SPACE-BASED POSITIONING NAVIGATION & TIMING

NATIONAL EXECUTIVE COMMITTEE

U.S. GPS Policy and U.S. International Cooperation Activities

Civil GPS Service Interface Committee U.S. States and Local Government Subcommittee Groton, Connecticut April 27, 2011

Maureen Walker

U.S. Department of State National Space Based PNT Coordination Office

• U.S. Space-Based PNT Policy

International Cooperation Activities

Space-Based PNT Guideline: Maintain leadership in the service, provision, and use of GNSS

- Provide civil GPS services, free of direct user charges
 - Available on a continuous, worldwide basis
 - Maintain constellation consistent with published performance standards and interface specifications
 - Foreign PNT services may be used to complement services from GPS
- Encourage global compatibility and interoperability with GPS
- Promote transparency in civil service provision
- Enable market access to industry
- Support international activities to detect and mitigate harmful interference

U.S. Policy Promotes Global Use of GPS Technology

- No direct user fees for civil GPS services
 Provided on a continuous, worldwide basis
- Open, public signal structures for all civil services
 - Promotes equal access for user equipment manufacturing, applications development, and value-added services
 - Encourages open, market-driven competition
- Global compatibility and interoperability with GPS
- Service improvements for civil, commercial, and scientific users worldwide
- Protection of radionavigation spectrum from disruption and interference

U.S. Objectives in Working with Other GNSS Service Providers

- Ensure compatibility ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
 - Radio frequency compatibility
 - Spectral separation between M-code and other signals
- Achieve interoperability ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service or signal
 - Primary focus on the common L1C and L5 signals

Pursue through Bilateral and Multi-lateral Cooperation

• U.S. Space-Based PNT Policy

International Cooperation Activities

Planned GNSS

- Global Constellations
 - GPS (24+)
 - GLONASS (30)
 - Galileo (27+3)
 - Compass (30 global and 5 regional satellites)
 - GINS Global Indian
 Navigation System (24)
- Regional Constellations
 QZSS (3)
 - IRNSS (7)

- Satellite-Based Augmentations
 - WAAS (2+1)
 - MSAS (2)
 - EGNOS (3)
 - GAGAN (2)
 - SDCM (2)

- U.S.-EU GPS-Galileo Cooperation Agreement signed in June 2004
 - Four working groups set up under the Agreement
- U.S.-Japan Joint Statement on GPS Cooperation 1998
 - Quasi Zenith Satellite System (QZSS) designed to be fully compatible and highly interoperable with GPS
 - Bilateral agreements to set up QZSS monitoring stations in Hawaii and Guam
- U.S.-Russia Joint Statement issued December 2004
 - Working Groups: compatibility/interoperability, search/rescue

- U.S.-China operator-to-operator coordination under ITU auspices is complete
 - Bilateral Meetings in 2007, 2008, 2009, 2010
- U.S.-India Joint Statement on GNSS Cooperation 2007
 - Technical Meetings focused on GPS-India Regional Navigation Satellite System (IRNSS) compatibility and interoperability held in 2008 and 2009
 - Continuation of ITU compatibility coordination is pending
- U.S.-Australia Joint Delegation Statement on Cooperation in the Civil Use of GPS in 2007
 - Bilateral meeting in Washington, D.C., Oct. 26-27, 2010
 - GNSS and applications to be included in expanded space cooperation, as discussed in an October 27 Joint Announcement

International Committee on Global Navigation Satellite Systems (ICG)

- Emerged from 3rd UN Conference on the Exploration and Peaceful Uses of Outer Space July 1999
 - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
 - Encourage compatibility and interoperability among global and regional systems
 - Met annually since 2006
- Members include:
 - GNSS Providers China, EU, India, Japan, Russia, United States
 - Other interested Member States of the United Nations
 - International organizations/associations

- Established in 2002
- Promote implementation of regional GNSS augmentation systems to enhance inter-modal transportation and recommend actions to be considered in the Asia Pacific Region
- Reports to Transportation Working Group (TPT-WG) through the Inter-modal Experts Group (IEG)
- Adopted a GNSS Strategy designed to promote adoption of GNSS technologies throughout the Asia Pacific region, especially with regard to transportation

- GPS performance is better than ever and will continue to improve
 - Augmentations enable even higher performance
 - New civil GPS signal available now
 - Many additional upgrades scheduled
- U.S. policy encourages worldwide use of civil GPS and augmentations
- International cooperation is a priority
 - Compatibility and interoperability very important

