The Antarctic Polar Earth Observing Network (POLENET)

Challenges of Autonomous and Continuous GPS/GNSS Observations at Remote Sites

Larry Hothem U.S. Geological Survey, Reston, Virginia

April 27, 2011

Civil GPS Service Interface Committee U.S. States and Local Government Subcommittee Regional Meeting Mystic Marriott Hotel & Spa, Groton, Connecticut

THE POLAR EARTH OBSERVING NETWORK

Overview

- Collaborative Activities Antarctic Geodesy and Science
- Antarctica 7th continent
- POLENET international program
 - Science objectives
- POLENET Remote observatories
 - Transport requirements
 - Many challenges that had to be overcome in the harsh polar environment of Antarctica
 - Power and communications
- Close

Collaborative Activities

Antarctic Geodesy & Geophysics Research Support

- Polar Earth Observing Network (POLENET)
 - Absolute gravity measurements
 - international joint project of POLENET
- International GNSS System (IGS) global network
 stations at McMurdo, South Pole, and Palmer
- Geodetic Infrastructure for Antarctica (GIANT)
 - SCAR Expert Group
- GPS for Weather and Space Weather Forecasting (GWSWF)
 - SCAR Action Group

How large is Antarctica and how do you get there by air

Antarctica Winter Stations

Produced by the Australian Antarctic Data Centre, Australian Antarctic Division, Department of the Environment and Heritage, January 2000 © Commonwealth of Australia

Projection: Polar Stereographic True Scale at 71*S

Antarctica

Produced by the Australian Antarctic Data Centre, Australian Antarctic Division, Department of the Environment and Heritage, January 2000 © Commonwealth of Australia

Projection: Polar Stereographic True Scale at 71°S

POLENET

http://www.polenet.org

Principal Investigator: Dr. Terry Wilson, School of Earth Sciences, Ohio State University, Columbus

Polar Earth Observing Network

Geophysical Observatories

- GNSS (GPS+)
- Seismic
- Gravity: absolute and relative
- Tide Gauges
- Geomagnetic
- Multisensor deep-sea observatories
- Space and airborne remote sensing measurements

Polar Plateau System

Designed for extreme cold and moderate winds

Continental Margin System

Designed for extreme winds and moderate temperatures

Cape Roberts: LINZ/USGS/OSU installed

CHALLENGES

Iow storage capacity initially Drifting snow Vibration concerns

SOLUTIONS

New receiver, more storage New panels, redundant power New monument Line-of-sight data comms link Station system is monitored

Cape Roberts

In 2000, GPS station established with first combined solar powered and battery storage system; successfully demonstrated all-year operation of GPS receiver

Cape Roberts:

Operates to as low as -45C.

Polarbear Statistics - COTE-soh-year.log

Lonewolf Nunatak Extremely windy and low temperatures

CHALLENGES

- Wind destroyed system.....twice
- Battery charge controller failed

SOLUTIONS

- Strengthened panels
- Redundant power
- Improved sealing of system

Spindrift in sealed enclosure.

Spindrift in sealed enclosure following year.

Site worked even though the environment was extremely difficult.

Example of GPS site: Battery banks powered by solar panels and wind turbines. Iridium satellite antenna to transmit GPS data.

Power and Communications through the Polar Night

Today's Features and Specifications

- 5 watts power and 1Mb/day data transfer year-around
- System deployed by 2-3 people in a single aircraft trip
- Solar and wind power for multi-year operation
- Gel-cell or sealed batteries
- Lithium batteries an option
- Snow (plateau) or rock installations
- GNSS/GPS data retrieved via Iridium satellite data link
- Via Iridium link: system monitoring, diagnostics, firmware upload, etc.

POLENET Sites in Antarctica

A MAJOR ADVANCEMENT

Real-time or near-real-time data communication systems

Monument Design

- Quick to install
- Anchored by 4 X 40cm expansion bolts
- Bolts set using epoxy
- Demonstrated stability
- Zero offset for antenna
 - Constant for all stations
- Concern: Multipath
 - Tests needed

Antarctic realities

Thank you

