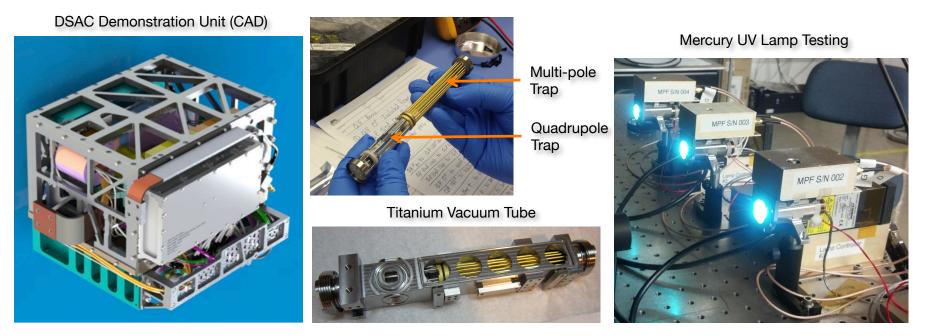

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

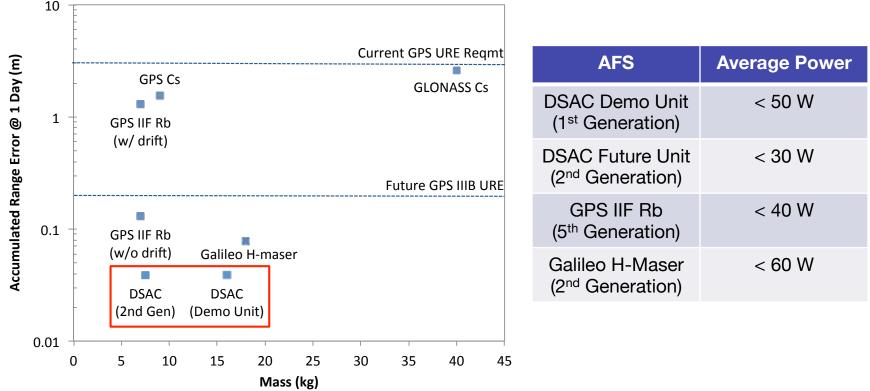

Todd Ely Principal Investigator Deep Space Atomic Clock Technology Demonstration Mission <u>Todd.A.Ely@jpl.nasa.gov</u>

June 2014

(c) 2014 California Institute of Technology. Government sponsorship acknowledged. This document has been cleared for public release.

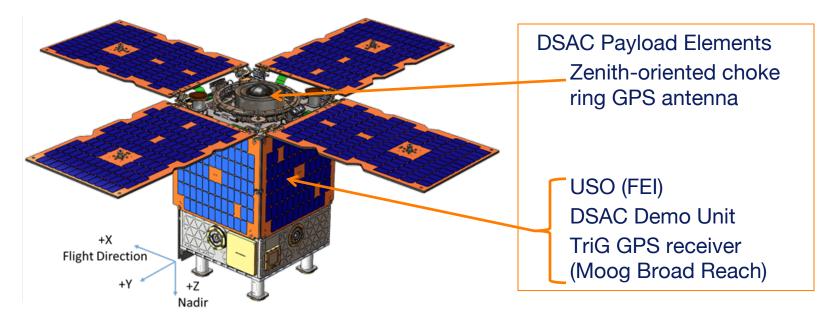
NASA's DSAC Technology Demonstration Mission

Develop advanced prototype ('Demo Unit') mercury-ion atomic clock for navigation/science in deep space and Earth

