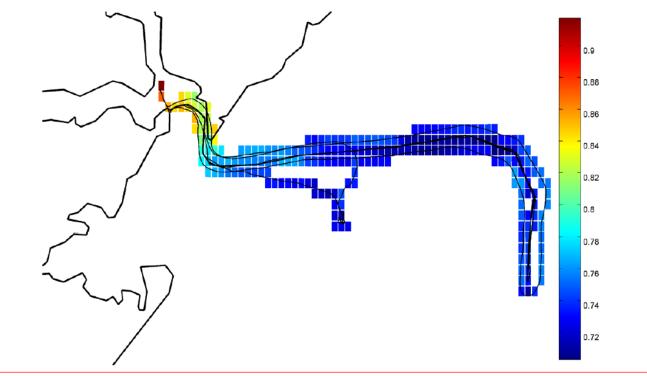




Figure 9: Raw versus smoothed TD errors

Figure 10: Cumulative distribution functions of absolute ASF spatial *gradients*

ASF Variation as ship enters the Thames River


Variation = 1.85 μ sec Equals 300 x 1.85 = 550 Meters

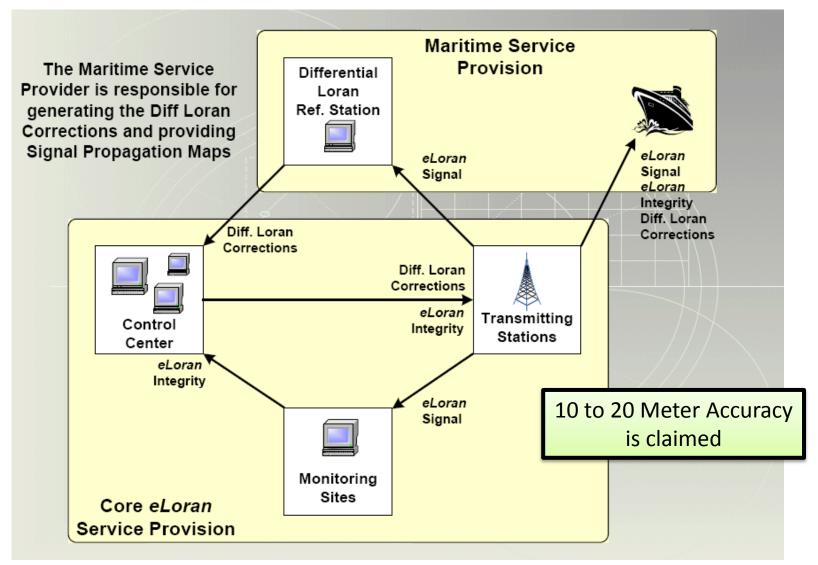
Pictures: Johnson, Dykstra, Oates, Swaszek & Hartnett, 'Navigating Harbors at High Accuracy Without GPS: eLoran Proof-of-Concept in the Thames River', ION National Technical Meeting 2007, Session E3, Paper 5, 2007

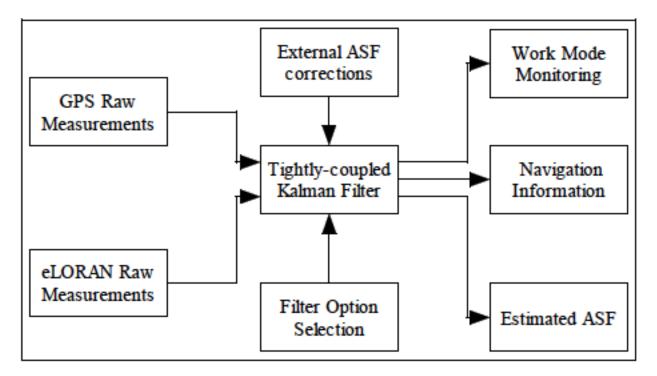
Technique for handling Variation in ASF (Calibrate over terrain for each Transmitter)

ASFs are published as a map with an ASF grid for each transmitter

picture courtesy of the General Lighthouse Authorities of the UK and Ireland

Examples of Terrain induced Variability at 600 Miles 0 to 6.6 µsec (0 to 2000 meters)