Contact Information

Maureen Walker

State Department Representative to the National PNT Coordination Office

pnt.gov (202) 482-5809

GPS Modernization – New Civil Signals

Second civil signal "L2C"

- Designed to meet commercial needs
- Higher accuracy through ionospheric correction
- Available since 2005 without data message
 - Currently, 7 IIR-Ms transmitting L2C
- Full capability: 24 satellites ~2016

Third civil signal "L5"

- Designed to meet demanding requirements for transportation safety-of-life
- Uses highly protected Aeronautical Radio Navigation Service (ARNS) band
- On orbit broadcast 10 APR 2009 on IIR-20(M) secured ITU frequency filing
- Full capability: 24 satellites ~2018

GPS Modernization – Fourth Civil Signation (L1C)

Under Trees

Urban Canyons

- Designed with international partners for interoperability
- Modernized civil signal at L1 frequency
 - More robust navigation across a broad range of user applications
 - Improved performance in challenged tracking environments
 - Original signal retained for backward compatibility
- Specification developed in cooperation with industry recently completed
- Launches with GPS III in 2014
- On 24 satellites by ~2021

Modernized Operational Control Segment (OCX)

- Architecture Evolution Plan (AEP)
 - Transitioned in 2007
 - Increased worldwide commanding capability
 - Increased capacity for monitoring of GPS signals
 - Modern distributed system replaced 1970s mainframes
 - Current software version (5.5D) enabled SAASM functionality
- Next Generation Control Segment (OCX)
 - Controls more capable constellation, and monitors all GPS signals
 - \$1.5B contract awarded 25 February 2010
 - Capability delivered incrementally to reduce risk
 - On track for Preliminary Design Review in ~April 2011
 - Full Capability by ~2016

Wide Area Augmentation System (WAA Architecture

WAAS Phased Upgrades

- Phase I: IOC (July 2003) Completed
 - Provided LNAV/VNAV/Limited LPV Capability
- Phase II: Full LPV (FLP) (2003 2008) Completed
 - Improved LPV availability in CONUS and Alaska
 - Expanded WAAS coverage to Mexico and Canada
- Phase III: Full LPV-200 Performance (2009 2013)
 - Software enhancements, hardware upgrades
 - Steady state operations and maintenance
 - Transition to FAA performed 2nd level engineering support
 - Begin GPS L5 transition activities
- Phase IV: Dual Frequency (L1,L5) Operations (2013 2028)
 - Complete GPS L5 transition
 - Will significantly improve availability and continuity during severe solar activity
 - Provide additional protection against GPS interference
 - Will continue to support single frequency users

Nationwide Differential GPS (NDGPS) is a National PNT Utility

- Operated/managed by U.S. Coast Guard as a Combined NDGPS (Maritime + Department of Transportation sites + ACOE sites)
- System Specifications
 - Corrections broadcast at 285 and 325 kHz using Minimum shift Keying (MSK) modulation
 - Real-time differential GPS corrections provided in Radio Technical Commission for Maritime Services (RTCM) SC-104 format
 - No data encryption
 - Real-time differential corrections for mobile and static applications
- Single coverage terrestrial over 92% of Continental United States (CONUS); double coverage over 65% of CONUS

Nationwide Differential GPS

September 2009

- Expansion of maritime differential GPS (DGPS) network to cover terrestrial United States
- Built to international standard adopted in 50+ countries

Terrestrial NDGPS Capabilities and Uses

- Transportation <u>operational</u> requirements:
 - Federal Highway Administration (FHWA)
 - on behalf of state and local DOT stakeholders
 - routine use in Federal-Aid Program
 - survey, construction, quality, asset management
 - roadside management
 - law enforcement
 - Association of Am. Railroads
 - baseline reference
 - National Governor's Association
 - use by state DOTs,
 - resource management agencies

National Continuously Operating Reference Stations (CORS)

- Enables highly accurate, 3-D positioning
 - Centimeter-level precision
 - Tied to National Spatial Reference System
- 1,200+ sites operated by 200+ public, private, academic organizations

- NOAA's Online Positioning User Service (OPUS) automatically processes coordinates submitted via the web from around the world
- OPUS-RS (Rapid Static) declared operational in 2007
- NOAA considering support for real-time networks