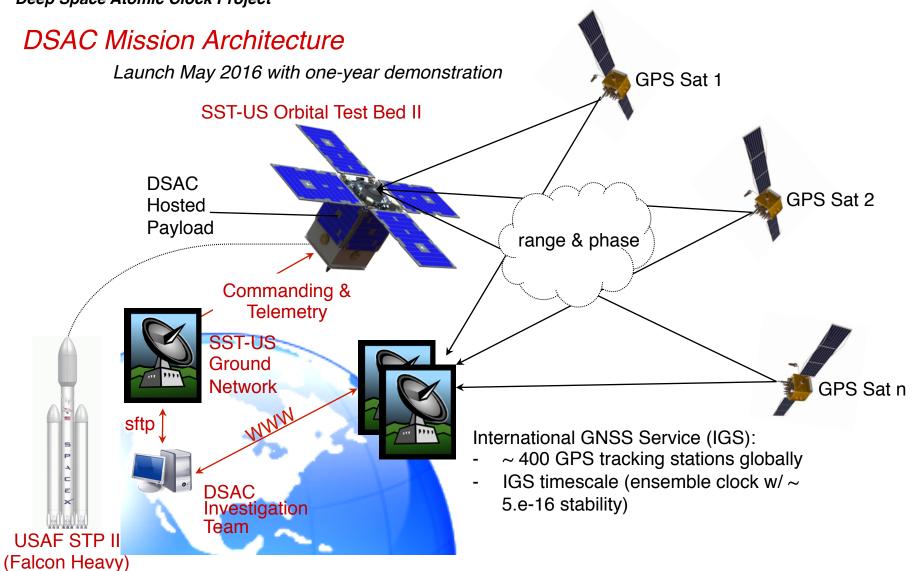

- Perform a year-long demonstration in space beginning in 2016 advances the technology to TRL 7
- Focus on maturing the new technology ion trap and optical systems other system components (i.e. payload controllers, USO, GPS) size, weight, power (SWaP) dependent on resources/schedule
- Identify pathways to 'spin' the design of a future operational unit (TRL 7 \rightarrow 9) to be smaller, more power efficient

For More Information, Contact: Todd A Ely@jpl nasa.gov, Website: http://www.nasa.gov/mission_pages/tdm/clock/

(c) 2014 California Institute of Technology. Government sponsorship acknowledged. This document has been cleared for public release.


DSAC Compared to Existing GNSS Frequency Standards

- Required AD (including drift) of < 3e-15 at one-day (current estimate at 1.5e-15) outperforms existing GNSS frequency standards
- Demo Unit SWaP is competitive next version would focus on simplifying electronics to significantly reduce SWaP
- Easily satisfies future GPS IIIB URE that includes both clock and ephemeris errors



DSAC Demonstration Payload and Hosting

- DSAC flight experiment of the Demo Unit as a hosted payload on Surrey Satellite Technology US's Orbital Test Bed II (OTB II) spacecraft
 - OTB II is a 180 kg ESPA-compatible spacecraft fixed arrays, no active maneuvering, nadir fixed attitude maintained/controlled via reaction wheels/magnetorquers.
 - OTB II hosting other payloads including several Air Force experiments
- Launched as part of USAF STP II (a Space X Falcon 9 Heavy) currently scheduled for May 2016

For More Information, Contact: Todd A. Fly@ipl.nasa.gov, Website: http://www.nasa.gov/mission_pages/tdm/clock/

(c) 2014 California Institute of Technology. Government sponsorship acknowledged. This document has been cleared for public release.

Schedule

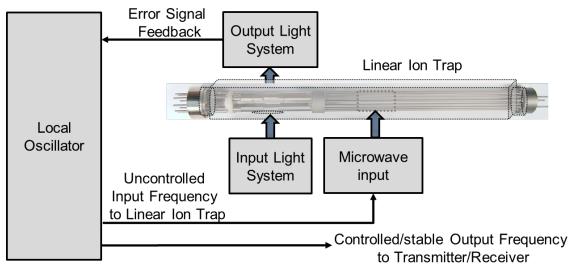
- Mission Definition & System Reqmts Review
- Preliminary Design Review
- NASA Commitment Review (KDP-C)
- Clock Critical Design Review
- Mission CDR & System Integration Review
- Pre-Ship Review
- Flight Readiness Review
- Launch & Mission Operations

February 2012 ✓ May 2013 ✓ November 2013 ✓ July 2014 September 2014 March 2015 February 2016 May 2016 + 1 Year

