Using CORS and OPUS for Positioning

Richard Snay
 NOAA's National Geodetic Survey

Civil GPS Service Interface Committee USSLGS Regional Meeting

Honolulu, Hawaii
June 24, 2009

NOAA's National Geodetic Survey

Everyone is able to know where they are and

where other things are anytime, anyplace!

The Global Positioning System (GPS)

Unaugmented GPS enables positioning with accuracies ranging from 1 to 10 meters.

Continuously Operating Reference Stations (CORS)

The CORS network enables differential GPS positioning with accuracies from 1 to 10 centimeters, or better.

Hawaiian CORS

CORS Information

- CORS network contains over 1,300 stations as of June 2009.
- Growing at rate of about 200 stations per year.
- Each station collects GPS signals, and NOAA makes these data freely available to the public via the Internet for postprocessing applications.
- Over 200 organizations participate in the CORS program by sponsoring and operating one or more stations.

CORS Partners

NSF (PBO)+Academic 15\%

NASA+other
Federal 3\%

State Govt. 34\%

Access to CORS Data

In Silver Spring, Maryland (CORS-East)

- Anonymous File Transfer Protocol (FTP) ftp://cors.ngs.noaa.gov
- UFCORS - User Friendly CORS http://www.ngs.noaa.gov/UFCORS

In Boulder Colorado (CORS-West)

- Parallel and independent data collection and on-line storage at NOAA's National Geophysical Data Center Anonymous FTP ftp://wwwest.ngs.noaa.gov

CORS Supports Precise Positioning
 ment or co

Positioning America for the Future
Before CORS: Accurate differential GPS positioning with multi-person field crew.

After CORS: Accurate differential GPS positioning with one-person field crew.

Positioning Error vs. Duration of the Observing Session

 Baseline Length, km

Online Positioning User Service (OPUS)

- Collect at least 15 minutes of dual-frequency GPS data
- Submit data to www.ngs.noaa.gov/OPUS/
- Data are processed automatically using NOAA computers \& software
- Corresponding positional coordinates computed with respect to at least 3 suitable CORS or IGS sites
- Computed coordinates returned via email (usually in minutes)


```
File Edit View Favorites Tools Help
```


Address http://www.ngs.noaa.gov/

Search for
G_{0}

Site Map
What We Do
What's New
Products
\& Services
State Advisors
Contracting Opportunities

Our History
FAQ

Project \& Division pages

Geoid

Geosciences Research (GRD)

Remote
Sensing
FGCS/GIAC

aeronautical CORS / OPUS $\frac{\text { datasheets geodetic }}{\text { PC software }}$ || Monday, March 15, 2004

- Upcoming Events - NGS In The Ne - The Observer Newsletter •

Check these out..

NGS Dedicates Commemorative Marker at U.S. Mint in Philadelphia: On March 12, NOAA dedicated a survey marker at the U.S. Mint in Philadelphia that commemorates Lewis and Clark's expedition across America two hundred years ago.
... more info ...Denver Mint dedication is March 15.
Quick Link to OPUS from NGS Home Page
www.ngs.noaa.gov

Cooperative CORS Providers/Users Group Meeting: The 2nd Annual Cooperative CORS Providers/Users Group Meeting will be held at the ACSM conference in Nashville. ... more info

New Options added to OPUS: This new version of OPUS optionally allows users control over which CORS sites are used for a solution, to receive their output in an extended format, and have their solution computed in State Plane coordinates. See Option \#5 on the OPUS main page.

Lewis And Clark Bicentennial: To honor Lewis and Clark's contributions to mapping, NGS is installing a series of commemorative markers along the route that Lewis and Clark traveled.

The National Readjustment

OPUS Output

NAD 83 coordinates (3D)
ITRF coordinates (3D)

NAVD 88 height

State Plane coordinates

UTM coordinates

US National Grid

FILE: corv0590.050 000416827
1008 NOTE: Antenna offsets supplied by the user were zero. Coordinates
1008 returned will be for the antenna reference point (ARP).
1008

> NGS OPUS SOLUTION REPORT
========================

USER: jeff.olsen@noaa.gov
RINEX FILE: corv059f.050

SOFTWARE: page5 0601.10 master3.pl
EPHEMERIS: igs13121.eph [precise]
NAV FILE: brdc0590.05n
ANT NAME: ASH700936B_M NONE
ARP HEIGHT: 0.0

DATE: January 13, 2006
TIME: 19:08:14 UTC

START: 2005/02/28 05:00:00
STOP: 2005/02/28 06:59:30 OBS USED: 4228 / 4314 : 98\% \# FIXED AMB: 25 / 29 : 86\% OVERALL RMS: 0.013(m)

REF FRAME: NAD_83(CORS96)(EPOCH:2002.0000)
ITRF00 (EPOCH:2005.1596)

BASE STATIONS USED

PID	DESIGNATION	LATITUDE	LONGITUDE		DISTANCE (m)
AH2489	NEWP NEWPORT CORS ARP	N443506.072	W1240342.736	60138.7	
AJ6959	CHZZ	CAPE MEARS CORS ARP	N452911.437	W1235841.187	113322.4
DH4503	P376	EOLARESVR_OR2004 CORS ARP	N445628.313	W1230608.100	42648.2

How do I get help?

