Geocenter and Polar Motion viewed by GPS and GLONASS

G. Beutler
Astronomical Institute, University of Bern

$11^{\text {th }}$ Meeting of the National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board

The Melrose Hotel
2430 Pennsylvania Ave NW
Washington DC

Topics

$>$ GPS, GLONASS, GALILEO: Status May 2013
> IGS = International GNSS Service
$>$ The GPS and GLONASS-derived Geocenter
$>$ The Earth's rotation axis in space and on its surface
$>$ The GPS and GLONASS-derived polar motion

GPS, GLONASS, GALILEO

Daily Groundtracks of GPS, GLONASS and GALILEO. GPS, GLONASS, Galileo have 1-day, 8 -days, 10 -days repeat cycles.

International Association of Geodesy

The IGS

The creation of the IGS was initiated in 1989 with I.I. Mueller, G. Mader, B. Melbourne, and Ruth Neilan as protagonists
The IGS became an official IAG service in 1994.
The IGS first was a pure GPS Service, it was renamed as the International GNSS Service in 2004.
Today the IGS is a truly interdisciplinary, multi-GNSS service in support of Earth Sciences and Society.
Since its creation the IGS Central Bureau is located in the USA with Ruth Neilan as director - who stand for providing continuity and leadership.

International Association of Geodesy

Center of Mass

Geocenter coordinates estimated with

 GPS, GLONASS, and a GPS/GLONASS combination

International Association of Geodesy

Center of Mass

Geocenter coordinates estimated with GPS, GLONASS, and a GPS/GLONASS combination

International Association of Geodesy

Center of Mass

Geocenter coordinates estimated with GPS, GLONASS, and a GPS/GLONASS combination

International Association of Geodesy

Center of Mass

Geocenter coordinates estimated with GLONASS and elevation β_{s} of the Sun above/below the orbital planes

International Association of Geodesy

Center of Mass

Direct constant radiation pressure D_{0} acts along the line Sun \rightarrow Satellite and has to be determined in the analysis for each satellite.
Resulting out-of-plane acceleration is

$$
W_{D}=D_{0} \sin \beta_{s}
$$

For $\beta=90^{\circ}, D_{0}=W_{D}$

CoM explained by Perturbation Theory

Only accelerations perpendicular to the orbital plane (W-direction) may alter an osculating plane
A non-vanishing constant W-component changes the orbital elements according to

Satellite seemingly moves on a parallel plane shifted by
$\delta w=\frac{W}{n^{2}}$

Pole of osculating orbit moves around a mean pole ($i_{\mathrm{m}}, \Omega_{\mathrm{m}}$) on a circle with radius $\quad \delta i=\frac{W}{n^{2} a}$

CoM explained by Perturbation Theory

GLONASS

$>$ estimated
> reconstructed

International Association of Geodesy

CoM explained by Perturbation Theory

GPS

$>$ estimated
> reconstructed

International Association of Geodesy

CoM explained by Perturbation Theory

Elevation of Sun w.r.t. the orbital planes
GPS $\left|\beta_{\mathrm{s}}\right| \leq 78.5^{\circ}$
GLONASS $\left|\beta_{\mathrm{s}}\right| \leq 88.3^{\circ}$

Number n_{p} of orbital planes
GPS $n_{p}=6 \quad$ GLONASS $n_{p}=3$

International Association of Geodesy

Polar Motion

International Association of Geodesy

Polar Motion \& Earth‘s Center of Mass

Precession \& Nutation and "UT1" (Universal Time defined by the Earth's Rotation) is monitored as a function of "UTC" (Universal Time defined by Atomic Clocks) using Very Long Baseline Interferometry (VLBI).
Polar motion (PM) and Length of Day (LoD) are monitored using GNSS, Satellite Laser Ranging (SLR), and VLBI.
The Earth's Center of Mass (CoM) is monitored primarily by SLR. GNSS may also be used.
The Earth's CoM may be established by Satellite Geodetic Methods because Earth satellites revolve about the Earth's CoM.
Basic assumption: CoM and PM are technique-independent and in particular the same for all GNSS!

Polar Motion

Polar motion monitored by the IGS between 1993 and 2013.

Diameter of figure about 7m, accuracy of daily estimates <<1cm!

Changing diameter of PM due to beat period (of 6 years) of Chandler and annual period

The Earth's pole moves „in bad circles of slowly varying radius" around the Earth's figure axis (once in 430 days=Chandler period).

Similar Effects in Polar Motion

AC Final Y-Pole rate Differences with IGS Final

ERP-rates in y-coordinate of the pole (http://acc.igs.org/ ; IGS Analysis Center Coordinator Dr. Jake Griffiths)
\rightarrow Excursions for COD(COF) and ESA around weeks 1710 \& 1725: Coincide with Sun's crossing (one of three) GLONASS orbital plane (Dr. Tim Springer (ESA))

International Association of Geodesy

Similar Effects in PM

The problem of GNSS-specific polar motion is could Iready be observedfor allongstime (topic still under investigation):

International Association of Geodesy

Summary

Currently, we have the "interesting" situation that GPS and GLONASS "see" slightly different Polar Motion (PM) and Center(s) of Mass (CoM).
This result is nonsensical from the science perspective (it might make sense from the political perspective ...).
The differences are caused (at least in part) by the constellations (3 vs. 6 orbital planes, inclinations of 64 vs. 55 degrees).
For more information consult:

Advances in Space Research
Volume 51, Issue 7, 1 April 2013, Pages 1047-1064

International Association of Geodesy

Acknowledgement:

Illustrations taken from above presentation and from paper cited.

International Association of Geodesy

