IAG and GALILEO-Science Events in 2009

G. Beutler

Astronomical Institute, University of Bern Member of IAG Executive Committee IGS Governing Board GSAC (ESA)

National Space-Based Positioning, Navigation, And Timing (PNT) Advisory Board Hilton Alexandria Old Town 1767 King Street, Alexandria VA, USA 22314 November 5-6, 2009

IAG and Galileo Science-related Events

- The IAG Scientific Assembly in 2009
- 2nd International Colloquium on Scientific Aspects of the Galileo Program in Padua and the GSAC
- The Frankfurt Meeting on GGOS

IAG Scientific Assembly 2009

The IAG scientific assembly (quadrennual event) took place Aug 31 to Sep 4 in Buenos Aires, Argentina.

- Gravity field determination,
- the establishment of reference frames (global, regional),
- positioning and navigation,
- > propagation of electromagnetic signals through the Earth's atmosphere,
- geodynamcs and
- the establishment of IAG's Global Geodetic Observing System (GGOS)
- were the major issues and GPS plays a key role in all of them.

Gravitaty field determination

CHAMP (left) determinates the gravity field from kinematic positions established with a spaceborne GPS receiver, GRACE (right) uses in addition μ m-precise inter-satellite distances, GOCE (center) the measurements of a so-called gradiometer – in addition to GPS.

Gravitaty field determination

Protagonists of the missions: CHAMP: Christoph Reigber, GRACE: Byron Tapley & Ch. Reigber, GOCE: Reinhard Rummel

Gravitaty field determination

Accuracy of GPSderived kinematic GOCE orbit of the GOCE science orbit (by AIUB/ HPF from ESA, with permission).

GGOS Mission

GGOS is

- the global observing system of the IAG,
- its flagship component that advances the use of geodetic observing methods for Earth system and planetary science and applications.

GGOS accomplishes its mission by defining the geodetic infrastructure that is needed to meet scientific and societal requirements,

- by advocating for the establishment and maintenance of this geodetic infrastructure,
- by coordinating interaction between the IAG Services, Commissions, and stakeholders,
- by improving the quality of and accessibility to geodetic observations and products, and
- by educating the scientific community about the benefits of geodetic research and the public about the fundamental role that geodesy plays in society.

GGOS: The near future: 2009-....

- Prof. Dietmar Grünreich, President of the Federal Agency for Cartography and Geodesy (BKG) invited the key agencies contributing to the IAG services and GGOS components for a conference on Nov 2-3 2009 to Frankfurt to
 - sign up to the GGOS concept laid down in GGOS 2020 document,
 - take note of the situation crated by the GGOS CfP and to develop a strategy to fill the GGOS gaps
 - to consider the creation of an Intergovernmental Committee for GGOS to take over political responsibility for the GGOS long-term stability
- It goes without saying that the scientific home of and the scientific responsibility for GGOS must remain at IAG.

2nd International Colloquium on

Scientific Aspects of the Galileo Program (3 days, parallel sessions)

Sessions:

Ionosphere, Clocks

Remote Sensing, Relativity

Troposphere, **Time**

Geodesy, Advanced Topics

More information: http://www.congrex.nl/09c10/

2nd International Colloquium on

Scientific Aspects of the Galileo Program (3 days, papallel sessions) Round table:

Community anxious to get GIOVE obs

Research related to GALILEO space clocks, multi-GNSS, real time satellite clocks/ephemerides, satellite/receiver antenna issues, independent orbit validation should be stimulated.

SLR reflectors will be on Galileo spacecrafts of IOV and FOC phases.

GSAC stands for Galileo Science Advisory Committee. The members of GSAC shall -

- Recommend improvements to Galileo and EGNOS for scientific applications
- Maintain a GNSS Science Opportunity Document (SOD), highlighting scientific priorities
- Support the preparation of announcements of opportunity (AO) for scientific studies
- Advise on the use of Galileo and EGNOS data for scientific applications.
- Consider and review ESA-furnished documents related to

the scientific use of GNSS signals

- The members of the GSAC are appointed by the ESA Director General upon recommendation of the ESA member countries.
- The Committee has a Chair (one of its members) and a Secretary (from ESA).
- Secretary: Dr. Bertram Arbesser-Rastburg.
- The GSAC was created in fall 2008 and met three times since.
- Third meeting took place October 13, 2009 in Padua
- > A GSAC web-page is under construction.

