SPACE-BASED POSITIONING NAVIGATION & TIMING

NATIONAL EXECUTIVE COMMITTEE

National PNT Systems Engineering Forum (NPEF)

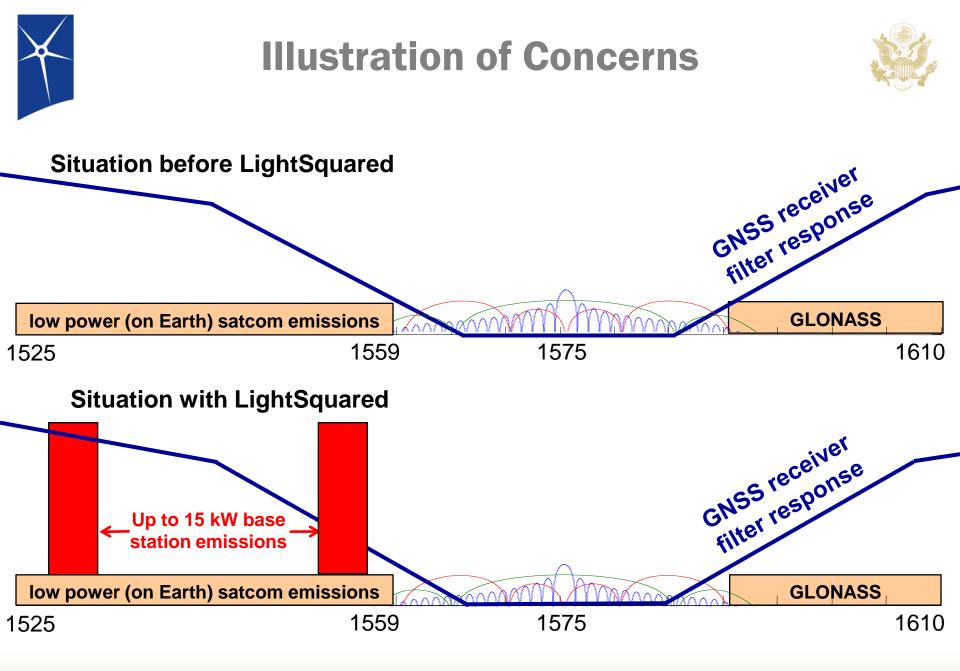
LightSquared Effects on GPS Test and Analysis Results

June 9, 2011

Mr. Deane Bunce NPEF Co-Chair

DISCLAIMER: The opinions expressed in this briefing represent those of the NPEF and are not necessarily the views of any USG Department or Agency

Overview

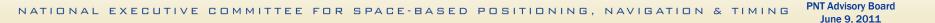

- Background
- Test Methodology and Results
- Next Steps

Background

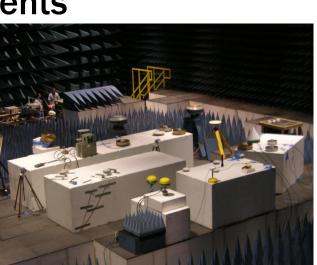
- Perform "Assessment of LightSquared Terrestrial Broadband System Effects on GPS Receivers & GPS-dependent Applications"
 - Evaluate and assess LightSquared's planned deployment of a terrestrial network of Ancillary Terrestrial Component (ATC) base stations
 - Coordinate test efforts with FCC, LightSquared, NTIA and EXCOM Departments and Agencies
 - Assess potential mitigations for GPS receivers

- Develop Comprehensive Test Plan
 - Test approach, environment and receiver sets
 - Test hardware included LightSquared supplied filter
 - LightSquared Engineers examined and concurred with test setup
- Test Methods Used
 - Laboratory Conducted Emissions
 - Anechoic Chamber
 - Live Sky with single ATC

- Provided basis for NPEF, RTCA WG6, TWG aviation receiver assessments
- Test Approach
 - Connect all signals directly to input of receiver filter/LNA (directly after GPS antenna element)
 - Power input stepped (1 dB steps) using variable attenuator
- Emulate LightSquared signals using shaped noise
 - 5 MHz bandwidth noise signal(s) centered at 1552.7 MHz (high band) and/or 1528.8 MHz (low band)
 - 10 MHz bandwidth noise signal(s) centered at 1550.2 MHz (high band) and/or 1531.0 MHz (low band)
 - Tests use two cascaded LightSquared RF filters at each channel


