Orbit Modeling and Multi-GNSS in the IGS

G. Beutler

Astronomical Institute, University of Bern O. Montenbruck, P. Steigenberger DLR, German Space Operations Center

14th Meeting of the National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board December 10-11, 2014 Omni Shoreham Hotel 2500 Calvert Street NW Washington DC

Content

- GNSS Status 2014
- The IGS
- The IGS 2014 Workshop in Pasadena
- The IGS/MGEX
- The GPS CNAV
- Orbits of the IRNSS

GPS, GLONASS, Galileo, BeiDou, QZSS

System	Revolution Period	Inclination	# Orbital Planes	
GPS	11 ^h 58 ^m	55 deg	6	
GLONASS	11 ^h 16 ^m	65 deg	3	
Galileo	14 ^h 05 ^m	55 deg	3	
BeiDou	12 ^h 53 ^m	55 deg	3	
QZSS	23 ^h 56 ^m	43 deg	3	

GPS, GLONASS, Galileo, BeiDou, QZSS

Daily Groundtracks of GPS, GLONASS, Galileo, BeiDou, QZSS (geosynchronous, GPS augmentation).

(GPS, QZSS), GLONASS, Galileo have 1-day, 8-days, 10-days repeat cycles. BeiDou MEOs one of 7 days.

The IGS

- The creation of the IGS was initiated in 1989 with I.I. Mueller, G. Mader, B. Melbourne, and Ruth Neilan.
- The IGS became an official IAG service in 1994.
- The IGS first was a pure GPS Service, it was renamed as the International GNSS Service in 2004.
- Today the IGS is a truly interdisciplinary, multi-GNSS service in support of Earth Sciences and Society.
- Since its creation the IGS Central Bureau is located in the USA with Ruth Neilan as director – who stands for providing continuity and leadership.

IGS Workshop 2014 in Pasadena was a key event for GNSS orbit modeling.

Modeling GNSS Orbits

- Lageos (LAser GEOdetic Satellite); spherical, diameter 60cm, mass 405kg
- GNSS satellite: Body 2 x 2 x 2 m³, "wings" 20 x 2 m², mass 500-1000kg
- Satellites for science are simple structures, e.g., spheres
- GNSS satellites may have complex structures

Modeling GNSS Orbits

Ferraris are built to minimize non-gravitational forces, trucks not really (only "to some extent").
From the p.o.v. of orbitography the Lageos is a Ferrari, the GNSS satellite is a truck.

GLONASS-only, GPS-only, combined Analysis

Polar motion components x & y compared to IERS 08 C04.
 100 µarc-sec ← → 3 mm on surface of the Earth
 Problem may be cured/mitigated by better modeling of solar radiation pressure for GLONASS

Modeling GNSS Orbits

IGS Workshop in Pasadena in Summer 2014 was of paramount importance for orbitography. It became clear that ...

- > ... purely empirical SRP modeling is problematic for GLONASS.
- ... a priori SRP models for GLONASS may cure/mitigate the problem.
- In too simple SRP models may bias geophysical parameters like Earth Rotation Parameters and geocenter coordinates.
- GNSS satellites with "spherical bodies" and perfect yawsteering are best for science
- > ... GPS satellites are close to this ideal case!

Today ...

- > ... several solutions to the GLONASS problem are available!
- … "unbiased" multi-GNSS becomes a (gets closer to) reality.

Multi-GNSS Experiment (MGEX)

Multi-GNSS Experiment (MGEX)

- ➢ is an IGS experiment
- MGEX call-for-participation released mid-2011 (ongoing)
- Steered by Multi-GNSS Working Group (MGWG)

Some 27 contributing agencies from 16 countries

Global tracking network, mostly real-time

- State-of-the-art receivers and antenna
- Tracking of Galileo, BeiDou, QZSS, SBAS (but no IRNSS, yet)

Free and open access

- Data archives at CDDIS, IGN, BKG (RINEX 3.x)
- Real-time NTRIP caster (RTCM3-MSM)
- Product archive at CDDIS

Multi-GNSS Experiment (MGEX)

Archive: ftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex/ Caster: http://mgex.igs-ip.net/

MGEX Analysis Centers and Products

Institution	ID	Systems
CNES/CLS, France	grm	GAL
CODE(AIUB), Switzerland	com	GPS+GLO+GAL(+BDS)
ESA/ESOC, Germany	Esm	GPS+GAL(+GLO+BDS+QZS)
GFZ, Germany	gfm,gbm	GPS+GAL, GPS+BDS
JAXA, Japan	qzf	QZS
TUM, Germany	tum	GAL+QZS
Wuhan Univ., China	wum	GPS+BDS

Products provided at ftp://cddis.gsfc.nasa.gov/pub/ gps/products/mgex/

Civil Navigation Message (CNAV)

- The Civil Navigation message CNAV provides
 - a more flexible and more accurate data format compared to the legacy navigation message LNAV
 - Additional information, e.g., inter-signal corrections
- Continuous CNAV transmission started on 28 April 2014 on L2C and L5 for most Block IIR-M and IIF satellites

The Civil Navigation Message CNAV

- Compared to LNAV CNAV provides a more flexible structure:
 - Header: preamble, PRN, message type, time of week, alert flag
 - Actual navigation message, currently 14 different types defined
 - Cyclic Redundancy Code (CRC) parity bits