BRUNAVS' FORMULA-B PROPAGATION CALCULATION


Enter the propagation distance in kilometers: 1000

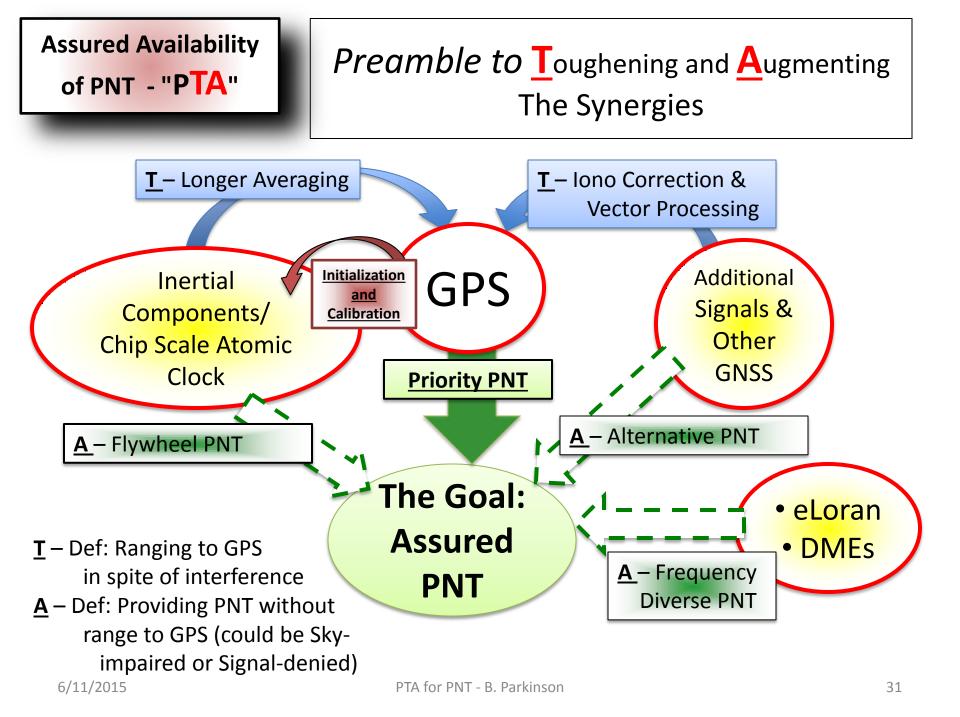
Sigma	Eps	Prop-time(us)	PF(us)	SF(us)	ASF(us)	Remarks
 5	81	3338.55	3335.64	2.91	0.00	Sea-water
2E-2	15	3340.20	3335.64	2.91	1.65	Clay
1E-2	15	3340.91	3335.64	2.91	2.36	Marsh & sea-ice
2E-3	15	3343.49	3335.64	2.91	4.94	Moor
1E-3	15	3344.67	3335.64	2.91	6.12	Dry earth
5E-4	15	3345.17	3335.64	2.91	6.62	Sandy desert
1E-4	15	3344.16	3335.64	2.91	5.61	Snow and ice

Differential eLoran

Improves Accuracy in a limited region

Figure 11: Structure of an integrated GPS/eLORAN system

eLoran Accuracy


- Good News Differential Technique can improve accuracy to ~20 meters or better
- Less Good News Corrections typically only help in small area, like a harbor – no analogy to WAAS corrections
- Good news GPS can provide continuous corrections, and then user can 'Flywheel" through brief outages of GPS using eLoran

$$TOA_{i} = \frac{S_{i}}{c} + PF_{i} + SF_{i} + ASF_{i} + B + \epsilon_{i} + \gamma_{i}$$

GPS Correction

Characteristic		eLoran		
Char	acteristic	Non- Differential	Differential	
	ystem ilability	Regional	Local – e.g. Harbor Area	
ıracy	Horizontal	30m to >200m	10m to 20m	
Accuracy	Vertical	No Vertical (Use Baro?)		
Time to First Fix		1 to 2 Minutes (?)		
/ <mark>ulnerability</mark> to Interference	Deliberate – 1 kW	Nearly Invulnerable		
<mark>Vulnera</mark> Interfe	Natural - Iono etc.	Nearly Invulnerable		
Integrity – Probability of undetected out of spec PNT		10 ⁻³	10 ⁻⁴	
(Cost	\$20 + Display& Ant	\$20 + Display& Ant	

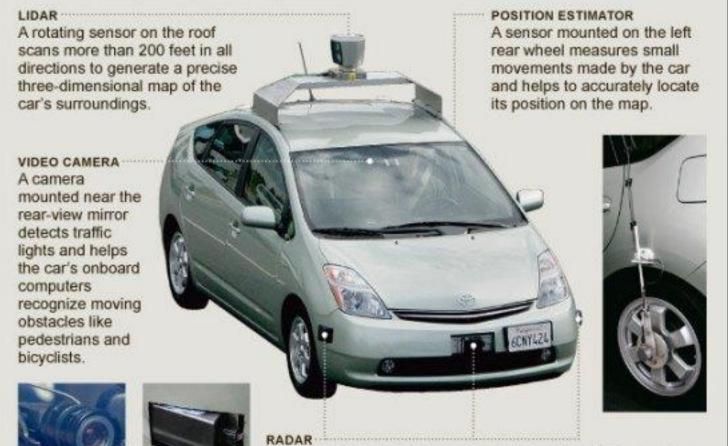
Summary of eLoran Charcteristics

Grand Synergy

Char	acterist	GPS/GNSS + IMU + eLoran	
	ystem ailability	Worldwide	
ıracy	Horizontal	1 to 5 meters	
Accuracy	Vertical	2 to 10 meters	
Time Fix	to First	~ 2 minutes	
<mark>bility</mark> to rence	Deliberate – 1 kW	Grows at ~20m/hr	
Vulnerability Interference	Natural - Iono etc.	OK in Temperate zones	
Prol undete	egrity – bability of ected out of ec PNT	10 ⁻⁷ (ARAIM + WAAS ₎	
(Cost	?	