- Study the Guidelines under "Using OPUS"
- Study the answers
under "FAQs"

OPUS Upload | What is OPUS | Using OPUS | Recent Solutions \mid Fays \mid OPUS Policies | Contact OPUS

- Submit specific questions, comments or suggestions using "Contact OPUS" link

OPUS-S vs. OPUS-RS

What are the fundamental differences between OPUS-Static (OPUS-S) and OPUS-Rapid Static (OPUS-RS)?

OPUS-S vs. OPUS-RS

OPUS-S requires at least two hours of GPS data from the rover, together with the same amount of data from 3 CORS (preferably located within 600 km of the rover), to solve for

* the rover's coordinates,
* atmospheric refraction parameters at both the rover and the 3 CORS, and * integer ambiguities (in the doubly differenced phase observations).

OPUS-S vs. OPUS-RS

OPUS-RS involves a 3-step process:

* Use at least one hour of GPS data from 3 to 9 CORS (located within 250 km of the rover) to solve for atmospheric refraction parameters at these CORS.
* Interpolate (or extrapolate) these refraction parameters to predict corresponding refraction parameters at the rover.
* Use at least 15 minutes of GPS data at the rover, together with the same amount of data at the nearby CORS to solve for:
- the rover's coordinates and
- integer ambiguities.

OPUS-S vs. OPUS-RS

Requirement	OPUS-S	OPUS-RS
Amount of GPS data from rover	$2-48$ hours	$0.25-4.00$ hours
Local CORS geometry	3 CORS, preferably located within 600 km of rover	3 to 9 CORS located within 250 km of rover, preferably with IDOP <0.8

What is IDOP?

The interpolative dilution of precision (IDOP) is a unitless number that quantifies the local geometric strength of the CORS network relative to the rover's location in terms of how well atmospheric conditions at nearby CORS can be interpolated (or extrapolated) to predict corresponding atmospheric conditions at the rover.
The smaller the value of IDOP the better.

IDOP VALUES AS A FUNCTION OF LOCATION EXAMPLE FOR THE CASE OF 4 CORS LOCATED AT THE CORNERS OF A SQUARE

Best IDOP $=1 / \sqrt{ } \mathbf{N}$ where \mathbf{N} denotes the number of CORS. Best IDOP occurs at the centroid of the CORS.

With these 4 CORS, the best IDOP $=0.5$ and IDOP increases as the distance from the centroid increases.

With 9 CORS, IDOP would equal 0.33 at the centroid of the CORS.

(3p/2,3p/2)

OPUS-RS Accuracy Depends on IDOP and RMSD

RMSD $=$ Root mean square distance $=\left[\left(\sum d_{i}^{2}\right) / n\right]^{0.5}$
where d_{i} is the distance between the rover and the i-th CORS, and n equals the number of CORS being used.

$$
\begin{aligned}
& \text { STDERR }(\text { north }) \approx\left[(1.8 \mathrm{~cm} \cdot I D O P)^{2}+(0.05 \mathrm{ppm} \cdot R M S D)^{2}\right]^{0.5} \\
& \text { STDERR }(\text { east }) \approx\left[(1.8 \mathrm{~cm} \cdot I D O P)^{2}+(0.05 \mathrm{ppm} \cdot R M S D)^{2}\right]^{0.5} \\
& \text { STDERR }(\text { up }) \approx\left[(6.7 \mathrm{~cm} \cdot I D O P)^{2}+(0.15 \mathrm{ppm} \cdot R M S D)^{2}\right]^{0.5}
\end{aligned}
$$

Vertical standard error achievable when a user submits 15 minutes of GPS data to OPUS-RS

> Vertical standard error achievable when a user submits 15 minutes of GPS data to OPUS-RS

Comparing OPUS-RS Results for 15 - Minute Data Sets with Those for

4 - Hour Data Sets

RMSEvsRMSD for IDOP $=0.45$

OPUS add-ons

DEFAULT
OPTION
OPUS FLAVOR

US only

hours of data no archive
one receiver
no delimiters
GPS only
\$\$\$ receiver
global results minutes of data
share results
multiple receivers OPUS-projects
delimited results OPUS-XML
GNSS signals
\$\$ receivers

OPUS-global
OPUS-RS
OPUS-DB

OPUS-GNSS
OPUS-mapper

Just Around the Corner

Within the next 12 months, the CORS system will:

- Provide GPS L2C data
- Provide GLONASS data
- Broadcast GNSS data via the Internet in real-time (on an experimental basis). (For selected sites only.)

Red dots identify locations of CORS sites that collect both GPS and GLONASS data.