					→ → →
Hea	der		Message		CRC
	Message Types	Ephemeris 1	Ephemeris 2	Reduced Almanac	Clock Differential Correction
	Ephemeris Diffe- rential Correction	Text	Clock, IONO & Group Delay	Clock & Reduced Almanac	Clock & EOP
	Clock & UTC	Clock & Differen- tial Correction	Clock & GGTO	Clock & Text	Clock & Midi Almanac

CNAV Tracking Network

• 9 stations with Javad TRE_G2T or TRE_G3TH receivers (CONGO, MGEX)

Orbit Comparisons with IGS

- CNAV performance degraded by prediction times of up to four days
- Similar performance compared to LNAV if age of prediction less than one day

Orbit Comparisons with IGS

- Differences w.r.t. IGS final orbits for PRN 07
- 2 h validity intervals can clearly be seen for LNAV
- LNAV has up to 1 m discontinuities
- Smooth transitions for CNAV except for ephemeris uploads

STD $[cm]$	LNAV	CNAV
Radial	13	4
Along-Track	49	32
Cross-Track	40	40

CNAV: Inter-Signal Corrections

- Broadcast clocks refer to the ionosphere-free linear combination of L1 P(Y) and L2 P(Y)
- Timing Group Delay (TGD) for P(Y) single frequency users already included in LNAV
- Inter Signal Corrections (ISC) for users of new signals w.r.t. L1 P(Y) included in CNAV:
 - ISC L1C/A
 - ISC L2C
 - ISC L5I5 L5 data channel
 - ISC L5Q5 L5 pilot channel
- CNAV ISCs may be compared to ISCs from Differential Code Biases of
 - IGS Multi-GNSS Experiment (MGEX)
 - Center for Orbit Determination in Europe (CODE)

Comparisons are at sub-nanosecond to few nanosecond level.

Single Point Positioning with CNAV ISCs

- Dual-frequency ionosphere-free linear combination
- Kinematic positioning of MGEX station BRUX (Brussels, Belgium)
- IGS final orbits and clocks, ISCs from CNAV, only L2C-capable satellites

Signals	ISCs	RMS [m]			
		North	East	Height	3D
C1W, C2W	_	0.67	0.93	1.72	2.06
C1C, C2L	_	0.83	1.50	2.09	2.70
C1C, C2L	Х	0.56	0.76	1.52	1.79

CNAV Summary

- The **Civil Navigation message CNAV** provides a more flexible structure, more precise and additional information compared to LNAV
- Pre-operational CNAV transmission started on 28 April 2014 for most Block IIR-M and IIF spacecraft
- Global CNAV tracking with a network of 9 (10) stations, publicly available CNAV product
- Current CNAV performance suffers from less frequent updates compared to LNAV resulting in a degradation by a factor of about two
- For periods with daily CNAV update rate, LNAV and CNAV have a similar performance with a signal-in-space range error of about 0.6 m
- L1C/A and L2C dual-frequency single point positioning improved by about 30% when taking into account CNAV Inter-Signal Corrections (ISCs)
- Full L2C CNAV capability is expected by mid-2016 as part of the Next Generation Operational Control System (OCX)

The Indian Regional Navigation Satellite System

Mixed constellation

- > 3 GEOs (λ=32.5°,83°, 131.5°)
- > 4 IGSOs (i=27°, λ=55°, 117.75°)

2 Frequency bands

L5 band (1176.45 MHz, ±12 MHZ BW)

 S band (2492.028 MHz, ±8 MHZ BW)
 Standard Positioning Service (SPS) and Restricted/Authorized Service (RS)
 Rubidium clocks (SpectraTime, CH)
 Launches

- ➢ IRNSS-1A (1 July 2013, IGSO at 55°)
- IRNSS-1B (4 April 2014, IGSO at 55°)
- IRNSS-1C (15 Oct. 2014, GEO at 83°)

SPS Signal ICD published Sept. 2014

IRNSS Tracking by ILRS

- SLR is a two-way ranging technique (mm precision, cm acuracy)
- All IRNSS satellites carry a laser retroreflector array (LRA)
- ILRS = International Laser Ranging Service
 - > 8 participating stations
 - "Europe" plus Yarragadee
 - 20-40 normal points per week

IRNSS Orbit Determination

IRNSS Broadcast vs. SLR Orbits

Orbit errors

- > Meter-level errors in radial direction
- > 10-100 m errors in along-track and cross-track direction
- Differences exceed expected uncertainty of SLR orbits

Signal-in-space range error (orbit-only contribution)

- Full impact of radial errors
- ~1/11th contribution of along-track/cross-track errors (global average at GSO altitude)
- Total SISRE(orb) ~ 5m
- Regional SISRE in primary and secondary service area will be much smaller!

More Information on CNAV and IRNSS

Steigenberger P., Montenbruck O., Hessels U. (2015). Performance Evaluation of the Early CNAV Navigation Message, ION International Technical Meeting, 26-28 Jan. 2015, Dana Point, CA (2015)

Montenbruck O., Steigenberger P., Riley S. (2015). IRNSS Orbit Determination and Broadcast Ephemeris Assessment; ION International Technical Meeting, 26-28 Jan. 2015, Dana Point, CA (2015)

