

Adjacent Band Interference to Consumer Receivers

Tom Powell The Aerospace Corporation

National Space Based PNT Advisory Board 7 May 2013

Powell_PNTAB_7_May_2013 © The Aerospace Corporation 2013

Introduction

- The issue of adjacent-band interference to radio receivers has received recent attention
 - In particular, adjacent band interference to GPS receivers
- Leads to the question: How well do other types of radio receivers withstand adjacent band interference?
- The Aerospace Corporation tested a number of common consumer radio receivers against adjacent band interference signals
 - Digital Television (Samsung LN52B530)
 - FM Radio (Sony STRDH100)
 - 3 types of GPS receivers
 - Garmin Montana 650t, uBlox LEA-6A, Novatel OEM 628

Test Design

- All testing conducted in a controlled, laboratory environment
 - Conductive or anechoic chamber No external transmissions!
- Continuous Wave (CW) signal transmitted at varying power and frequency offset from each device's operating band
 - Interference signal transmitted outside of device's allocated band

Start with CW tone in adjacent band

Increase power ...

... until device fails

- Failure criterion was total loss of track of all signals
- Used this criterion because signal-to-noise ratio degradation or similar metrics were not available from all devices tested
- Total loss of service enabled "apples to apples" comparison

Record the CW signal power (I) and frequency offset (Δf) at failure point; Compute (I/S)

Increase CW signal offset, repeat

Increase CW signal offset, repeat

Result is locus of (I/S) points where device failed

Power and Frequency Offset Considerations

- Interference to desired signal ratio (I/S) is used because desired signal powers vary widely by service
 - Simulated GPS signal power = -158 dBW (-128 dBm)
 - TV signal power = -51 dBm (77 dB stronger than GPS)
 - FM signal power = -67.5 dBm (60.5 dB stronger than GPS)
- Frequency offset is plotted as a percentage of desired band edge
 - Referenced from band edge to consider only adjacent band signals – avoid interference signals in desired band
 - Rationale for normalizing versus frequency
 - Filter "Quality Factor" (BW/f) also scales with frequency
 - Commonly used to describe filter roll-off

More resistance to interference

AEROSPACE

Test Results – (I/S)

Test Results – (I/S)

Powell_PNTAB_7_May_2013

Test Results – Alternative Power Metric – I/(S+N)

Summary and Conclusions

- Summary of test results
 - 3 different types of consumer receivers tested
 - All were susceptible to adjacent band interference
- Conclusions
 - Any radio receiver can eventually be overloaded by adjacent band signals of sufficient power
 - Compatibility assessments should consider relative signal powers of adjacent band services

All trademarks, service marks, and trade names are the property of their respective owners.

BACKUPS

Notes on Novatel EOM 628 GPS Receiver

- Novatel OEM 628 is wide-band high precision GPS receiver
- Designed to receive differential correction signals from Geosynchronous satellites operating in the Mobile Satellite Service (MSS) band (1525-1560 MHz) below GPS L1
- As a result, some data points fell inside pass band of OEM 628 filter, even though they were outside of the GPS L1 band
 - Novatel more susceptible to interference within 1% of band edge

Desired Signal Below Thermal Noise: N >> S e.g. GPS

Desired Signal Above Thermal Noise: S >> N e.g. TV and FM