- Characterization tests performed on GNSS receivers
 - Evaluated Phase 0, 1 and 2 signal configurations as well as 5 and 10 MHz Low channel signals
 - Used conducted, simulated signals in Zeta laboratory
 - System susceptibility and resultant standoff distances considered antenna effects (pattern, polarization, elevation, etc.)
- Results indicate large variation in susceptibility to LightSquared signals
 - All receivers adversely affected by Phase 0, 1, 2 signals to varying degrees (> 30 dB range in Phase 0 power for 1-dB C/No degradation)
 - 5 and 10 MHz Low signals caused minimal effects on the limited set of receivers that were tested
 - Conducted 1 dB C/No degradation and loss of tracking tests for seven receivers related to FAA infrastructure and aviation
 - SBAS word error rate tests conducted for two aviation receivers

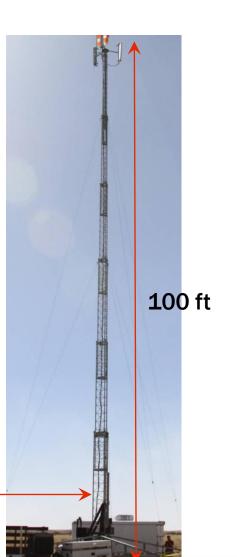
Anechoic Chamber & Live SkyTesting



- DoD coorinated two tests to assess LightSquared impacts
 - Chamber Test: April 4-7, 2011 White Sands Missile Range, NM
 - Live Sky Test: April 14-17, 2011 Holloman AFB, NM
 - Testing open to numerous external agencies
- Examined all three phases of LSQ operations
 - Phase 0: Single channel 5 MHz upper band
 - Phase 1: Dual channel 5 MHz (planned February 2012)
 - Phase 2: Dual channel 10 MHz (planned July 2013)
- Test Limitations
 - Not all GPS receivers/applications tested (e.g., timing, cell phones)
 - Limited to single LSQ transmit antenna (aggregate effects modeled)

Chamber Testing Summary

- Successfully completed 32 test events
- Results
 - FAA All receivers lost GPS solution
 - Survey receivers lost GPS solution
 - John Deere receivers lost solution
 - USCG Coastal dGPS service impacted
 - NASA All high precision receivers for sciences impacted
 - Garmin chipset in personal navigation devices lost GPS solution



LiveSky Testing

- Successfully completed 14 test events
- Test used LightSquared equipment
- Production transmitter set up and operated by LightSquared
 - 1st operational use of LightSquared production unit; tested all modes

1,400 ft

Live Sky Test Summary

• First Responders

- State Police
 - Police cruiser lost GPS reception ~600 feet from tower
 - Police HQ could not locate cruiser on their tracking system
- Ambulance
 - No PNT solution ~1,000 feet from tower
 - System presented false PNT data (9 mph while vehicle was stationary)
- Fire Department
 - No PNT solution ~1,000 feet from tower
 - System reported last known vehicle position not near actual location

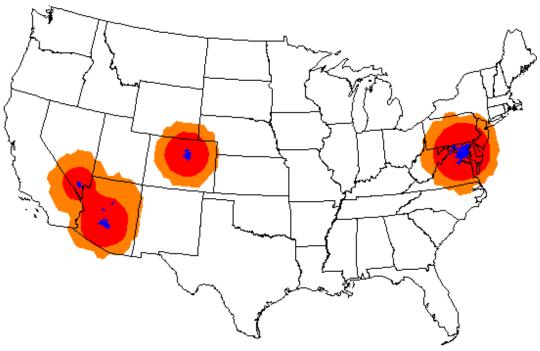
GM/OnStar

- Lost GPS on most receivers
- Significant degradation of service

Application	Phase 0	Phase 1	Phase 2	10 MHz Low
Aviation	24.3 – 1.1	27.2 – 1.2	19.3 – 0.9	< 0.1
Maritime	NM	NM	NM	NM
High Precision (Survey, Agriculture, Science)	TBR – 0.5	TBR – 6.8	TBR – 3.8	TBR - < 0.1
Timing	NM	10.8	NM	NM
Space	121.6	305.5 – 19.3	NM	NM

Distance (km) for Loss of Satellite Tracking as a Result of a Single LightSquared ATC

Application	Phase 0	Phase 1	Phase 2	10 MHz Low
Aviation	10.8 – 0.4	12.2 – 0.5	8.6 – 0.3	< 0.1
Maritime	0.6 – 0.2	1.6-0.4	1.0-0.3	< 0.1
High Precision (Survey, Agriculture, Science)	2.2 – 0.2	7.7 – 2.1	6.1 – 1.7	0.4 - < 0.1
Timing	NM	< 0.1	NM	NM
Space	24.3	61.0 – 27.0	NM	NM


