

Bijunath R. Patla

Time and Frequency Division – NIST, Boulder bijunath.patla@nist.gov

CGSIC, 2022

GNSS operations/Time transfer

- New NIST GNSS receiver
- > Calibrations
- Subscription-based NIST time service

Scientific research and data analysis

- Exploring fundamental physics using atomic clocks: universality of gravitational redshift, relativistic geodesy
- Topics on more resilient GNSS

June 2022: NIST primary receiver and antenna upgrades

→ C igs.org/imaps/station.php?id=NIST00USA

Ů ☆ 🗯 🗖 .

Overview

Map Photos

Receiver - Firmware	SEPT POLARX5TR - 5	.4.0
Antenna - Radome	NOV750.R4 - NONE	
Antenna Calibration	ROBOT	
Clock	EXTERNAL H-MASER	
Last RINEX Data - Primary Data Center	2022-09-15 (v3) - J	PL
Constellation - RINEX	GPS+GLO+GAL+BDS	;+Q
Constellation - RealTime		
DOMES Number	49507M002	
Nearby Tide Gauge	N/A	
Station Log	<u>nist00usa_2022061</u>	<u>5.lo</u>
Analysis Center Usage	Final COD 2022-09-02 EMR GEZ 2022-09-09	20 20
	0.2 2022 00 00	

Station Information - NISTOOUSA

ROBOT				
EXTERNAL H-MASER				
2022	-09-15 (v3) - J	PL		
GPS+	GLO+GAL+BDS	+QZSS+SBAS		
4950	7M002			
N/A				
nist00usa_20220615.log				
	Final	Rapid	Ultra	
COD	2022-09-02	2022-09-16		
EMR		2022-09-16		
GFZ	2022-09-09			
JPL	2022-09-02			
MIT	2022-09-02			
NGS	2022-04-30			
SIO	2022-09-02		2022-09-16	
USN		2022-06-18		

- ➢ June 15, 2022: Results of CAL_ID 1001-2020 implemented
- ▶ Internal delays 28.2 ns and 26.3 ns for GPS P1 and P2
- \succ Ref. delay: 93.0 ns

June 2022: NIST primary receiver and antenna upgrades

Multipath < 0.30 cm

Time Transfer with GPS carrier phase : NIST-PTB

Link stability before and after (two month intervals)

Completed

- NRC : Ottawa, Canada / Cal_Id:1019-2017
- CNM : Queretaro, Mexico / Cal_Id:1011-2017
- ✦ CNMP : Panama / Cal_Id: 1011-2017
- ✦ INXE,ONRJ: Brazil / Cal_Id: 1012 -2020
- ✦ AGGO,INTI,ONBA: Argentina / Cal_Id: 1014 -2021

Performance: UTC(NIST)

Performance: UTC(NIST)

NIST Time Services

A brief history of clocks at NIST [slide credit: Chris Oates]

UGR Gravity affects the rate of clocks

Fractional frequency shift,
$$\frac{\Delta f}{f} = (1 + \epsilon) \frac{\Delta \Phi}{c^2}$$

 $\Delta \Phi \rightarrow$ gravitational potential difference w.r.t. geoid $c \rightarrow$ speed of light in vacuum

Einstein's general relativity: $\epsilon = 0$

Clocks on Mount Evans, CO / Elevation 14,265ft?

NEWS COVID-19 SCPMC CALENDAR SCHEDULE ABO

Colorado Springs man becomes fourth person to push a peanut up Pikes Peak with his nose

🚯 By Abigail Beckman · Jul. 15, 2022, 11:59 am

Comparing with Gravity Probe A (GPA) [Vessot, R.F.C. et al. 1980, PRL]

	GPA,1976	Clock on Mt Evans, 202?
Height difference (km)	10,000	2.75
Experiment duration (hr)	~ 1	~ 10
Oscillator uncertainty, $\delta\left(\frac{\Delta f}{f}\right)$	10^{-14}	10^{-18}
ϵ (theory)	25 parts per million	6 parts per million
ϵ (measured)	~125 parts per million	~12 parts per million?

Gravitational considerations as clocks get better

Geoid: Equipotential surface coinciding with the mean sea level

- > What is the acceptable precision/uncertainty on the definition of the geoid?
- > What is the effect of rising (not very predictable) sea level ?
- Local (short baseline) clock comparisons depend on mapping area under few tens of sq-km with gravimeters, spirit levelling
- → Fractional frequency uncertainty for locations around NIST (2017) ~ 10^{-19}
- All measurements assign an uncertainty of *zero* for pivot (NGS marker) with respect to the geoid

Clocks, geoid, geodesy... [in collaboration with Prof. Neil Ashby, CU Boulder]

In order to compare distant clocks, one may have to first use very precise clocks for accurately determining the geoid (chronometric levelling).

Redefinition Options: 3 Possibilities

[slide credit: Elizabeth Donley]

- 1. Define based on the frequency of a transition in one atom. Other atomic transitions would be "secondary representations"
 - + Already done with cesium
 - + Easy to describe and understand
 - The "best atom" could be different in a few years
 - Based on the chosen atom, labs might have to build a new standard once a decision is made
- 2. Define a standard based on the weighted average of several transitions
 - + Could include many atoms whose weights adapt over time based on performance
 - + Would reduce risk to labs since all standards could be used
 - Complex and hard to explain in simple terms
- 3. Define frequency by fixing the value of another fundamental constant, for example, the Rydberg constant
 - + Would be consistent with the other definitions of the SI units
 - Would degrade the accuracy of the definition (uncertainty in R_{∞} is 2×10⁻¹²)

Resilient GNSS timing by including doppler data: spoofing [in collaboration with Prof. Neil Ashby, CU Boulder]

Resilient GNSS timing by including doppler data: spoofing [in collaboration with Prof. Neil Ashby, CU Boulder]

Pros:

- Can be used to detect excursions using single point solutions
- Can validate excursions in the orbital parameters as determined from the navigation message
- Method can be applied to all constellations

Cons:

- Expensive (computing power)
- Not all receivers provide doppler information

Would be very useful if navigation messages are made available to the user by a trusted source that is independent of the receiver.

Contact information:

Neil Ashby Elizabeth Donley Judah Levine Mike Lombardi Chris Oates Jeff Sherman NIST time and frequency division chief: Elizabeth Donley (elizabeth.donley@nist.gov)

NIST time services: Mike Lombardi (michael.lombardi@nist.gov)

Optical frequency standards: Chris Oates (chris.oates@nist.gov)

NIST timescale: Jeff Sherman (jeff.sherman@nist.gov)

Would users benefit from a real-time GPS navigation message made available on a secure website?

Any strong objections?

Suggestions? Use cases?