Synergy

The Grand Comparison


Characteristic		GPS/	GNSS	Inertials		eLoran		GPS/GNSS		
		Simple C/A	Directional Antenna & L1C – dual freq	Traditional Avionics	High Performance	Non- Differential	Differential	+ IMU + eLoran		
System Availability		Worl	dwide	Error grows with distance and time from P ₀		Regional	Local – e.g. Harbor Area	Worldwide		
Accuracy	Horizontal	1 to 5	meters	>200m/hr	>200m/hr >20m/hr		10m to 20m	1 to 5 meters		
Accu	Vertical	2 to 10	2 to 10 meters						ertical 3aro?)	2 to 10 meters
Time to First Fix		~ 2 N	linutes	15 to 20 minutes		1 to 2 Minutes (?)		~ 2 minutes		
<mark>bility</mark> to rence	Deliberate – 1 kW	Line of sight	1/60 th of simple (~2miles)	Invulnerable		Nearly Invulnerable		Grows at ~20m/hr		
Vulnerability to Interference	Natural - Iono etc.	Range errors to 10 m (?)	Dual Frequency Correction	Invulnerable		Nearly Invulnerable		OK in Temperate zones		
Integrity – Probability of undetected out of spec PNT		10 ⁻⁵ (ARAIM)	10 ⁻⁷ (ARAIM + WAAS)	10 ⁻³ – (KAL007)	10 ⁻⁴ - Triple Redundant	10 ⁻³	10 ⁻⁴	10 ⁻⁷ (ARAIM + WAAS)		
Cost		\$20 + Display& Ant	\$3000 to \$20000 (?)	> \$5000	\$200,000	\$20 + Display& Ant	20 + Display& Ant	?		

Even Perfect "Accelerometers" can only be perfect <u>non-field force</u> sensors They sense \vec{f} not \vec{a} $\vec{f} = \vec{a} - \vec{g}$

- So system has to accurately know \vec{g}
- Initial Alignment errors within "local" coordinate frame propagates errors
- Inertials are unstable sensors of altitude

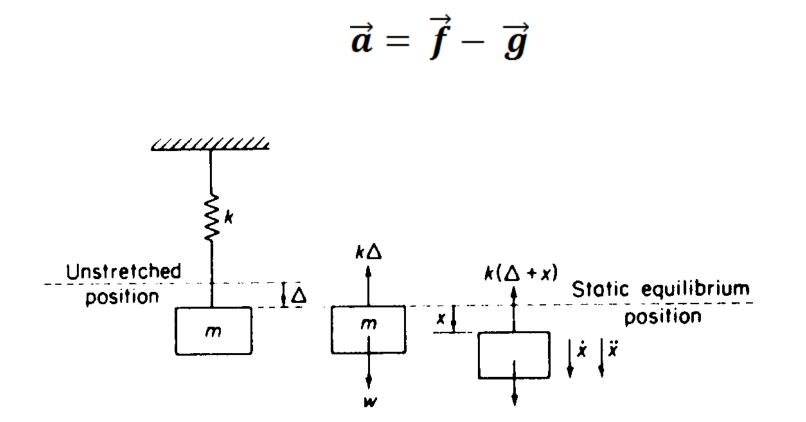
Autonomous Driving

Google's modified Toyota Prius uses an array of sensors to navigate public roads without a human driver. Other components, not shown, include a GPS receiver and an inertial motion sensor.

Four standard automotive radar sensors, three in front and one in the rear, help determine the positions of distant objects.

Source: Google

"There are approximately 3.5 million professional truck drivers in the United States, according to estimates by the American Trucking Association."


• But...

Remote Control for Remote Locations

• $\vec{P} = \int \int (\vec{f} + \vec{g}) d^2 t + \vec{V_0} t + \vec{P}_0$

$$\vec{P} = \int \int \vec{a} \ d^2 t + \vec{V_0} \ t + \vec{P}_0$$

$$\vec{a} = \vec{f} - \vec{g}$$
$$\vec{P} = \int \int (\vec{f} - \vec{g}) d^2 t + \vec{V}_0 t + \vec{P}_0$$