Typical distance planned between ATC transmitters:

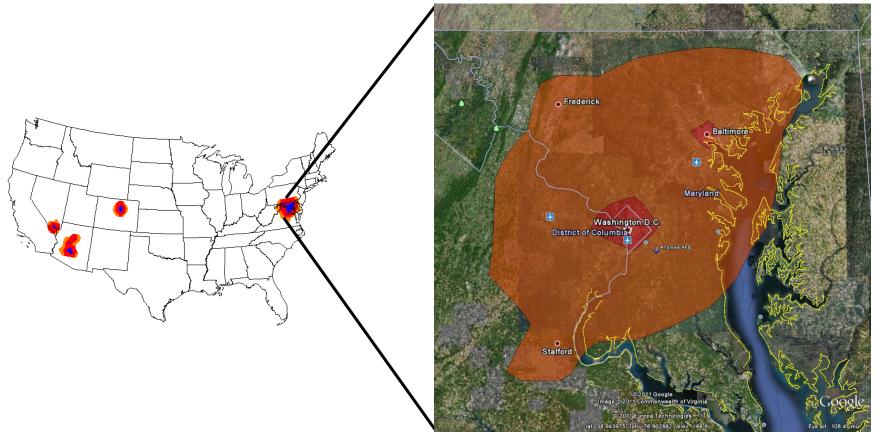
- Dense urban environment 0.4 0.8 km
- Urban environment
 1 2 km
- Suburban environment 2 4 km
- Rural environment 5 8 km

Effect on aircraft at 10,000 feet

LSQ emissions exceed aviation standard

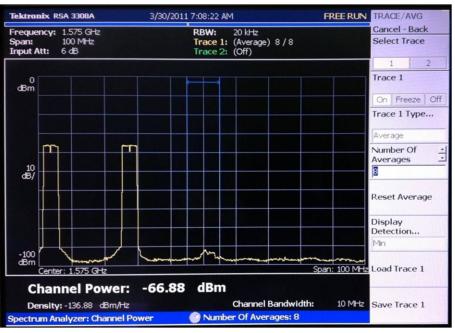
Significant measured degradation (common aviation receiver)

15



Aviation Impact (Initial Deployment)

16


Aircraft at 500'

No Position Output – Aviation Receiver "A" (-47 dBm) No Position Output – Aviation Receiver "B" (-37 dBm)

NASA/JPL Test Results

- NASA Jet Propulsion Lab (JPL) results demonstrate significant interference effects to space receivers
- Next Generation space receivers inoperable at 300 Km
- Results revealed an intermodulation interference effect "in-band" to GPS
 - JPL results confirmed in anechoic chamber results

- Relocate LightSquared transmission to different frequency band
 - FCC/NTIA identify frequency band more suitable for highpower terrestrial transmission
- GPS receivers include filters to reject/limit LightSquared transmission
 - Considerable expense and lengthy transition period
 - Receiver performance may be affected
 - Additional filtering may be more beneficial for future receivers

- Modifications to LightSquared antenna pattern and exclusion zones
 - More base stations required to provide coverage
 - Increase to aggregate interference
- LightSquared limit implementation to lower end of MSS L- band
 - May affect ability to provide national broadband service
- LightSquared (substantially) reduce base station transmitter power
 - More base stations required to provide coverage

Key Findings

- All GPS receiver applications impacted by proposed LightSquared Network
- Simulation of fully deployed LightSquared network of ~40,000 base stations would:
 - Degrade or result in loss of GPS function (ranging, position) at standoff distances ranging from few kilometers and extending to space operations
- Out of band emissions due to close proximity to GPS Band
 - Appear to be satisfactory
- No universal mitigation approach identified

Next Steps

- Additional Testing
 - Assess LightSquared handset (or user terminal) transmissions (hardware not available for test)
 - Evaluate utility of single 5 or 10 MHz channel (1526.3 1531.3 MHz or 1526 1536 MHz) in lower MSS spectrum
 - Evaluate LightSquared effects on timing receivers
 - Conduct additional MOPS-based laboratory tests
 - Additional aviation receiver Word Error Rate tests
 - Pseudorange accuracy tests
 - Complete documentation and catalog test data
- NPEF Report submitted 1 June
 - Redacted version targeted for 8 June public release