DSAC, GPS, and Other DOD Applications

- Future GPS III URE goals require performance gains in a number of areas including clocks
 - DSAC performance significantly shortens one of the 'tent poles' contributing to URE
- DSAC can contribute to other AF programs and government agencies with atomic clock needs
 - DSAC performance (considering no intrinsic drift) well suited for autonomous operations needed by future secure command and control satellite systems currently in study
- Development of an operational mercury atomic frequency standard (MAFS) based on DSAC technology realizable in a near-term time horizon
 - Alternate technologies (cold cesium atom and optical Rb) are at lower readiness levels with TRL 7 not achievable for another 5 – 10 years
 - Current DSAC a point of departure for MAFS with flight experiment results in 2016 feeding into MAFS design and development
 - Low level effort starting as soon as FY '15 would focus on simplifying tube manufacturing and increasing lamp lifetime using known measures with success leading towards a fully committed project developing an operational MAFS
 - Frist operational demonstration of MAFS on the 4th slot (with monitoring capability) of a future GPS satellite or alternate AF platform (such as NavSat) provides pathway for new technology adoption in operational PNT systems

For More Information, Contact: Todd A Ely@ipl.nasa.gov, Website: http://www.nasa.gov/mission_pages/tdm/clock/


Backup

DSAC Technology and Operation

Ion Clock Operation

- Short term (1 10 sec) stability depends on the Local Oscillator (DSAC selected USO 2e-13 at 1 second)
- Longer term stability (> 10 sec) determined by the "atomic resonator" (Ion Trap & Light System)

Key Features for Reliable, Long-Life Use in Space

- No lasers, cryogenics, microwave cavity, light shift, consumables
- Low sensitivity to changing temperatures (7e-16/C @ 1day), magnetics (3e-15/G @1-day), voltages (3e-16/V @ 1-day)

Radiation tolerant at levels similar to GPS Rb Clocks
For More Information, Contact: Todd A Ely@jpl.nasa.gov, Website: http://www.nasa.gov/mission_pages/tdm/clock/

Ion Clock Technology Highlights

- State selection of 10⁶-10⁷ ¹⁹⁹Hg⁺ electric-field contained (no wall collisions) ions via optical pumping from ²⁰²Hg⁺
- High Q microwave line allows precision measurement of clock transition at 40,507,347,996.8 Hz with

$$SNR \times Q = \frac{3e - 13}{\sqrt{\tau}}$$

- Ion shuttling from quadrupole to multipole trap to best isolate from disturbances
- 1-2 UV photons per second scattered
- Ions are in an uncooled Neon buffer-gas

DSAC's Crosscutting Customer Base – Infusion Targets

Near Space Navigation/Timing	Deep Space Navigation	Science	Deep Space Timing	Autonomy
USAF – SMC/GPS USAF – MILSATCOM NRO	NASA IND/DSN NASA SMD/PSD	NASA SMD/PSD	NASA IND/DSN NASA SMD/PSD	NASA SMD/PSD
 Improve GPS clock performance Diversifies clock industrial base - enhancing national security Provides needed time accuracy/ stability for next generation secure communications Significant aid to users with compromised GPS visibility – need only 3 in-view to position 	 Multiple Spacecraft Per Aperture at Mars - doubles useful tracking Full use of Ka-band tracking – OD uncertainty at Mars < 1 m (10 x improvement) Outer planets users gain significant tracking efficiency – 15% at Jupiter 25% at Saturn 	 Enhance gravity science at Mars, GRACE- level determination of long term gravity with one satellite, at Europa, flyby gravity objectives met robustly Enhance planetary occultation science with 10 x better data 	 Significantly reduce spacecraft timekeeping overhead Improve reliability of critical time- dependent autonomous spacecraft functions Reduce risks to long-term spacecraft hibernation 	 Enables autonomous radio navigation (robotic and crewed) Enhances EDL and precision landing Key component to autonomous aerobraking Coupled with OpNav, enhances primitive body exploration

Cross-cutting Customer Base Reduces the Risk of Infusion