Frankfurt GGOS Meeting

The major GGOS funding agencies and IAG/GGOS develop a strategy to preserve and improve global geodetic infrastructure.

Results of the meeting on November 2-3:

- The GGOS2020 document is adopted as the reference for all GGOS-related activities.
- The IAG services' products also labeled GGOS products
- Decision to create GGOS Intergovernmental Committee (GIC) (first step Inter-agency agreement)
- GIC will be represented in the top level GGOS Governing Entity (requires revision of GGOS structure)
- Frankfurt declaration adopted.

GLONASS-Status November 2009 / Re-Iteration on SLR Reflectors

G. Beutler

Astronomical Institute, University of Bern Member of IAG Executive Committee IGS Governing Board GSAC (ESA)

National Space-Based Positioning, Navigation, And Timing (PNT) Advisory Board Hilton Alexandria Old Town 1767 King Street, Alexandria VA, USA 22314 November 5-6, 2009

GLONASS Constellation Status (November 5, 2009)

		1.57.5.5.6.6		T		C to the second	
GLONASS	Cosmos	Plane/	Frequ.	Launch	Intro	Status	Outage
number	number	slot	chann.	date	date		date
728	2448	1/02	-4	25.12.2008	20.01.2009	operating	
727	2447	1/03	05	25.12.2008	17.01.2009	operating	
701	2404	1/06	01	10.12.2003	09.12.2004	unusable	18.06.2009
712	2413	1/07	05	26.12.2004	22.12.2005	operating	
729	2449	1/08	06	25.12.2008	12.02.2009	operating	
722	2435	2/09	-2	25.12.2007	25.01.2008	operating	
717	2426	2/10	-7	25.12.2006	03.04.2007	operating	
723	2436	2/11	00	25.12.2007	22.01.2008	operating	
721	2434	2/13	-2	25.12.2007	08.02.2008	operating	
715	2424	2/14	-7	25.12.2006	03.04.2007	operating	
716	2425	2/15	00	25.12.2006	12.10.2007	operating	
718	2431	3/17	04	26.10.2007	04.12.2007	operating	
724	2442	3/18	-3	25.09.2008	26.10.2008	operating	
720	2433	3/19	03	26.10.2007	25.11.2007	loperating	
719	2432	3/20	02	26.10.2007	27.11.2007	l operating	
725	2443	3/21	04	25-09-2008	05.11.2008	l operating	
726	2444	3/22	3	25 09 2008		l unusahle	31 08 2009
714	2119	1 3/23	1 03 1	25 12 2005	31 08 2006	l operating	01.00.2009
710	0410	1 2/23	00	25.12.2005	21 00 2006	Operating	
113	2410	J/24	02	ZUU5.IZ.ZUU5	JI.UO.ZUU0	unusable	02.11.2009

Three GLONASS-M Satellites dropped out summer/fall 2009, among them the oldest GLONASS-M. September triple launch postponed to Feb 2009. Status of Christmas launch unclear.

Mean TEC Development since 1996

Mean TEC Values as established by the IGS. Current cycle of solar activity unusually long.

The following example underlines that systemspecific systematic errors on the level of few cm

- in fact do occur
- can only be detected if there are independent checks
 - using other space geodetic techniques or
 - using measurements from independent GNSS (such as GALILEO, GLONASS)
- The example uses SLR (Satellite Laser Ranging observations) to validate GPS orbits.
- The illustrations are taken from a Ph.D. Thesis by Mrs. Claudia Flohrer (former Ms. Claudia Urschl).

G05 + G06

Coordinate system (*β***,** *u***)**

Satellite's position w.r.t. the Sun

G05 + G06

